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ABSTRACT

In the MPM algorithm, all the particles are formulated in a single-valued velocity field hence the
non-slip contact can be satisfied without any contact treatment. However, in some impact and
penetration problems, the non-slip contact condition is not appropriate and may even yield unrea-
sonable results, so it is important to overcome this drawback by using a contact algorithm in the
MPM. In this paper, the variation of contact force with respect to time caused by the impact is in-
vestigated. The MPM using the Lagrange basis function, so causing the cell-crossing phenomenon
when a particle moves from one cell to another. The essence of this phenomenon is due to the
discontinuity of the gradient of the linear basis function. The accuracy of the results is therefore also
affected. The high order B-spline MPM is used in this study to overcome the cell-crossing error. The
BSMPM uses higher-order B-spline functions to make sure the derivatives of the shape functions are
continuous, so that alleviate the error. The algorithm of MPM and BSMPM has some differences in
defining the computational grid. Hence, the original contact algorithm in MPM needs to be modi-
fled to be suitable in order to use in the BSMPM. The purpose of this study is to construct a suitable
contact algorithm for BSMPM and then use it to investigate the contact force caused by impact.
Some numerical examples are presented in this paper, the impact of two circular elastic disks and
the impact of a soft circular disk into a stiffer rectangular block. All the results of contact force ob-
tained from this study are compared with finite element results and perform a good agreement,

the energy conservation is also considered.
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INTRODUCTION

The material point method (MPM) was first devel-

oped in 1994 by Sulsky and his colleagues .

Over
25 years of development, the number of researchers
working on it is increasing more and more. Many uni-
versities and institutes around the world have investi-
gated this method, such as Delft University of Tech-
nology?, Stuttgart University®, Cardiff University*.
The MPM uses both Lagrangian description and Eu-
lerian description' so it has the advantages of both
descriptions. MPM has been widely used to simu-
late high-velocity problems such as impact® and ex-
plosion, large deformation problems”, fracture® and
also Fluid-Structure Interaction®.

However, the original MPM has a major shortcom-
ing that affects the simulation results. When a par-
ticle moves across a cell boundary, it will lead to nu-
merical errors due to the discontinuity of the gradi-
ent of the basis functions'. This is called the “cell-

»2 In order to alleviate the effect of

crossing error
this phenomenon, different methods were proposed.
Bardenhagen et al. proposed the Generalized In-
terpolation Material Point method (GIMP) . Vari-
ants in the GIMP branch were also introduced, Stef-

fen et al. proposed the Uniform GIMP (uGIMP)'!,

the Convected Particle Domain Interpolation (CPDI)
was introduced by Sadeghirad et al.'?. Zhang et
al. modified the gradient of shape functions to en-
hance the MPM '°. Steffen et al. introduced the B-
spline MPM (BSMPM) * by applying the high order
B-spline function into MPM algorithm. The BSMPM
is then further improved by Tielen et al. 2 Ganetal.'®,
Wobbes et al. '°.

In the MPM algorithm, a single-valued velocity field is
used for all particles so the non-slip contact condition
between two bodies is satisfied automatically '. How-
ever, in some impact and penetration problems, the
non-slip contact condition is not appropriate, so it is
important to develop a contact algorithm for MPM.
York et al. proposed a simple contact algorithm for
MPM ', Bardenhagen et al. proposed an algorithm
for multi-velocity field'®, and many other improve-
ments can be mentioned as Hu and Chen ', Huang et
al.%%, Nairn?!, Ma et al. .

This study using the BSMPM to mitigate the cell-
crossing error. The BSMPM and MPM have differ-
ences in computational grid definition. Therefore, the
contact algorithm for MPM cannot be directly applied
to BSMPM. In this paper, the contact algorithm is

Cite this article: Lo V' S, Nguyen N T, Nguyen M N, Truong T T. Impact force analysis using the B-spline
material point method. Sci. Tech. Dev. J. - Engineering and Technology; 4(1):722-730.

722



Science & Technology Development Journal - Engineering and Technology, 4(1):722-730

modified to a suitable form to the BSMPM. The im-
plementation steps are mentioned in Section 2.3. The
contact force obtained from impact of two elastic ob-
jects are compared with the result from FEM, a slight
difference between FEM and MPM (and BSMPM) re-
sults is observed and explained in Section 3.

