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ABSTRACT
In the design of ship propulsion system, the study of oscillation is a great importance because they
play a decisive role in the operating ability of the shaft system. Among ship shaft oscillations, axial
oscillation has been only a particular interest after applying on ships for diesel engines with ratio of
piston stroke and its diameter 3-4,4. In this paper, the special features of the computational model
are presented when studying the axial oscillations on the ship shaft system. It should be empha-
sized that the system of differential equations in describing the free and forced oscillations can be
obtained directly from the analogous equations of the torsion oscillation. However, unlike the tor-
sional oscillation, the axial oscillation of the ship shaft system directly affects the hull through the
thrust bearing. In order to solve with the problem of determining the forced and resonant axial os-
cillations based on the Runge-Kutta numerical method is done by directly integrating the system
of 2nd order differential equations in describing the oscillations. Therefore, the paper presents the
research results in proposing a procedure to reduce the order of 2nd order differential equations
and providing an algorithm to solve the system of differential equations in describing axial oscilla-
tions. From that, it will be considered that the mechanism under which forces of variable value are
applied to it, axial oscillation occurs. The accuracy in calculating of the axial oscillation depends not
only on the acceptedmethod of determining the free and forced oscillation, but also the proper in
giving the parameters of the discrete model. If the masses are easy to calculate, the evaluation of
the axial deformation of the crankshaft is not univariate because there are many formulas given on
the basis of idealizing the crankshaft under the structure of bar. Hence, it is proposed to build a 3D
model and determine the deformation of the engine crankshaft components by the finite element
method.1–9
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INTRODUCTION
The shaft system of main marine diesel engine equip-
ment is an elastic system that is subjected to periodic
forces and moments during operation. This action
of the load causes torsional, bending and axial oscil-
lations. If torsion and bend oscillations have been
solved with a methodology so far that allows to cal-
culate reliably and predict the amplitudes and stresses
of forced and resonant oscillation, axial oscillation has
been one of particular interests in operating practice
in the 1970s last century. Perhaps, the engineers of
the Fiat Gugliemotti и Maciotta Company1 were pio-
neers to approach the study of axial oscillation on the
basis of calculating and measuring the ship propul-
sion system with slow diesel engines. Their research
has shown that axial oscillation is dangerous for ship
shaft system and the relationship between axial and
torsional oscillation. Axial oscillation is especially
dangerous after applying on ships that are equipped
with diesel engines with a ratio of piston stroke to its
diameter 3,0-4,42. In these diesel engines, without

coating the journal of crankshaft, the bending stiff-
ness of the crankshaft is reduced, resulting in the ra-
dial force applied to the connecting rod the crankshaft
is easily bent. The result of the crankshaft deforma-
tion in the axial direction increases, so the proba-
bility of a dangerous resonance of axial oscillations
also raises up. The risk of axial oscillation depends
on the level of proximate resonance. When operat-
ing the shaft system gradually to the resonant rotation
frequency, the variable deformation of the shafts in-
creases suddenly, which can cause shaft fracture, de-
stroy the thrust bearing, and increase the oscillation
of the structure of ship hull.
The main disadvantage of the existing methodologies
for calculating axial oscillation is that they are based
on simplified methods oriented towards manual cal-
culation. Therefore, it is necessary to add harmonic
analysis of the forcing forces and then only take into
account the partial harmonic (e.g. if the resonant fre-
quency is 4th order, only the 4th harmonic component
is taken). All this leads to a significant error between
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the calculated and measured amplitudes of the reso-
nant axial oscillation. To solve with this disadvantage,
we apply numerical methods to solve the system of
differential equations directly in describing axial os-
cillation.

