VNUHCM Journal of Engineering and Technology
http://stdjet.scienceandtechnology.com.vn/index.php/stdjet
<p><span id="result_box" class="" lang="en"><span title="Tạp chí Phát triển Khoa học và Công nghệ (PTKH&CN) của Đại học Quốc gia thành phố Hồ Chí Minh (ĐHQG-HCM) được thành lập từ năm 1997, ra số đầu tiên vào tháng 1 năm 1998. Từ năm 2006 Tạp chí đã"><strong>Science and Technology Development Journal</strong> (STDJ), Vietnam National University - Ho Chi Minh City (VNUHCM) was established in 1997. And the first issue was published in January 1998 with </span><span title="đăng ký mã số chuẩn quốc tế ISSN 1859-0128.">ISSN 1859-0128. </span><span title="Từ đó cho đến nay, Tạp chí PTKH&CN đã trở thành diễn đàn khoa học quan trọng nhất của đội ngũ cán bộ nghiên cứu, giảng viên, nghiên cứu sinh của ĐHQG-HCM và cũng là diễn đàn khoa học công nghệ đáng tin cậy của">Since then, STDJ has become the most important scientific forum of scientists from VNUHCM as well as</span><span title="nhiều nhà nghiên cứu, giảng viên các trường đại học khác tại Việt Nam."> other universities. </span><span title="Tạp chí đã trải qua 20 năm phát triển và đã trở thành nhịp cầu giao lưu khoa học, cũng như làm phong phú tài liệu tham khảo cho đội ngũ giảng viên, nghiên cứu sinh, sinh viên ĐHQG-HCM nói riêng và các Trường đại">The magazine has undergone 20 years of development and has become a bridge for scientific exchanges, as well as enriching reference materials for the faculty, doctoral students, students of VNU-HCM in particular and other universities, institutes... </span></span></p> <p><span id="result_box" class="" lang="en"><span title="học phía Nam nói chung. "><br></span><span title="Tính đến hết năm 2016 Tạp chí đã xuất bản được 276 số với 2714 bài nghiên cứu của các nhà khoa học, cán bộ trong và ngoài ĐHQG-HCM trong 5 lĩnh vực nghiên cứu: Kỹ thuật và Công nghệ, Khoa học Tự nhiên,">By the end of 2016, the journal has published 276 issues with 2714 research articles in five areas of research: Engineering and Technology, Natural Sciences, </span><span title="Khoa học Xã hội và Nhân văn, Kinh tế luật và Khoa học Quản lý, Khoa học Trái đất và Môi trường tương ứng với 5 chuyên san chuyên ngành của Tạp chí.">Social Sciences and Humanities, Economics of Law and Management Sciences, Earth Sciences and Environment corresponding to 5 specialized journals of the Journal. </span></span></p> <p><span id="result_box" class="" lang="en"><span title="Tạp chí đã được phát hành tại các thư viện của các đơn vị thành viên của ĐHQG-HCM, các Sở Khoa học Công nghệ của các tỉnh thành trên cả nước và được Hội đồng học hàm Giáo sư Nhà nước đánh giá cao.">The magazine has been widely indexed in the various libraries at Vietnam. </span></span></p>Viet Nam National University Ho Chi Minh Cityen-USVNUHCM Journal of Engineering and Technology2615-9872<p>Copyright The Author(s) 2018. This article is published with open access by Vietnam National University, Ho Chi Minh city, Vietnam. This article is distributed under the terms of the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener">Creative Commons Attribution License (CC-BY 4.0)</a> which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. </p>Adsorption mechanism of sodium polysulfide clusters on selenium-doped Ti2CO2 MXenes for application in sodium-sulfur batteries
http://stdjet.scienceandtechnology.com.vn/index.php/stdjet/article/view/1473
<p>Room-temperature sodium-sulfur batteries show great potential for future energy storage systems; however, challenges such as the shuttle effect and poor conductivity hinder their practical application. The shuttle effect not only leads to energy loss but also diminishes the electrochemical performance of the batteries. The movement of these polysulfides can result in a gradual decrease in battery capacity, making it difficult to maintain consistent performance over time. Additionally, low conductivity can hinder charge transfer, slowing reaction kinetics and further reducing overall battery efficiency. One effective approach to address these issues is to use two-dimensional (2D) MXenes as electrode anchoring materials, which can help suppress the shuttle effect and enhance the electronic conductivity of sodium-sulfur batteries. This study investigates the effects of doping selenide atoms into 2D MXenes using first-principles methods to improve the stability and electronic properties of sodium-sulfur batteries. The selenide atoms are introduced into the termination layer to capture sodium polysulfide clusters. Our findings indicate that by doping with selenide atoms, the interaction between the Se-4p and S-3p