METHODOLOGY

B-spline basis functions

Considering a vector containing non-decrease val-
ues E={&;,&5,....6n1a0:6nrar1 }> where n is the num-
ber of basis functions, d is the polynomial order.
Each value in this vector is called knot and satis-
fies the relation & < & < .. < &y < &igat.
Vector E contains a sequence of knots is called the

knot vector?

. 'The B-spline basis functions are con-
structed by a knot vector. A uniform knot vector is a
knot vector containing equally distributed knots, e.g
£={0,1,2,3,4,5} is a uniform knot vector. From
the relation of the knots sequence, one notices that
the value of adjacent knots can be repeated, if §; and
&1+ 1 are repeated d+1 times, it is an open knot vec-
tor?, e.g £={0,0,0,1,2,3,4,5,5,5} is an open knot
vector with n=7and d = 2.

The i-th B-spline basis function of order d (N;4) is
defined by using Cox-de Boor recursion formula .
Firsly, the zeroth order (d=0) basis function must be
defined

Nip= {

the non-zero intervals [§;, &) are called knot
spans®. After obtaining N; o, higher order (d > i) ba-
sis functions are defined as the formula below
Nig(§)= L&'Ni,d—l €3]
5 éizd - éz )
+ i+d+1 (é)

i+1d—1
Eivar1 — &1

in which the fraction 0/0 is assumed to be zero. Fig-

Lif&<E<é&i

0 otherwise

(1)

ure 1 shows the high order B-spline basis functions
(d=2, d=3).

The derivatives of basis function N; ;{&} are calcu-
lated as following

dNig(§) ~ d
g EE ©)

Nit14-1(8)

(3)
CEan — &

In two dimensions, the bivariate B-spline functions

can be built from the tensor product of the univari-

ate ones®

N;j(&,n)=Nip(E)Njq (M) (4)
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Figure 1: (a) Quadratic B-spline basis functions (d
= 2) built from an open uniform knot vector & =
{0,0,0,0.5,1,1,1} and (b) Cubic B-spline basis func-
tions (d = 3) defined by & = {0,0,0,0.5,1,1,1}

where p and q are the order of the univariate basis
function.

Two important properties of B-spline basis functions
are: they are non-negative for all & and the functions

have the partition of unity property, i.e. /' | Njg =
115,

B-spline Material Point Method

In 2D BSMPM, the computational domain is dis-
cretized by a parametric grid'®. This grid is de-
fined by two open knot vectors on two orthogo-
nal directions E = {&,,&,....&ut p, Engpr1 f and [ =
{m N2 Mg Mg+ 1 } as shown in Figure 2. The
numbers of basis functions in & and 1) direction are n
and m, respectively, so the total number of basis func-
tions is n X m. A tensor product grid with the total
of n x m nodes is constructed as shown in Figure 3,
each node of this grid corresponds to one B-spline ba-
sis function as defined in Eq. (4). For example, the
node with the position (1, 3) on the grid corresponds
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to the basis function Ny 3(&, 1) = Ny, (§) N34 (7).
All the nodes on this tensor product grid are defined
as control points in BSMPM (the same role for grid
node in MPM), and in practice these control points
are arbitrary distribution °.

Mm+q+1 M+

m

-1

Nm-2

Nq+s

Na+3

Ng+2

M - Ng+1

Eprr Spaz Gprs Spra b2 fum1 & G

& Snip1

Figure 2: A 2D parametric grid constructed from
two open knot vectors E and |

Figure 3: A tensor product grid containing n x m
nodes (control points)

As shown in Figure 4 a second order (quadratic)
BSMPM grid. The cell is made from 3 knot spans in x
direction and 2 knot spans in y direction, so the num-
ber of knots in knot vectors are 4 and 3, respectively.
The number of control points in x direction is 3 (knot
spans) + 2 (order) = 5 and in y direction is equal 4.
These control points play the role of grid nodes in the
original MPM, the knots from knot vectors are only
used for creating a computational grid. At can be seen
in Figure 4, each cell has 9 control points, for example,
the lower-left cell related to [1, 2, 3, 6,7, 8,11, 12, 13].

