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ABSTRACT
In the MPM algorithm, all the particles are formulated in a single-valued velocity field hence the
non-slip contact can be satisfied without any contact treatment. However, in some impact and
penetration problems, the non-slip contact condition is not appropriate andmay even yield unrea-
sonable results, so it is important to overcome this drawback by using a contact algorithm in the
MPM. In this paper, the variation of contact force with respect to time caused by the impact is in-
vestigated. The MPM using the Lagrange basis function, so causing the cell-crossing phenomenon
when a particle moves from one cell to another. The essence of this phenomenon is due to the
discontinuity of the gradient of the linear basis function. The accuracy of the results is therefore also
affected. The high order B-spline MPM is used in this study to overcome the cell-crossing error. The
BSMPMuses higher-order B-spline functions tomake sure the derivatives of the shape functions are
continuous, so that alleviate the error. The algorithm of MPM and BSMPM has some differences in
defining the computational grid. Hence, the original contact algorithm in MPM needs to be modi-
fied to be suitable in order to use in the BSMPM. The purpose of this study is to construct a suitable
contact algorithm for BSMPM and then use it to investigate the contact force caused by impact.
Some numerical examples are presented in this paper, the impact of two circular elastic disks and
the impact of a soft circular disk into a stiffer rectangular block. All the results of contact force ob-
tained from this study are compared with finite element results and perform a good agreement,
the energy conservation is also considered.
Key words: BSMPM, contact algorithm, contact force, impact, MPM

INTRODUCTION
The material point method (MPM) was first devel-
oped in 1994 by Sulsky and his colleagues1. Over
25 years of development, the number of researchers
working on it is increasingmore andmore. Many uni-
versities and institutes around the world have investi-
gated this method, such as Delft University of Tech-
nology2, Stuttgart University 3, Cardiff University4.
The MPM uses both Lagrangian description and Eu-
lerian description1 so it has the advantages of both
descriptions. MPM has been widely used to simu-
late high-velocity problems such as impact5 and ex-
plosion6, large deformation problems7, fracture8 and
also Fluid-Structure Interaction9.
However, the original MPM has a major shortcom-
ing that affects the simulation results. When a par-
ticle moves across a cell boundary, it will lead to nu-
merical errors due to the discontinuity of the gradi-
ent of the basis functions1. This is called the “cell-
crossing error”2. In order to alleviate the effect of
this phenomenon, different methods were proposed.
Bardenhagen et al. proposed the Generalized In-
terpolation Material Point method (GIMP) 10. Vari-
ants in the GIMP branch were also introduced, Stef-
fen et al. proposed the Uniform GIMP (uGIMP) 11,

the Convected Particle Domain Interpolation (CPDI)
was introduced by Sadeghirad et al.12. Zhang et
al. modified the gradient of shape functions to en-
hance the MPM 13. Steffen et al. introduced the B-
spline MPM (BSMPM)14 by applying the high order
B-spline function into MPM algorithm. The BSMPM
is then further improved byTielen et al.2, Gan et al.15,
Wobbes et al.16.
In theMPMalgorithm, a single-valued velocity field is
used for all particles so the non-slip contact condition
between two bodies is satisfied automatically1. How-
ever, in some impact and penetration problems, the
non-slip contact condition is not appropriate, so it is
important to develop a contact algorithm for MPM.
York et al. proposed a simple contact algorithm for
MPM17, Bardenhagen et al. proposed an algorithm
for multi-velocity field18, and many other improve-
ments can bementioned as Hu and Chen19, Huang et
al.20, Nairn21, Ma et al.22.
This study using the BSMPM to mitigate the cell-
crossing error. The BSMPM and MPM have differ-
ences in computational grid definition. Therefore, the
contact algorithm forMPMcannot be directly applied
to BSMPM. In this paper, the contact algorithm is
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modified to a suitable form to the BSMPM. The im-
plementation steps are mentioned in Section 2.3. The
contact force obtained from impact of two elastic ob-
jects are compared with the result from FEM, a slight
difference between FEM andMPM (and BSMPM) re-
sults is observed and explained in Section 3.

