Downloads
Abstract
Recommender systems (RS) have become a fundamental tool for helping users make decisions around millions of different choices nowadays – the era of Big Data. It brings a huge benefit for many business models around the world due to their effectiveness on the target customers. A lot of recommendation models and techniques have been proposed and many accomplished incredible outcomes. Collaborative filtering and content-based filtering methods are common, but these both have some disadvantages. A critical one is that they only focus on a user's long-term static preference while ignoring his or her short-term transactional patterns, which results in missing the user's preference shift through the time. In this case, the user's intent at a certain time point may be easily submerged by his or her historical decision behaviors, which leads to unreliable recommendations. To deal with this issue, a session of user interactions with the items can be considered as a solution. In this study, Long Short-Term Memory (LSTM) networks will be analyzed to be applied to user sessions in a recommender system. The MovieLens dataset is considered as a case study of movie recommender systems. This dataset is preprocessed to extract user-movie sessions for user behavior discovery and making movie recommendations to users. Several experiments have been carried out to evaluate the LSTM-based movie recommender system. In the experiments, the LSTM networks are compared with a similar deep learning method, which is Recurrent Neural Networks (RNN), and a baseline machine learning method, which is the collaborative filtering using item-based nearest neighbors (item-KNN). It has been found that the LSTM networks are able to be improved by optimizing their hyperparameters and outperform the other methods when predicting the next movies interested by users.
Issue: Vol 3 No SI1 (2020): Special Issue: Computer Science and Engineering
Page No.: SI1-SI9
Published: Sep 19, 2020
Section: Research article
DOI: https://doi.org/10.32508/stdjet.v3iSI1.540
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 06/2018/TN
Download PDF = 515 times
Total = 515 times