METHODS
Mathematical Models
The calculation of torsional and axial oscillations has
many common reviews 1. When calculating axial os-
cillation, the shaft system on ship is replaced by a dis-
crete model consisting of a collection of concentrated
masses that are related to each other by corresponding
deformations and properties of oscillated dispersion.
Thus, the differential equations in describing the free
and forced axial oscillation can be obtained directly
from the analogous equations for torsional oscillation,
if the angular displacement of the mass is replaced by
a linear displacement, the inertialmoment of themass
is simply replaced by themasses, and the torsional de-
formation is replaced by the axial deformation.
Nevertheless, unlike the torsional oscillation, the axial
oscillation of the shaft system directly affects the hull
through the thrust bearing. The relationship of axial
oscillations with the hull on the computational model
is described as a branch consisting of two masses mk

of the thrust collar and the mass of the hull. The mass
of the hull is much larger than the total mass of the
shaft which is considered to be rigidly mounted. The
axial deformation between the two thesemasses is de-
termined by the deformation of the thrust bearing and
its housing (Cn+2, Figure 1).
The analogous relation of the shaft system with the
hull is made by an axial anti-oscillation device. This
relationship is created by the structure of the axial
anti-oscillation device, it is idealized in the form of
a branch with 3 masses (m2, mn+1 as shown in Fig-
ure 1) with the computational model, where the outer
mass is rigidly coupled.
Dynamic properties of the shaft system – the object
of axial oscillation are determined by the time-shifted
displacements of the masses that are related to the
static balance position under the action of forcing ex-
ternal forces. The most suitable expression of these
displacements is to use Lagrange equations of the 2nd

type as shown:

d
dt

(
∂K
∂ .

xi

)
− ∂ K

∂xi
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Φ – The Rayleigh energy dispersion function is ex-
pressed as:
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Тi(t) – Force causing forced axial oscillation, which is
a function of time;
mi, Ci,i+1, C2,n+1, Cn+1, Cn+2 và Bi –The respective
masses, stiffness (strain) and dispersion coefficients;
xi và

.
xi – displacement and velocity of discretemasses.

After some uncomplicated transformations, it is able
to get a system of 2nd order differential equations with
constant coefficients.
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The system of equations (1) can be briefly written in
the form of a matrix:

[m]
{..

x
}
+[B]

{ .
x
}
+[C]{x}= {T} (3)

where:
[m] and [B] - diagonal matrix of masses and dispersal
coefficients;
[C] - square matrix of the coefficient of stiffness (axial
deformation);
{x},

{ .
x
}
, and

{..
x
}
- column matrix of extrapolated

coordinates, velocity and acceleration;
{T} - the column matrix of periodic changed forces.
Starting from (2), getting the differential equations in
describing the free oscillations in matrix form as fol-
lows:

[m]
{..

x
}
+[C]{x}= 0. (4)

The stress in the shaft due to axial oscillation is quite
small to use as an evaluation parameter in the re-
search3. Hence, it is considered that the only risk of
axial oscillation through amplitude, for example, in
terms of the free-end amplitude of the crankshaft.
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Figure 1: Discrete model of ship shaft system. 1-Torsional anti-oscillation device, 2-Axial anti-oscillation device,
3-Crankshaft, 4-Thrust bearing, 5-Flywheel, 6-Intermediate shaft, 7-Propeller shaft, 8-Propeller.

Determine The Forced External Force Ap-
plied To The Shaft System
So far, it has been considered that the structure in
which axial oscillation occurs. As mentioned above,
the variable deformation of the crankshaft is the cause
of the axial oscillation. This deformation is caused by
the radial force Z applied to the journal of connect-
ing rod as shown in Figure 2. Bending deformation
accompanied by the extension or contraction in the
axial direction of the crankshaft, causing reciprocat-
ing motion of the shaft elements. The equivalent axial
force T of this motion is expressed through the trans-
fer function ke by the simple relation

T = ke.Z (5)

where Z is the force that changes periodically accord-
ing to the rotation angle of crankshaft determined on
the basis of force analysis of the crankmechanism and
connecting rod4.

Figure 2: Deformation of crankshaft.

From theoretical viewpoint, the transfer function
is calculated using the conventional method. The

essence of this method is based on the idealization of
the crankshaft in the form of a bar, which means that
it does not take into account particularly the structure
of the crankshaft, the level of coating the shaft jour-
nal, the influence of crank webs to a deformed condi-
tion5. The finite element method allows to deal with
the above drawbacks and solve the problem of deter-
mining the axial deformation and the coefficient of
transfer function for the crankshaft. To further clarify
this proposal, it is considered the crankshaft of diesel
6S50MC-C3 with the structural parameters shown in
Figure 3 and Table 1.