METHODOLOGY
B-spline basis functions
Considering a vector containing non-decrease val-
ues Ξ={ξ1,ξ2,...,ξn+d,ξn+d+1}, where n is the num-
ber of basis functions, d is the polynomial order.
Each value in this vector is called knot and satis-
fies the relation ξ1 ≤ ξ2 ≤ ... ≤ ξn+d ≤ ξn+d+1.
Vector Ξ contains a sequence of knots is called the
knot vector 2. The B-spline basis functions are con-
structed by a knot vector. A uniform knot vector is a
knot vector containing equally distributed knots, e.g
Ξ={0,1,2,3,4,5} is a uniform knot vector. From
the relation of the knots sequence, one notices that
the value of adjacent knots can be repeated, if ξ1 and
ξn+d+1 are repeated d+1 times, it is an open knot vec-
tor2, e.g Ξ={0,0,0,1,2,3,4,5,5,5} is an open knot
vector with n = 7 and d = 2.
The i-th B-spline basis function of order d (Ni,d) is
defined by using Cox-de Boor recursion formula 15.
Firsly, the zeroth order (d=0) basis function must be
defined

Ni,0 =

{
1 i f ξi ≤ ξ ≤ ξi+1

0 otherwise
(1)

the non-zero intervals [ξi, ξi+1) are called knot
spans2. After obtaining Ni,0, higher order (d ≥ i ) ba-
sis functions are defined as the formula below

Ni,d (ξ ) =
ξ −ξi

ξi+d −ξi
Ni,d−1 (ξ )

+
ξi+d+1 −ξ

ξi+d+1 −ξi+1
Ni+1,d−1 (ξ )

(2)

in which the fraction 0/0 is assumed to be zero. Fig-
ure 1 shows the high order B-spline basis functions
(d=2, d=3).
The derivatives of basis function Ni,d {ξ} are calcu-
lated as following

dNi,d (ξ )
dξ

=
d

ξi+d −ξi
Ni,d−1 (ξ )

− d
ξi+d+1 −ξi+1

Ni+1,d−1 (ξ )
(3)

In two dimensions, the bivariate B-spline functions
can be built from the tensor product of the univari-
ate ones8

Ni, j (ξ ,η) = Ni,p (ξ )N j,q (η) (4)

Figure 1: (a) Quadratic B-spline basis functions (d
= 2) built from an open uniform knot vector Ξ =

{0,0,0,0.5,1,1,1} and (b) Cubic B-spline basis func-
tions (d = 3) defined by Ξ = {0,0,0,0.5,1,1,1}

where p and q are the order of the univariate basis
function.
Two important properties of B-spline basis functions
are: they are non-negative for all ξ and the functions
have the partition of unity property, i.e. ∑n

i=1 Ni,d =

115.

B-spline Material Point Method
In 2D BSMPM, the computational domain is dis-
cretized by a parametric grid15. This grid is de-
fined by two open knot vectors on two orthogo-
nal directions Ξ =

{
ξ1,ξ2, ...,ξn+p,ξn+p+1

}
and I ={

η1,η2, ...,ηm+q,ηm+q+1
}
as shown in Figure 2. The

numbers of basis functions in ξ and η direction are n
andm, respectively, so the total number of basis func-
tions is n×m. A tensor product grid with the total
of n×m nodes is constructed as shown in Figure 3,
each node of this grid corresponds to one B-spline ba-
sis function as defined in Eq. (4). For example, the
node with the position (1, 3) on the grid corresponds
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to the basis function N1,3 (ξ ,η) = N1,p (ξ )N3,q (η).
All the nodes on this tensor product grid are defined
as control points in BSMPM (the same role for grid
node in MPM), and in practice these control points
are arbitrary distribution15.

Figure 2: A 2D parametric grid constructed from
two open knot vectors Ξ and I

Figure 3: A tensor product grid containing n × m
nodes (control points)

As shown in Figure 4 a second order (quadratic)
BSMPM grid. The cell is made from 3 knot spans in x
direction and 2 knot spans in y direction, so the num-
ber of knots in knot vectors are 4 and 3, respectively.
The number of control points in x direction is 3 (knot
spans) + 2 (order) = 5 and in y direction is equal 4.
These control points play the role of grid nodes in the
original MPM, the knots from knot vectors are only
used for creating a computational grid. At can be seen
in Figure 4, each cell has 9 control points, for example,
the lower-left cell related to [1, 2, 3, 6, 7, 8, 11, 12, 13].

