Downloads
Abstract
The Internet of Things (IoTs) is a network of interconnected devices, transportations, home appliances, and other devices. They are functionally embedded in electronics, software, sensors, actuators, and connectivity that allows them to connect and exchange information. On the basis of the IoT concept, implementations are gradually being proposed in a range of areas, ranging from smart house, smart office and smart agriculture. In this research paper, a generic framework for smart monitoring applications based on the IoTs network is proposed. In this framework, low-powered sensor nodes are based on the micro:bit platform, providing a multiple footprints for different sensor connections. The wireless capability on micro:bit provides a complete solution to deploy the system in such places that wire is impractical to draw. The data is wirelessly gathered by a basestation node that is powered by Android Things operating system provided by Google. This operating system is based on the Android platform for smart devices and Internet of Things products. The approach to this framework indicates a low cost and minimum setup and especially amenable for applications control. To support many applications with minimum modifications, the framework is designed for easy expansion by supporting popular serial connection ports, including the Universal Asynchronous Receiver/Transmitter and Serial Peripheral Interface. With these connections, on one line data bus, several sensors can be added to match the different application requirements. In this paper, our platform is validated for an automatic water monitoring in aquaculture based on the temperature, pH and dissolved oxygen sensory data. Through our framework, the data is uploaded to a cloud for remote monitoring and providing alarms for users whenever the data is out of a predefined safe domain.
Issue: Vol 3 No SI1 (2020): Special Issue: Computer Science and Engineering
Page No.: SI71-SI81
Published: Nov 9, 2020
Section: Review
DOI: https://doi.org/10.32508/stdjet.v3iSI1.513
Download PDF = 389 times
Total = 389 times