Figure 3: Crankshaft structure of diesel 6S50MC-C 6

The calculation of the crankshaft deformation on the
basis of the finite element method is done, firstly
building a 3D model of the crankshaft, and then ex-
porting it to the ANSYS Workbench environment to
generate the element mesh and set up the forces as
shown in Figure 4a. On the basis of meshing proce-
dure, the obtained finite element model has a type of
quadrilateral grid with an average size of 35mm and a
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Table 1: Geometrical parameters andmaterial of
crankshaft

Symbol Unit Value

d1 mm 600

δ 1 mm 80

d2 mm 600

δ 2 mm 300

L mm 850

h mm 233

l2 mm 162

l1 mm 222

B mm 950

H mm 1785

R mm 1000

E Pa 2,1.1011

ρ Kg/m3 7850

number of 158075 elements. Then, the axial deforma-
tion of the crankshaft under the force value P = 4000
N is determined by the following formula:

eo =
△lp

P
(6)

where: P - axial force applied to the crankshaft,N; ∆lp
– deformation caused by axial force P, m.
Deriving from the finite element model, determining
the equivalent axial deformation ∆lx caused by the ra-
dial force Z = 6000 N applied to the connecting rod
journal as shown in Figure 4b. Therefore, the transfer
function is determined by the following equation:

ke =
△lx
e0.Z

(7)

The variable force is caused by propeller working in
uneven water flow that depends on many factors.
Among them, the most special feature is the shape of
the stern, the arrangement of the propellers, the angle
of the shaft, the shape of the blades, the draught, and
pitch and roll of the ship. According to7, propeller
thrust is determined by the following equation:

Tcv =
2Ttb [1−Vt .tgφ coszα/(ω .R0)]

2

2+[Vt .tgφ/(ω.R0)]
2 (8)

where:
Ttb – average thrust of propeller [N];
Vt – ship speed, [knot];
φ - inclination angle of the flow, φ < 20 radial;

α - rotation angle of propeller;
ω - Angular velocity of propeller;
z - Number of propeller blades;
R0 - calculated radius of the blade, [m], R0 =

(0.6÷0.65)D/2.
D: Diameter of propeller

Figure 4: Deformation of crankshaft in ANSYS sim-
ulation program.

Calculation Of Axial Oscillation Using The
Numerical Method Runge-Kutta
As known, the task of determining the forced and res-
onant oscillations of ship shafting’s is carried out by
the classical method – energy method. To implement
this method, it is firstly necessary to analyze the forc-
ing functions on the right-hand side of equation sys-
tem (2) in the form of harmonics, and then take only
one harmonic component corresponding to the res-
onant order, which can be determined by calculat-
ing free oscillations. It is clear that the calculation of
oscillations by the energy method does not take into
account the influence of all other harmonic compo-
nents, which leads to a significant discrepancy in the
calculation results.
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The numerical integration method allows directly
solve the system of differential equations (2) without
the need for harmonic analysis of the forcing forces.
In engineering calculations, the most widespread is
the fourth-order numerical Runge-Kutta’s method
that allows us to determine the values of the desired
partial functions y j = f j (t) at discrete moments of
time (space) using recurrent formulas for numerical
integration. In this case, each time interval is set equal
to the integration step h

t0 = a, t1 = t0 +h, t2 = t1 +h, ..., ti+1 = (i+1)h (9)

Integrating the differential equations of the Runge-
Kutta method are well developed and described in
sufficient detail in the reference material 8. For the
one first-order equation, these methods can be used
without any corrective changes. And regarding to the
second-order differential equations of the numerical
method, it was impossible to find the canonical for-
mulas for their solution in the mathematical books.
To solve the systemof equations (2), it is clear to trans-
form it into a system of the first-order equations (10)
using the procedure in lowering the order of the dif-
ferential equation. The essence of the procedure in
lowering the order is as follows, if a second-order dif-
ferential equation is given:

m
..
x+B

.
x+Cx = T (t)

then using the substitution x = y1 and
.
x = y2 it can be

reduced to a equation system consisting of two first-
order equations:{

.
y1 = y2;
m

.
y2 +By2 +Cy1 = T (t) .