orbitals enhances the ability of Ti<sub>2</sub>CO<sub>2</sub> MXenes to adsorb Na<sub>2</sub>S and Na<sub>2</sub>S<sub>2</sub> clusters compared to the pristine systems. We provide a detailed discussion of the bonding mechanism between the Na<sub>2</sub>S<sub>x</sub> clusters and the selenide-doped MXenes. Furthermore, we highlight the differences in adsorption mechanisms between low-sulfur content (Na<sub>2</sub>S, Na<sub>2</sub>S<sub>2</sub>, and Na<sub>2</sub>S<sub>4</sub>) and high-sulfur content (Na<sub>2</sub>S<sub>6</sub> and Na<sub>2</sub>S<sub>8</sub>) clusters, focusing on charge transfers and electronic properties. The distinctive structure of MXenes allows them to interact effectively with polysulfides, which can suppress the shuttle effect, thereby preventing polysulfide migration and reducing energy loss. Moreover, the enhanced conductivity provided by MXenes facilitates improved charge transfer, leading to superior overall performance in sodium-sulfur batteries. Our results emphasize the critical role of selenide atoms in 2D MXene electrode materials, enhancing the adsorption mechanism of sodium polysulfides for their application in sodium-sulfur rechargeable batteries.</p>Trong Mai ToTruong Long NguyenTrong Nhan DuongBao Trang Nguyen ThiNhat Pham VuDuy Khanh NguyenMinh Triet Dang
##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
2026-01-122026-01-129presspresstitledescriptionnonegImpact of Fluorine content on the Stability and Electronic properties of Sodium Lithium Manganese Oxide Cathode materials for Sodium-ion batteries
http://stdjet.scienceandtechnology.com.vn/index.php/stdjet/article/view/1472
<p>Sodium-ion batteries are emerging as a promising alternative to traditional rechargeable batteries, such as lithium-ion and lead-acid batteries. One of the most significant advantages of sodium-ion technology is that it utilizes materials that are not only cost-effective but also environmentally friendly. The raw materials needed to produce sodium-ion batteries are widely available, leading to reduced supply chain risks and potential price volatility often associated with lithium resources. Furthermore, the transition in energy storage mechanisms and manufacturing techniques from lithium-ion batteries is seamless since the two technologies facilitate a relatively smooth integration into existing production methods, which can lead to substantial cost savings for manufacturers. As the demand for energy storage continues to grow, the shift towards sodium-ion technology represents not just an innovation but also a practical move in battery production. Among the various cathode materials being researched for sodium-ion batteries, sodium lithium manganese oxides (NLM) have garnered attention for their potential. They exhibit good capacity and energy density; however, one of the critical challenges in their application is the Jahn-Teller distortion. This phenomenon occurs during cycling due to the changes in the valence state of manganese within the structure. As the battery operates, this distortion can lead to irreversible phase changes, compromising the structural integrity of the material and diminishing its capacity over time. To address these challenges, we investigate the role of fluorine content in enhancing the structural stability and electrochemical characteristics of (Co, F)-co-doped NLM cathode materials. By incorporating fluorine into the material's composition, we reveal that the effect of Jahn-Teller distortion can be mitigated. This modification not only helps preserve the capacity of the battery over multiple cycles but also improves the overall electrochemical performance of the cathodes. The results underscore the effectiveness of co-doping strategies, combining both cationic (like cobalt) and anionic (like fluorine) ions, to enhance the properties of electrode materials. This approach could hold the key to unlocking better performance in sodium-ion batteries, ultimately contributing to the development of next-generation energy storage solutions that are more efficient and sustainable. In summary, the advances in sodium-ion battery technology signal a significant step forward in energy storage systems. By tackling the limitations of existing materials and optimizing their composition, researchers are paving the way for viable alternatives to lithium-ion technology, thereby promoting a more sustainable and cost-effective energy future.</p>Phuc An NguyenAnh Duy Nguyen VoVan Nguyen ToTue Trang Hoang ThiVan Nghia NguyenMinh Triet Dang
##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
2026-01-202026-01-209presspresstitledescriptionnoneg