The figure also shows a particle located in the upper-
middle cell, so this particle is mapped to [7, 8, 9, 12,
13, 14,17, 18, 19].

Knot span

® Ox O x0 @
16 17, 18 19 20
Knot span

.1 .1 .13 .14 .5
* % x x!
@ L ] e o o
6 7 8 9 10
® Ox O x0 @
1 2 3 4 5

X

@ Control point @ Particle % Knot

Figure 4: A quadratic (d=2) BSMPM grid
Unlike the original MPM, the particles in BSMPM are

considered in the whole discretized domain, instead
of a specific cell, as shows in the equation below >*

X — Xmin
- b
Xmax — Xmin (5)
— Ymin

B Ymax — Ymin

where (Xin, Ymin) is the lower-left control point and
(Xmax> Ymax ) is the upper-right control point. This is
the formula for mapping between the parameter space
to the physical space.

The derivatives of the B-spline basis functions are
given as below >’

e ac

W[N] 3| _ [N,

{ax}*[aé] o on *{aé]‘% ©
Jdx dy

where J is the Jacobian matrix and defined by

o o
d d
9§ In
and the components are computed as
dx IN (&)
=2 P (8)
9g = Lo

where P denotes the coordinates of the control points
and A is the global index of control point>*.

In the BSMPM, for convenient the knot
vector for an interval [0,L] is defined by
o) = {0,...,0,Ax,2Ax,....L— Ax,L,...,L},

where Ax denotes the length of knot span!®.
And note that the knot vector must be normal-
ized before a parametric grid is created, so the
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knot vector is rewritten as the following form
Ax 20x L—Ax

O7...7T’T7...77 1

a difference in the parameter space between B-spline

g =

,1}, this is also
basis functions and other functions. The control
points are arbitrary distributed and they are in the
physical coordinate (x, ).

Contact algorithm

This section presents the algorithm proposed by Bar-
denhagen et al.'® and makes appropriate modifica-
tion to apply into the BSMPM.

When two bodies are approaching each other, there
is a region where they have some of the same control
points. These control points are viewed as the con-
tact points, the contact algorithm is applied on these
points only.

18

In the contact region, the following equation '° is used

as a condition to check if two bodies are in contact or
release

it cm i __
(W_W)m{

where i denotes the i-th body in the computational

> 0 contact

©)

< Orelease

domain, v¢" is the center-of-mass velocity?® of the
control point I-th for each pair in contact

L+t 2.t+At
Py +p;

(10)
m,1 * + m?’t

Vi =
In Eq. (9), n} is the normal vector of control point I-th
of body i-th and computed as following steps.
Firstly, the density p. for each cell in contact state is
computed as below >’

R N Y .

1 1 !

pé:—e ElmpS (xpfxc>
p=

where V, is volume of cell e-th, x. is the center of cell
e-th. Remember that in the BSMPM each cell is made
of knot spans (see Figure 4).

(11)

In 1D, the function S* (x) is given by the following def-
inition %*
§*(x)
T N I
2" Tont TR 2 =T 2n
ted oL (12)
= h? 4’ 2h =" T 2h
Lx2,i +2 1 <x<i
2h2 2h° 8 2h T T 2h

0, otherwise

The function $2 (x,y) in Eq. (11) is obtained by mul-

§*(x) 8 ()

Finally, the normal vector of control point I-th is ob-

tiplying two 1D functions S (x,y) =

tained >

ny=Y.G(x) pl (13)
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where Gj is the derivatives of the B-spline basis func-
tions.

Before applying into Eq. (9) for checking contact, the
normal vector in Eq. (13) must be normalized 23

nh = 1 (14)

The implementation of contact algorithm into the
BSMPM algorithm can be summarized as following
steps:

Step 1: Mapping data from particles to control points
1. Compute the mass of I-th control point from the
i-th body: m}’t =Y,N <xlpt Mli,

2. Compute the momentum of I-th control point from
the i-th body: p;’ = YN (xf,,’) (Mv)i7

3. Compute external force at control point I from i-th
body.' erxt,l,t

4. Compute internal force at control point I from i-th
body: flznllt fZI,V”O';,tVNI ( )

5. Compute the total force at control point I: f;’t =

ext it int it

fr AN

Step 2: Update the control point momentums:
i t+Al 1 N it

pr py + 1 At

Step 3: Imposed boundary conditions at specific con-

trol points (if needed)

Step 4: Contact force calculating (for contact points

only).