In normalized form, this system of equations will look
like this {

.
y1 = F1 (t,y1,y2) ;
.
y2 = F2 (t,y2,y2) .

where F1 and F2 - the right-hand sides of the equa-
tions, respectively equal to

F1 (t,y1,y2) = y2;
F2 (t,y1,y2) =

T (t)
m − C

m y1 − B
m y2.

On the basis of the procedure in lowering the order,
the system of equations (1) is lowered to a system con-
sisting of (2n+2) of the first order differential equa-
tions in normalized form.

.
y1 = F1 (t,y1,y2, ...,ym+2) ;
.
y2 = F2 (t,y1,y2, ...,ym+2) ;

.
yk−1 = Fk−1 (t,y1,y2, ...,ym+2) ;

.
yk = Fk (t,y1,y2, ...,ym+2) ;

...
.
ym+1 = F+1 (t,y1,y2, ...,ym+2) ;
.
ym+2 = Fm+2 (t,y1,y2, ...,ym+2) ;

(10)

with initial conditions t = t0, y1 (t0) = y10, y2 (t0) =
y20, ..., ym+2 (t0) = ym+2,0;
where F1, F2, ..., Fm+2 - the generalized right-hand
sides of each equation of system (10), respectively
equal to

F1 (t,y1,y2, ...,ym+2) = y2;
F2 (t,y1,y2, ...,ym+2)

=
T1(t)
m1

− C1,2
m1

y1 − B1
m1

y2 +
C1,2
m1

y3;
F3 (t,y1,y2, ...,ym+2) = y4;
F4 (t,y1,y2, ...,ym+2) =

T2(t)
m2

+
C1,2
m2
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−C1,2+C2,3+C2,n−1
m2
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− B2
m2

y4 +
C2,3
m2
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C2,n+1

m2
ym+1

...;
Fk−1 (t,y1,y2, ...,ym+2) = yk;

Fk (t,y1,y2, ...,ym+2)
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Tk(t)
mk

+
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mk
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− Bk
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mk
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...;
Fm−3 (t,y1,y2, ...,ym+2) = ym−2;
Fm−2 (t,y1,y2, ...,ym+2)

=
Tn−1(t)
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+
Cn−2,n−1
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−Cn−2,n−1+Cn−1,n
mn−1
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Fm−1 (t,y1,y2, ...,ym+2) = ym;
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=
Tn(t)
mn−1

+
Cn−1,n

mn
ym−3

−Cn−1,n
mn

ym−1 − Bn
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ym;
Fm+1 (t,y1,y2, ...,ym+2) = ym+1;
Fm+2 (t,y1,y2, ...,ym+2) =

Tn+1(t)
mn+1

+
C2,n+1
mn+1

y3 −
C2,n+1+Cn+1

mn+1
ym+2;

The implementation algorithm of the 4th-order
Runge-Kutta’s method is lowered to periodical calcu-
lations of the value of the function at each step i+ 1,
when the i-th step is known, according to the follow-
ing recurrent formulas

y j,i+1 = y j,i +
1
6
(
K1 j +2K2 j +2K3 j +K4 j

)
(11)

where:
i - number of integration step, i = 0,1,2,...;
j - number of equations, j = 1,2,...,m = 2n;
n - number ofmass on themain branch of the discrete
model;
K1, j, K2, j, K3, j, K4, j - coefficients, calculated by the
formulas

K1, j = hFj
(
ti,y1,i,y2,i, ...,ym+2,i

)
K2, j = hFj × (ti + h

2 , y1,i +
K1,1

2 ,

y2,i +
K1,2

2 , ..., ym+2,i +
K1,m+2

2 )
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K3, j = hFj × (ti + h
2 , y1,i +

K2,1
2 ,

y2,i +
K2,2

2 , ..., ym+2,i +
K2,m+2

2 )

K4, j = hFj × (ti + h
2 , y1,i +

K3,1
2 ,

y2,i +
K3,2

2 , ..., ym+2,i +
K3,m+2

2 )

A computer program is written on the basis of the
described algorithm that allows to implement a step-
by-step cycle according to the 4th-order Runge-Kutta’s
formula (11). It should be noted that lowering the in-
tegration step, the accuracy of solving the system of
differential equations increases. In practical calcula-
tions, the correction of the choice of the integration
step is determined by the half-step method 8, for the
task specified below, the integration step is h = 10−4.