The figure also shows a particle located in the upper-
middle cell, so this particle is mapped to [7, 8, 9, 12,
13, 14, 17, 18, 19].

Figure 4: A quadratic (d=2) BSMPM grid

Unlike the originalMPM, the particles in BSMPM are
considered in the whole discretized domain, instead
of a specific cell, as shows in the equation below23

ξ =
x− xmin

xmax − xmin
,

η =
y− ymin

ymax − ymin

(5)

where (xmin, ymin) is the lower-left control point and
(xmax, ymax ) is the upper-right control point. This is
the formula formapping between the parameter space
to the physical space.
The derivatives of the B-spline basis functions are
given as below23

[
∂N
∂x

]
=

[
∂ N
∂ξ

]
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

=

[
∂N
∂ξ

]
J−1

ξ (6)

where J is the Jacobian matrix and defined by

J =


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 (7)

and the components are computed as

∂ x
∂ξ

= ∑
A=1

PA
∂N (ξ )

∂ξ (8)

where P denotes the coordinates of the control points
and A is the global index of control point23.
In the BSMPM, for convenient the knot
vector for an interval [0,L] is defined by
Ξ = {0, ...,0,△x,2△x, ...,L−△x,L, ...,L},
where △x denotes the length of knot span15.
And note that the knot vector must be normal-
ized before a parametric grid is created, so the
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knot vector is rewritten as the following form
Ξ′ =

{
0, ..., △x

L , 2△x
L , ..., L−△x

L ,1, ...,1
}
, this is also

a difference in the parameter space between B-spline
basis functions and other functions. The control
points are arbitrary distributed and they are in the
physical coordinate (x, y).

Contact algorithm
This section presents the algorithm proposed by Bar-
denhagen et al.18 and makes appropriate modifica-
tion to apply into the BSMPM.
When two bodies are approaching each other, there
is a region where they have some of the same control
points. These control points are viewed as the con-
tact points, the contact algorithm is applied on these
points only.
In the contact region, the following equation18 is used
as a condition to check if two bodies are in contact or
release(

vi,t
I − vcm

I

)
.ni

I =

{
≥ 0 contact
< 0 release

(9)

where i denotes the i-th body in the computational
domain, vcm

I is the center-of-mass velocity23 of the
control point I-th for each pair in contact

vcm
I =

p1,t+△t
I + p2,t+△t

I

m1,t
I +m2,t

I

(10)

In Eq. (9), ni
I is the normal vector of control point I-th

of body i-th and computed as following steps.
Firstly, the density ρc for each cell in contact state is
computed as below23

ρ i
c =

1
Ve

np

∑
p=1

mi
pS2

(
xi

p − xi
c

)
(11)

where Ve is volume of cell e-th, xc is the center of cell
e-th. Remember that in the BSMPM each cell is made
of knot spans (see Figure 4).
In 1D, the function Sx (x) is given by the following def-
inition23

Sx (x)

=



1
2h2 x2 +

3
2h

x+
9
8
, − 3

2h
≤ x ≤− 1

2h
− 1

h2 x2 +
3
4
, − 1

2h
≤ x ≤ 1

2h
1

2h2 x2 − 3
2h

x+
9
8
,

1
2h

≤ x ≤ 3
2h

0, otherwise

(12)

The function S2 (x,y) in Eq. (11) is obtained by mul-
tiplying two 1D functions S2 (x,y) = Sx (x)Sy (y) .
Finally, the normal vector of control point I-th is ob-
tained 23

ni
I = ∑c GI

(
xi

c
)

ρ i
c (13)

where GI is the derivatives of the B-spline basis func-
tions.
Before applying into Eq. (9) for checking contact, the
normal vector in Eq. (13) must be normalized 23

ni
I =

ni
I∣∣∣∣ni
I

∣∣∣∣ (14)

The implementation of contact algorithm into the
BSMPM algorithm can be summarized as following
steps:
Step 1: Mapping data from particles to control points
1. Compute the mass of I-th control point from the
i-th body: mi,t