1. Calculate the normal vector from Eq. (14)

2. Calculate the center-of-mass velocity using Eq.

(10)

3. Check the contact condition in Eq. (9)

If two body are in contact, continue sub-step 4 and 5.

If not, move to Step 5.

4. Compute contact force at contact control points I:
contract lf ml cm,t lt

fi =Ad\V TV

5. Correct the control point momentums:

flcorrect,i,t l t+/At +f;ontract St
Step 5: Mapplng data from control points to particles
1. Update particle velocities: v}”m = v};’ +

ZINI( ) <fll+fc0nrauzt)

n I

2. Update particle positions: ;,+At = xi)"' +
% ZINI (x;) p;‘orrec't,i,t+At

n’ll
3. For MUSL only, get control point velocities:
i t+Ar correct ijt+/t ; it
/mjy

v
P
4. Compute particle gradient velocity: Ll SO

Y, VN, (xtpt ;t+Az

5. Update particle gradient deformation tensor:
F[g,erAt _ <I+L2t+AtAt) sz,t

6. Update
det ( Fi t+At> V

i+t
Vp

particle volume:
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7. Compute strain increment:

sym < L;HA:
crement AG),.

Ne, =
)At, then compute the stress in-

8. Update particle stresses: 61’;’Z+A[ = 0';;{ + Ao,
Then, reset the computational grid and move to the

next time step.

RESULTS

Two numerical examples are presented in this section,
particularly:

« Collision of two circular disks.

« Collision of a circular disk onto a rectangular
block.

The first example investigates the contact of two cir-
cular surface with the same material. The second ex-
ample studies the contact of a soft circular surface and
hard flat surface.

To validate the results from these two examples, cor-
responding FEM models are created from ABAQUS
software. FEM model is prepared with very fine mesh
and set up with the same parameters and initial con-
ditions as MPM (and BSMPM) model.

Collision of two circular disks

The problem is shown in Figure 5, two elastic disks
with the same radius R = 0.2 m and the thickness is
one unit. The material properties used in this prob-
lem are: Young’s modulus £ = 1000 Pa, Poisson ra-
tio v = 0.3, and the mass density py = 1000 kg/m?.
The coordinate of the center of the lower-left disk is
(0.2, 0.2), the upper-right disk is (0.7, 0.7), two disks
are in a square domain of size 0.9 x 0.9 m?. The initial
velocities of the particles v = (0.1, 0.1) m/s, for the
upper-right disk, the velocities of the particles are set
to v, = —v and for the lower-left v, = v.

The computational domain is discretized into 40 x 40
knot spans. Each computational cell has 9 particles.
The original MPM with Lagrange basis and quadratic
BSMPM (d=2) are concerned in this example.

The time step for this simulation is chosen as At =
0.001 s, the total simulation time is 3 s. So, there is
3000 steps in this simulation.

The kinetic and strain energy obtained from BSMPM
and FEM is shown in Figure 6. Kinetic energy in
BSMPM decreases earlier than the result from FEM
and strain energy in BSMPM increases earlier. This is
reasonable for the contact in BSMPM algorithm and
will be explained in the comment of Figure 7. The
value of kinetic energy in both case are the same, while
the strain energy in BSMPM is lower than FEM. Both
case are in frictionless contact, so there is no energy

L=09m

L=09m

Figure 5: Impact of two circular disks.

———Kinetic energy, BSMPM
= = = Kinetic energy, FEM
===-=Strain e BSMPM
—=— Strain energy, FEM

0 0.5 1 1.5 2 25 3
Time (s)

Figure 6: Kinetic and strain energy.

loss from friction, the strain energy loss in BSMPM is
caused by other error factors.