CALCULATED RESULTS AND
DISCUSSION
To clarify the above statements, we will consider the
shaft system of an Oil Tanker with a displacement of
47,400 tons and a speed of 15.1 knots. The single-
shaft propulsion system directly drives the torque to
the propeller as shown in Table 25. It consists of a
2-stroke engine 6S50MC-C6 as shown in Table 3, a
thrust bearing arranged in the engine, an intermedi-
ate shaft and propeller shaft, and a fixed pitch 4-blade
propeller. There is a device to prevent axial and tor-
sional oscillation on the crankshaft of the free end of
the crankshaft. The flywheel is situated on the driving
side of the crankshaft.
Thediscretemodel of the shaft system is shown in Fig-
ure 5. It consists of 12 masses in the main branch
and two rigidly connected branches: the 1st mass
idealizes the disc of the torsional anti-oscillation de-
vice, the block the 2nd - the toothed disc of the ax-
ial anti-oscillation device, the masses 3th to 8th - the
crankshaft mass, the 9th - the mass of the rim of the
thrust bearing and the driving end of the crankshaft,
10th mass – flywheel, 11th mass - intermediate shaft
and propeller shaft, 12th mass - propeller, 13th mass -
axial anti-oscillation housing. All masses are related
to each other by their respective axial deformation.
The parameters of the discretemodel are shown in Ta-
ble 4.
The calculation of the free axial oscillation is carried
out by solving the system of equations (3) on the basis
of the Cholesky procedure9 with the aim of determin-
ing the resonant frequencies. In this paper, the calcu-
lation of the resonant oscillation will be performed in
two cases: firstly, there is no anti-axial oscillation de-
vice, and then there is this device. Theobtained results
show that, in all operating modes (Figure 6, curve 2),

the resonant axial oscillations are dangerous for the
shaft system. The most dangerous mode of the en-
gine is corresponding to the frequency of 114 and 76
rpm (resonance order 4 and 6 respectively; resonance
amplitude 6.459mm and 6,112mm respectively) (Fig-
ure 7a and Figure 8a). This means that the exploita-
tion of a ship when the axial anti-oscillation device
is damaged is not allowed, because in this case the
amplitudes of oscillations will exceed the permissible
value (the given value of 0.93 mm by the manufac-
turer) is 6-7 times. When the axial anti-oscillation
device works normally, the oscillation amplitude can
reach 0.638mm (Figure 7b and Figure 8b), lower than
the permissible value.

Figure 7: Axial oscillation of the crankshaft free end
of 6S50MC-Cengineat rotation speed114 rpmwith-
out (a) and with (b) anti-oscillation device.

CONCLUSION
Calculation results show that the resonant axial oscil-
lation of the ship shaft system can be the cause of var-
ious damages, causing unpredictable consequences
as mentioned above, and especially dangerous for
the shaft system which are equipped with slow-speed
diesel on ships. Testing the technical condition of the
axial anti-oscillation device is a necessary to the nor-
mal operation of the energy equipment.
Calculating resonant and forced axial oscillation by
the numerical method will solve the limitation of
the energy method, since this conventional method
only considers a harmonic component of the forcing
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Figure 5: Calculation model of ship shaft system of Oil Tanker

Table 2: Basic parameters of shaft system7

Designation Symbol Unit Value

Diameter of crankshaft journal d1 mm 600

Diameter of intermediate shaft d mm 437

Diameter of propeller shaft dcv mm 530

Diameter of propeller D mm 5800

Weight of propeller mcv kg 13554

Weight of flywheel mbd kg 2977

Weight of axial anti-oscillation device mdd kg 1000

Table 3: Basic parameters of Diesel Engine 6S50MC 9

Designation Symbol Unit Value

Rated power Ndm kW 8310

Engine Speed ndm rpm 123

Bore of cylinder Dxl mm 500

Piston Stroke S mm 2000

Number of cylinders V - 6

Ratio of Crank radius to Connecting rod Length λ - 0,4

Air turbocharged pressure pk MPa 0,365

Pressure at the end of compression stroke pc MPa 13,2

Maximum combustion pressure pz MPa 15,1

Compression ratio ε - 15,5

Expansion ratio ρ - 1,7

Multivariable compression ratio n1 - 1,3

Multivariable expansion ratio n2 - 1,34

Crank Radius R mm 1000

Mass of reciprocating parts mtt kg 3500

Cylinder order - 1-5-3-4-2-6
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Figure 6: Variable graph of the maximum amplitudes of the axial oscillation for the crankshaft without (2) and
with anti-oscillation device (1), (3) – permissible amplitude.