I = ∑p NI

(
xi,t

p

)
Mi

p
2. Compute themomentumof I-th control point from
the i-th body: pi,t

I = ∑p NI

(
xi,t

p

)
(Mv)i

p
3. Compute external force at control point I from i-th
body: f ext,i,t

I
4. Compute internal force at control point I from i-th
body: f int,i,t

I =−∑p V i,t
p σ i,t

p ∇NI

(
xi,t

p

)
5. Compute the total force at control point I: f i,t

I =

f ext,i,t
I + f int,i,t

I
Step 2: Update the control point momentums:
pi,t+△t

I = pi,t
I + f i,t

I △t
Step 3: Imposed boundary conditions at specific con-
trol points (if needed)
Step 4: Contact force calculating (for contact points
only).
1. Calculate the normal vector from Eq. (14)
2. Calculate the center-of-mass velocity using Eq.
(10)
3. Check the contact condition in Eq. (9)
If two body are in contact, continue sub-step 4 and 5.
If not, move to Step 5.
4. Compute contact force at contact control points I:
f contract,i,t
I =

mi,t
I

△t i

(
vcm,t

I − vi,t
I

)
5. Correct the control point momentums:
f correct,i,t
I = f i,t+△t

I + f contract,i,t
I

Step 5: Mapping data from control points to particles
1. Update particle velocities: vi,t+△t

p = vi,t
p +

△t
mi,t

I
∑I NI

(
xt

p
)(

f i,t
I + f contact,i,t

I

)
2. Update particle positions: xi,t+△t

p = xi,t
p +

△t
mi,t

I
∑I NI

(
xt

p
)

pcorrect,i,t+△t
I

3. For MUSL only, get control point velocities:
vi,t+△t

p = pcorrect,i,t+△t
I /mi,t

I
4. Compute particle gradient velocity: Li,t+△t

p =

∑I ∇NI

(
xi,t

p

)
vi,t+△t

I
5. Update particle gradient deformation tensor:
F i,t+△t

p =
(

I +Li,t+△t
p △t

)
F i,t

p

Update particle volume:6. V i,t+△t
p =

det
(

F i,t+△t
p

)
V i,0

p
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7. Compute strain increment: △ep =

sym
(

Li,t+△t
p

)
△t, then compute the stress in-

crement△σp.
8. Update particle stresses: σ i,t+△t

p = σ i,t
p +△σp

Then, reset the computational grid and move to the
next time step.

RESULTS
Two numerical examples are presented in this section,
particularly:

• Collision of two circular disks.
• Collision of a circular disk onto a rectangular
block.

The first example investigates the contact of two cir-
cular surface with the same material. The second ex-
ample studies the contact of a soft circular surface and
hard flat surface.
To validate the results from these two examples, cor-
responding FEM models are created from ABAQUS
software. FEMmodel is prepared with very fine mesh
and set up with the same parameters and initial con-
ditions as MPM (and BSMPM) model.

Collision of two circular disks
The problem is shown in Figure 5, two elastic disks
with the same radius R = 0.2 m and the thickness is
one unit. The material properties used in this prob-
lem are: Young’s modulus E = 1000 Pa, Poisson ra-
tio v = 0.3, and the mass density ρ0 = 1000 kg/m3.
The coordinate of the center of the lower-left disk is
(0.2, 0.2), the upper-right disk is (0.7, 0.7), two disks
are in a square domain of size 0.9×0.9 m2. The initial
velocities of the particles v = (0.1, 0.1) m/s, for the
upper-right disk, the velocities of the particles are set
to vp =−v and for the lower-left vp = v.
The computational domain is discretized into 40×40
knot spans. Each computational cell has 9 particles.
The original MPMwith Lagrange basis and quadratic
BSMPM (d=2) are concerned in this example.
The time step for this simulation is chosen as △t =
0.001 s, the total simulation time is 3 s. So, there is
3000 steps in this simulation.
The kinetic and strain energy obtained from BSMPM
and FEM is shown in Figure 6. Kinetic energy in
BSMPM decreases earlier than the result from FEM
and strain energy in BSMPM increases earlier. This is
reasonable for the contact in BSMPM algorithm and
will be explained in the comment of Figure 7. The
value of kinetic energy in both case are the same, while
the strain energy in BSMPM is lower than FEM. Both
case are in frictionless contact, so there is no energy

Figure 5: Impact of two circular disks.

