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ABSTRACT
A prosthesis is an equipment provided to people who lost one or some parts of their limbs to
help them having almost normal behaviors in daily or hard activities. The convenience and intel-
ligence of devices should create easiness and flexibility for users. Artificial devices require inter-
disciplinary collaboration from neurosurgeons, surgical surgeons, physiotherapists and equipment
development. Computer engineering plays a crucial role in the design step, supporting manu-
facturing, training and recognition to match the desirability of customers. Moreover, users need a
wide rangeof different options such as an aesthetic functionalmaterial, amyoelectricmechanism, a
body-powered appliance or an activity specified device. Thus, the flexible configuration, the proper
features and the cost are some important factors that drive user's selection to the prosthesis. In this
article, wedescribe an effective andpowerful solution for analyzing, designinghardware and imple-
menting software to train and recognize hand gestures for prosthetic arms. Moreover, we provide
evaluation data of themethod comparedwith similar approaches to support our design and imple-
mentation. This is fairly a complete system, making it a convenient solution for hand-cutoff people
to control prosthetic hands using their electromyography signals. Statistical resultswith evaluations
show that the device can respond correspondingly and the method creates promisingly recogni-
tion data after correct training processes. The prosthetic hardware implementation has also been
simulated using a Light-emitting diode (LED) hand model with a high accuracy result.
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INTRODUCTION

Prosthesis history

By the recent cutting-edge technologies, prostheses
are developed to be as convenient as real body parts.
From ancient Greece (210 BC), a Roman namedMar-
cus Sergius made a prosthetic arm to fight when he
lost his part previously. In 1579, a doctor, Ambroise
Paré, recorded the prosthetic limb literature which
emphasized mechanical support for the prosthetic
hand, the concept which is being used until nowa-
days. Prosthetic technical knowledge was developed
greatly during and after the war to achieve continuous
progress over time.
The state-of-the-art prostheses are lightweight be-
cause of such advanced materials including plastic,
aluminum and synthetic fibers. Besides, the appear-
ance design is customized based on the user’s con-
venience, flexibility and durability. Furthermore, the
colors and shapes of the artificial parts are also man-
ufactured to resemble human skin color and increase
aesthetics.

Prosthesis manufacture classification

There are two main approaches in manufacturing a
prosthesis, cost-oriented (mainly targets customers in
developing countries) and quality-oriented (specifi-
cally dedicated for customers in developed countries).

Cost-oriented approach:

• Low-cost: Prosthetic limbs can be fabricated
simply using a 3D printer. This type of material
is suitable for children because the usage dura-
tion is relatively short as the children grow up
quickly and the old prosthesis could not fit them
anymore.

• Fast creation: Prosthetic limbs can be designed
and manufactured within 24 hours.

• Adjustable: Devices are designed and cus-
tomized using computer software, which is con-
venient for anybody.

There are lots of charity organizations providing pros-
theses for poor amputees using this method of manu-
facturing.

Cite this article : Nguyen D, Pham T, Quan T. Design, implementation and evaluation for a high pre-
cision prosthetic hand using MyoBand and Random Forest algorithm. Sci. Tech. Dev. J. – Engineering 
and Technology; 3(S1):SI28-SI39.

SI28



Science & Technology Development Journal – Engineering and Technology, 3(S1):SI28-SI39

Quality-oriented approach:

• Prostheses that are controllable by thinking, for
example: Targeted Muscle Reinnervation1 is
used to receive control signals from the brain
following the nerve to the muscle, thereby can
rule the limbs. When users think of moving
their arms or legs, the signals from the brain di-
rect the movement of the artificial parts. This
paper uses electromyography in (remaining part
of) the arm to transmit control commands to the
prosthesis, which is an example of this manu-
facturing direction. Of course, such devices are
more supreme, intelligent and pricey compared
with the above type of devices.

• Prostheses that are able to sense and react in-
stantly: The prosthetic limbs normally only fol-
low the commands and therefore have limited
abilities. People develop the parts so that they
can recognize heat, cold, pain... to respond im-
mediately to the environment2. This is a pro-
gressive development trend of the prostheses
nowadays.