Figure 8: Axial oscillation of the crankshaft free end
of 6S50MC-C engine at rotation speed 76 rpmwith-
out (a) and with (b) anti-oscillation device.

force. Performing calculations using the Runge-Kutta
method allows not only to determine the amplitude of
the oscillation, but also to reconstruct the oscillation
process over time.
The proposed method of the calculation of axial os-
cillation can find out a more effective orientation in
studying torsional oscillations of the ship shaft system.
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Table 4: Parameters of the computational model

Mass Axial deformation e j

(10−9, m.N−1)
Discrete Mass m j (kg) Dispersal Coefficient B j

(kg.s−1)

1 0,0044 11144,55 -

2 944,18 2600000

1,4545

3 5877,8 43356,33

2,90

4 5713,2 43356,33

2,90

5 5713,2 43356,33

2,90

6 5713,2 43356,33

2,90

7 5713,2 43356,33

2,90

8 6370,82 43356,33

1,4565

9 5212,21 4359946

0,0113

10 8590,14 -

0,2023

11 9129,55 420000

0,1889

12 29137,81 7265000

9-14 0,5863 - -

2-13 100000 - -

13 5,56 1000 -
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TÓM TẮT
Trong thiết kế thiết bị đẩy tàu thủy, việc nghiên cứu các dao động có tầm quan trọng lớn vì chúng
có vai trò quyết định đến khả năng làm việc của hệ trục. Trong số các dao động hệ trục tàu thủy,
dao động dọc chỉ được quan tâm một cách đặc biệt sau khi ứng dụng trên tàu thủy các động cơ
diesel có tỷ số giữa hành trình của piston với đường kính của nó bằng 3-4,4. Trong bài báo trình
bày tính đặc biệt của mô hình tính toán khi nghiên cứu dao động dọc hệ trục chân vịt tàu thủy.
Cần nhấn mạnh rằng, hệ phương trình vi phân diễn tả dao động tự do và dao động cưỡng bức có
thể nhận được trực tiếp từ các phương trình tương tự của dao động xoắn. Tuy nhiên, khác với dao
động xoắn, dao động dọc của hệ trục tàu thủy tác động trực tiếp đến vỏ tàu thông qua ổ đỡ chặn.
Việc giải quyết bài toán xác định dao động dọc cưỡng bức và cộng hưởng dựa trên cơ sở phương
pháp số Runge-Kutta được thực hiện bằng cách tích phân trực tiếp hệ phương trình vi phân cấp 2
mô tả dao động. Dẫn ra thủ tục giảm bậc phương trình vi phân cấp 2 và đưa ra thuật toán giải hệ
phương trình vi phân mô tả dao động dọc. Xem xét cơ cấu mà dưới tác dụng các lực cưỡng bức
có giá trị biến thiên đặt lên nó, dao động dọc xuất hiện. Tính chính xác của tính toán dao động
dọc không chỉ phụ thuộc vào phương pháp được thừa nhận xác định dao động tự do và cưỡng
bức, mà còn phụ thuộc vào tính đúng đắn của việc đưa ra các tham số của mô hình rời rạc. Nếu
với các khối lượng dễ dàng tính toán thì việc đánh giá biến dạng dọc của khuỷu trục không phải
đơn trị vì có nhiều công thức đưa ra trên cơ sở lý tưởng hóa khuỷu trục dưới kết cấu dạng thanh.
Do đó, đề xuất xây dựng mô hình 3D và xác định biến dạng các thành phần của trục khuỷu động
cơ bằng phương pháp phần tử hữu hạn.
Từ khoá: Hệ trục chân vịt, dao động dọc, mô hình rời rạc, phương pháp số
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dọc của hệ trục tàu thủy.  Sci. Tech. Dev. J. - Eng. Tech.; 4(SI2):SI47-SI56.
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