Figure 6: Kinetic and strain energy.

loss from friction, the strain energy loss in BSMPM is
caused by other error factors.
The variation of contact force during the impact pro-
cess is shown in Figure 7. The FEM model used to
simulate this problem has 3288 nodes. The results
fromMPM and BSMPM show that the impact of two
bodies occurs earlier than the result in FEM as men-
tioned before. This is because the contact force in
MPM is computed in the node of the computational
grid (or control point in BSMPM), not in the particle
of the body, so when two bodies approach the contact
region and have the same control points, the contact
is detected immediately although two bodies have not
touched each other yet. In FEM, the contact is only
detected when two bodies touch each other, so the
contact force obtained in FEM is later than MPM.
The contact force obtained fromBSMPMusing higher
order B-spline functions also shows the smooth curve
compared to the MPM and FEM.
Figure 8 shows the von-Mises stress field during the
impact process of two disks using the BSMPM. In de-
tail, two disks approaching each other in Figure 8 (a),
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Figure 7: Impact force obtained from FEM, MPM
and BSMPM (d=2)

then two disks touch each other as shown in Figure 8
(b), two disks deform during the impact as shown in
Figure 8 (c) and then bounce back in Figure 8 (d). Af-
ter impact, two disks move far away as shown inFig-
ure 8 (e).

Collision of a circular disk onto a rectangu-
lar block
In this example, a circular disk collides onto a stiffer
rectangular block, as shown in Figure 9.
The radius of the circular disk is R = 0.2 m, and the
thickness is one unit. The material properties used
for circular disk are: Young’s modulus E1 = 1000 Pa,
Poisson ratio v1 = 0.3, and the mass density ρ1 =

1000 kg/m3. The rectangular block is made from
stiffer material with Young’s modulus E2 = 106 Pa,
Poisson ratio v2 = 0.3, and the mass density ρ1 =

5000 kg/m3, the rectangular size is 1× 0.2m2. Dis-
tance between the center of the circular disk to the top
of rectangular block is 0.3 m. The computational do-
main is a square with dimension of 1.2×1.2 m2. The
initial velocity of the disk is v=(0, −0.2) m/s. In this
simulation, the gravitational acceleration is ignored.
The computational domain is discretized into a set of
60 × 60 knot spans. Each cell has 9 particles. The
nodes (or control points) on the bottom line of the
rectangular is fixed in two direction x and y.
The time step size is chosen as△t = 0.001 s, and the
total simulation time is 2 s. So, there is 2000 steps in
this simulation.
The contact force obtained in this example also shows
the similarity to the conclusions from the previous ex-
ample. Figure 10 also shows that the impact occurs
earlier in BSMPM, because BSMPM has more control
points (nodes) than MPM so the contact is detected
earlier. Similarly to the previous example, the con-
tact force in BSMPM is smoother than the curve from

Figure 9: A circular disk collides with a rectangular
block.

Figure 10: Impact force of example 5.2 obtained
from FEM, MPM and BSMPM (d=2)

FEM and MPM.
Figure 11 shows the collision of two objects, the von-
Mises stress field and maximum stress field are pre-
sented.
To investigate the convergence of BSMPM andMPM,
the computational domain with a set of 60×60 knot
spans is retained. Different numbers of particles per
cell (PPC) 4, 9 and 16 are analyzed. Figure 12 shows
the total energy of the system respect to time. From
the initial conditions, the total energy can be com-
puted as ρπR2tv2/2 = 2.512 J and plotted by the
black line in the figure. As shown in Figure 12, the
case of MPM with PPC = 4 gives a very large devi-
ation, and when PPC = 9, the result is significantly
improved. In the case of BSMPM, there are no signif-
icant deviations and the results are slightly improved
when increasing PPC.

DISCUSSIONS
As present in Section 3, there is a slight difference
in the results of MPM, BSMPM and FEM. The mag-
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Figure 8: Impact of two circular disks.