The variation of contact force during the impact pro-
cess is shown in Figure 7. The FEM model used to
simulate this problem has 3288 nodes. The results
from MPM and BSMPM show that the impact of two
bodies occurs earlier than the result in FEM as men-
tioned before. This is because the contact force in
MPM is computed in the node of the computational
grid (or control point in BSMPM), not in the particle
of the body, so when two bodies approach the contact
region and have the same control points, the contact
is detected immediately although two bodies have not
touched each other yet. In FEM, the contact is only
detected when two bodies touch each other, so the
contact force obtained in FEM is later than MPM.
The contact force obtained from BSMPM using higher
order B-spline functions also shows the smooth curve
compared to the MPM and FEM.

Figure 8 shows the von-Mises stress field during the
impact process of two disks using the BSMPM. In de-
tail, two disks approaching each other in Figure 8 (a),
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60
FEM ,
- --MPM )
e BSMPM| £
Z 407 g "‘:.
& J A
v a-
o 7 \
5 g3
2 -
i \
¢ k!
N k!
& W
0 i Y
0 1 2 3
Time (s)

Figure 7: Impact force obtained from FEM, MPM
and BSMPM (d=2)

then two disks touch each other as shown in Figure 8
(b), two disks deform during the impact as shown in
Figure 8 (c) and then bounce back in Figure 8 (d). Af-
ter impact, two disks move far away as shown inFig-
ure 8 (e).

Collision of a circular disk onto a rectangu-
lar block

In this example, a circular disk collides onto a stiffer
rectangular block, as shown in Figure 9.

The radius of the circular disk is R = 0.2 m, and the
thickness is one unit. The material properties used
for circular disk are: Young’s modulus E1 = 1000 Pa,
Poisson ratio v; = 0.3, and the mass density p; =
1000 kg/m3. The rectangular block is made from
stiffer material with Young’s modulus E; = 10° Pa,
Poisson ratio vo = 0.3, and the mass density p; =
5000 kg/m?, the rectangular size is 1 x 0.2m?. Dis-
tance between the center of the circular disk to the top
of rectangular block is 0.3 m. The computational do-
main is a square with dimension of 1.2 x 1.2 m?. The
initial velocity of the disk is v = (0, —0.2) m/s. In this
simulation, the gravitational acceleration is ignored.
The computational domain is discretized into a set of
60 x 60 knot spans. Each cell has 9 particles. The
nodes (or control points) on the bottom line of the
rectangular is fixed in two direction x and y.

The time step size is chosen as Ar = 0.001 s, and the
total simulation time is 2 s. So, there is 2000 steps in
this simulation.

The contact force obtained in this example also shows
the similarity to the conclusions from the previous ex-
ample. Figure 10 also shows that the impact occurs
earlier in BSMPM, because BSMPM has more control
points (nodes) than MPM so the contact is detected
earlier. Similarly to the previous example, the con-
tact force in BSMPM is smoother than the curve from
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Figure 9: A circular disk collides with a rectangular
block.
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Figure 10: Impact force of example 5.2 obtained
from FEM, MPM and BSMPM (d=2)

FEM and MPM.

Figure 11 shows the collision of two objects, the von-
Mises stress field and maximum stress field are pre-
sented.

To investigate the convergence of BSMPM and MPM,
the computational domain with a set of 60 x 60 knot
spans is retained. Different numbers of particles per
cell (PPC) 4, 9 and 16 are analyzed. Figure 12 shows
the total energy of the system respect to time. From
the initial conditions, the total energy can be com-
puted as pR%*rv?/2 = 2.512 J and plotted by the
black line in the figure. As shown in Figure 12, the
case of MPM with PPC = 4 gives a very large devi-
ation, and when PPC = 9, the result is significantly
improved. In the case of BSMPM, there are no signif-
icant deviations and the results are slightly improved
when increasing PPC.

DISCUSSIONS

As present in Section 3, there is a slight difference
in the results of MPM, BSMPM and FEM. The mag-
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Figure 8: Impact of two circular disks.