EMG transmitted from themuscle

The nervous system generates a signal called the ac-
tion potential to describe the desire to control a body
part 3. As a result, the limb control system needs to
recognize the signal of the action through this electri-
cal impulse. However, an action will go through some
steps (Figure 1) to fully represent the whole cycle of
it4. According to the timeline (ms) of the horizontal
axis:

1. Taking a break.

2. Receiving stimulation, the cell receives ions that
increase the voltage. This is the start-up phase
for the electrical impulse.

3. At the top of the electrical impulse, the amount
of ions begins to decrease.

4. The ion decreases and leaves the muscle cell,
causing it to move toward the preparation pe-
riod of the rest. This is the downward phase of
electrical impulse.

5. The rest period is ready for another operation
cycle.

The process of reading these activity cycles is used in
EMG to identify muscle fiber movements in control-
ling prosthetic limbs.5.

EMG prostheses
In general, prostheses can use EMG to turn nerve sig-
nals into desired actions on the limbs6. Signals from
muscle are transmitted via sensors and converted into
digital signals through the decoder. Data is processed
and delivered to a processor for a recognition mech-
anism. Most of these prostheses use sensors attached
to the rest of the user’s limb or the head... to receive
signals fromusers. Indicators fromhumans also carry
information about strength and speed corresponding
to the transmitted voltage and create natural feedback
of the action7.
Signal processing algorithms require some step of
noise reduction, normalization and feature extraction
to filter all important information. One common
technique is Root Mean Square (RMS), which relies
on the average value of the signal and creates reliable
data. As a result, the input is gathered for the training
process.
The following sections of this paper are organized
in the following order. Chapter Related technolo-
gies describes a number of studies related to the tech-
niques used in this paper. Chapter Hardware design
illustrates the technical details about hardware using
MyoBand. Chapter Method explains software mod-
ules designed and implemented on the basis of Ran-
dom Forest algorithm. Chapter Results and discus-
sion provides the experimental results of the statisti-
cal evaluation compared with some similar methods.
And the last Chapter Conclusion concludes the paper
and shares some future intentions.

RELATED TECHNOLOGIES
Hardware

Sensors
Sensors are the devices contacting the user’s remain-
ing parts of the limbs, so that they play the most im-
portant role in data accuracy. Sensitive sensors reflect
every small change in data to create precise pieces of
signal reported. There are a huge number of devices
designed for this purpose and the following options
are the most popular ones:

• Myoware Muscle Sensor (Figure 2)

This sensor costs about $34 and can be attached to the
limb. Similar to other same type devices, the sensor
requires EMG Electrodes (cost $23 per set of 10, Fig-
ure 3) to work. The manufacturer recommends us-
ing two sensors to ensure the dual-channel to increase
the accuracy of controlling output. However, a single
channel is still basically acceptable for prostheses in
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Figure 1: Different states of electrical impulses (https://commons.wikimedia.org/wiki/File:Action_potential.svg)

common testing. The limitation of this sensor is its
precision is only adaptable for basic and general ap-
plications. Besides, the sensor is not flexible and con-
venient if users need an online sensor removal. As a
result, this device is not a medical compatible mate-
rial and is more applicable for research and academic
purposes.

Figure 2: Myoware electromyography sensor

Figure 3: EMG electrodes

• MyoBand

Figure 5 describes a MyoBand sensor that is con-
nected to an arm or a leg. The surrounding sensors
increase the accuracy and speed of the output signals.
Therefore, this device helps prostheses work closer to
the operation of the limb. The price of this MyoBand
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is approximately $200. In this paper, we implement
our experiment using this sensor.
The MyoBand has some advantages and disadvan-
tages compared to other options. However, since
the requirement of the implementation is limited to
an evaluation of accuracy and processing time, we
choose MyoBand in our design. Using this sensor, all
micro engine vibrations are accurately identified and
transmitted. Therefore, the hardware creates advan-
tages for later training and recognition steps.