Figure 11: Circular disk deforms during the impact
process onto a stiffer surface. (a) von-Mises stress
and (b) Maximum stress.

nitude of the contact force in the three methods is
the same, but the impact occurs earlier in MPM and
BSMPM.This is because the contact force in MPM is
computed in the node of the computational grid (or
control point in BSMPM), not in the discrete parti-
cle of the object, so when two objects approach the
contact region and have same the grid node (control
points), the contact is detected immediately although

Figure12: Energyof the systemrespect to timewith
different number of particles per cell.

two objects have not touched each other yet, there is 
still a gap. And because BSMPM uses higher-order 
shape functions, so the BSMPM has more control 
points (grid node) than MPM, the contact is therefore 
detected earlier. Moreover, if the contact algorithm
is not used in MPM, the non-slip contact can still be 
determined automatically when two objects have the 
same grid node. In FEM, the contact is only detected 
when two objects touch each other (or even penetrate 
into each other), so the contact force obtained in FEM
is later than MPM and BSMPM.

CONCLUSIONS
The contact algorithm has been successfully modi- 
fied and applied into the BSMPM. The contact force 
obtained from this research is compared to FEM. A 
slight difference in the result is observed, this is be- 
cause the contact force is calculated at the control
point in the computational grid instead of the discrete
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particles. This is an inherent property of the MPM al-
gorithm, so it is inevitable. More study on the contact
algorithm need to be done to overcome this disadvan-
tage and improve the accuracy of the method.
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TÓM TẮT
Trong giải thuật MPM, các điểm vật liệu được xây dựng trong một trường vận tốc đơn trị nên sự
tương tác/tiếp xúc không trượt giữa các vật thể tự động được thỏa mãn mà không cần sử dụng
giải thuật tiếp xúc. Tuy nhiên, trong một số bài toán va chạm và đâm xuyên, điều kiện tiếp xúc
không trượt của MPM là không phù hợp và thậm chí có thể đem lại kết quả không hợp lý, vì vậy
cần phải thêm vào MPM một giải thuật tiếp xúc thích hợp để giải quyết hạn chế này. Trong bài
báo này, sự thay đổi của lực tiếp xúc theo thời gian gây ra do va chạm được nghiên cứu. MPM sử
dụng hàmdạng Lagrange nên gây ra hiện tượng ``cell-crossing'' khi một điểm vật liệu di chuyển từ
một ô này sang ô khác. Bản chất của hiện tượng này là do sự không liên tục của gradient của hàm
dạng tuyến tính. Độ chính xác của kết quả vì thế cũng bị ảnh hưởng. Trong nghiên cứu này, MPM
với hàm B-spline bậc cao được sử dụng để tránh hiện tượng ``cell-crossing''. BSMPM sử dụng hàm
dạng B-spline bậc cao để đảm bảo rằng đạo hàm của hàm dạng là liên tục, do đó giảm được sai
số. Giải thuật của MPM và BSMPM cómột số khác biệt trong việc xác định lưới tính toán. Vì vậy, giải
thuật tiếp xúc của MPM cần được hiệu chỉnh phù hợp để có thể sử dụng cho BSMPM. Mục đích
của nghiên cứu này là nhằm xây dựng một giải thuật tiếp xúc phù hợp cho BSMPM và sử dụng nó
để khảo sát lực tiếp xúc gây ra bởi va chạm. Một vài ví dụ số được trình bày trong bài báo này, sự va
chạm của hai đĩa tròn đàn hồi và sự va chạm của một đĩa tròn mềm vào một khối chữ nhật cứng
hơn. Các kết quả về lực tiếp xúc thu được đều được so sánh với các kết quả từ phần tử hữu hạn và
đều phù hợp, sự bảo toàn năng lượng của hệ cũng được xem xét.
Từ khoá: BSMPM, giải thuật tiếp xúc, lực tiếp xúc, va chạm, MPM

                        
                

Trích dẫn bài báo này: Vẫy L S, Nhã N T, Minh N N, Thiện T T. Phân tích lực va chạm bằng phương 
pháp Điểm vật liệu sử dụng hàm dạng B-spline. Sci. Tech. Dev. J. - Eng. Tech.; 4(1):722-730

730


	Impact force analysis using the B-spline material point method
	INTRODUCTION
	METHODOLOGY
	B-spline basis functions
	B-spline Material Point Method
	Contact algorithm

	RESULTS 
	Collision of two circular disks
	Collision of a circular disk onto a rectangular block 

	DISCUSSIONS
	CONCLUSIONS
	Acknowledgment
	ABBREVIATIONS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTION
	References