[+1:] 400

o8

0.6

UZJ
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o 02 0.4

-_—
0.6 08 1 1.2
(b)

Figure 11: Circular disk deforms during the impact
process onto a stiffer surface. (a) von-Mises stress
and (b) Maximum stress.

nitude of the contact force in the three methods is
the same, but the impact occurs earlier in MPM and
BSMPM. This is because the contact force in MPM is
computed in the node of the computational grid (or
control point in BSMPM), not in the discrete parti-
cle of the object, so when two objects approach the
contact region and have same the grid node (control
points), the contact is detected immediately although

——~MPM, PPC - 4 |
——MPM, PPC=9
===MPM, PPC =16

————— BSMPM, PPC = 4

——BSMPM, PPC =9 j/
3|---BSMPM,PPC = 16|  /

3.5

Energy (J)

0 05 1 15 2
Time (s)

Figure 12: Energy of the system respect to time with
different number of particles per cell.

two objects have not touched each other yet, there is
still a gap. And because BSMPM uses higher-order
shape functions, so the BSMPM has more control
points (grid node) than MPM, the contact is therefore
detected earlier. Moreover, if the contact algorithm
is not used in MPM, the non-slip contact can still be
determined automatically when two objects have the
same grid node. In FEM, the contact is only detected
when two objects touch each other (or even penetrate
into each other), so the contact force obtained in FEM
is later than MPM and BSMPM.

CONCLUSIONS

The contact algorithm has been successfully modi-
fied and applied into the BSMPM. The contact force
obtained from this research is compared to FEM. A
slight difference in the result is observed, this is be-
cause the contact force is calculated at the control
point in the computational grid instead of the discrete
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particles. This is an inherent property of the MPM al-
gorithm, so it is inevitable. More study on the contact
algorithm need to be done to overcome this disadvan-
tage and improve the accuracy of the method.
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TOM TAT

Trong giai thuat MPM, cac diém vat liéu dugc xay dung trong mot trudng van tée don tri nén su
tuong tac/tiép xdc khong truct gitra cac vat thé tu dong dugc thda man ma khong can st dung
giai thuat tiép xtc. Tuy nhién, trong mét s6 bai todn va cham va dam xuyén, diéu kién tiép xuic
khong trugt clia MPM 1a khéng pht hgp va tham chi co thé dem lai két qua khong hop 1y, vi vay
can phai thém vao MPM mét gidi thuat tiép xuc thich hgp dé gidi quyét han ché nay. Trong bai
bao nay, su thay déi clia luc ti€p xuc theo thai gian gay ra do va cham dugc nghién ctu. MPM st
dung ham dang Lagrange nén gay ra hién tuong " cell-crossing' khi mét diém vat liéu di chuyén tir
mot 6 nay sang 6 khac. Ban chat clia hién tugng nay la do su khong lién tuc ctia gradient cia ham
dang tuyén tinh. Do chinh xac ctia két qua vi thé clng bi dnh hudng. Trong nghién cliu nay, MPM
véi ham B-spline bac cao dugc st dung dé tranh hién tugng *cell-crossing”. BSMPM st dung ham
dang B-spline bac cao dé dam béo rang dao ham ctia ham dang la lién tuc, do d6 giam dugc sai
s6. Gidi thuat cia MPM va BSMPM cé mét s6 khac biét trong viéc xac dinh ludi tinh toan. Vi vay, giai
thuat tiép xtc ctia MPM can dugc hiéu chinh phu hap dé co thé st dung cho BSMPM. Muc dich
clia nghién ctu nay la nham xay dung mét giai thuat tiép xdc pht hop cho BSMPM va st dung né
dé khao sat luc tiép xtic gy ra bdi va cham. Mot vai vi du sé dugc trinh bay trong bai béo nay, su va
cham ctia hai dia tron dan héi va su va cham ctia mot dia tron mém vao mot khéi ch nhat cling
hon. Cac két qua vé luc tiép xuc thu dugc déu dugc so sanh vdi cac két qua ti phan ti hiu han va
déu phu hop, su bdo toan nang lugng ctia hé clng dugc xem xét.

Tu khoa: BSMPM, gidi thuat tiép xuc, luc tiép xuc, va cham, MPM

Trich dan bai bdo nay: Vay L S, Nha N T, Minh N N, Thién T T. Phan tich luc va cham bang phuong
phap Diém vat liéu sit dung ham dang B-spline. Sci. Tech. Dev. J. - Eng. Tech.; 4(1):722-730
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