Motherboard

A compactmotherboard with good connectivities has
a high priority to be selected. For example, there is a
list of common boards such as ArduinoUno, Adafruit
ATmega32U4, Arduino Micro, Raspberry Pi...
In this paper, we choose Orange Pi PC Plus (Figure 4)
based on its features, size and cost. Besides, thismoth-
erboard creates ease in connectivities and program-
ming upon our selected MyoBand via Bluetooth.

Software

The software topic involves both training and recog-
nition algorithms that will be discussed in this sec-
tion. There are a wide range of different recognition
techniques and we have an evaluation of some simi-
lar methods in this study. The common similarity of
these procedures is to use themachine learningmodel
to train the system through an existing sample dataset,
thus reducing noise and increasing the accuracy of the
movement. Later on, the recognition process identi-
fies the commands or actions using the trained out-
put. For example, the Least-Squares SVM 8 is recom-
mended to support the recognition for better speed
and higher accuracy (less training process), or a clas-
sification model using Deep Learning Convolutional
Neural Network9 is recommended to increase the ac-
curacy majorly regardless of the simplicity of the neu-
ral network architecture. Some other techniques such
as Kalman Filter, Random Forest... are proposed and
their target are similar. In this paper we use Random
Forest for training and recognition because of its flex-
ibility, speed and accuracy.

HARDWARE DESIGN

Motherboard

Figure 4 shows the image of the motherboard we have
used to run our proposed system. The motherboard’s
detail specification is listed in Table 1.

Figure 4: Orange Pi PC Plus motherboard

MyoBand electromyography sensor
TheMyoBand sensor (Figure 5) is used because it sat-
isfies our requirements of design and development,
creating simplicity of connectivity and programming.
The detailed specification of the MyoBand sensor is
shown in Table 2. Figure 6 shows how a user wears
MyoBand on his arm to archive electromyography
data from the remaining part of the hand.

Training
MyoBand is used to get electromyography from the
staying arm and transmit them to the motherboard
via Bluetooth. On themotherboard, once has received
the data, software modules process and normalize the
data, providing input for the trainingmodule. To ease
the training procedure, we develop a user interface for
an application to help users interacting with the train-
ing component. Later on, this application provides
the verification base for our prosthetic hand verifica-
tion processes.
Figure 7 shows the example of predicting a gesture
(users try to do the gesture they want and our system
predicts and shows it on the screen).

Prosthetic handmodel with LED light
Before designing a complete prosthetic hand, we used
an intermediate version of a prosthesis to help users
understand how the system works and how to inter-
act with the device. Therefore, we use a LED hand
model. Firstly, thismodel simulates artificial hands by
simulating finger moves corresponding to the on/off
LED on the model. Next, anytime the user thumb
up/down, the corresponding LED is turned on/off re-
spectively. Then, at the wrist, the LED corresponding
to the actions of the wrist also turns coincidentally.
Finally, this model is connected and fully controlled
by a software module running on the motherboard.
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Figure 5: MyoBand electromyography sensor

Figure 6: MyoBand sensor on the hand; (http://irsi.eigsi.fr/wp-content/uploads/2014/11/Myoon-arm-blog-v32.jp
g)
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Table 1: Hardware configuration of themotherboard

Hardware specifications

CPU H3 Quad-core Cortex-A7 H.265/HEVC 4K

GPU Mali 400MP2 GPU @600MHz
Supports OpenGL ES 2.0

Memory 1GB DDR3 (shared with GPU)

Storage TF card (Max. 32GB) 8GB EMMC Flash

Network 10/100 Ethernet RJ45 Wifi 2.4GHz b/g/n

USB Ports Three USB 2.0 HOST + One USB 2.0 OTG

Low-level peripherals 40 Pins Header, Raspberry Pi 3 B+ Compatible

Supported OS Android Lubuntu, Debian, Raspbian Image

Table 2: Hardware configuration of MyoBand electromyography sensor

Hardware specifications

Sensors Medical Grade Stainless Steel EMG sensors Highly sensitive nine-axis IMU
containing three-axis gyroscope, three-axis accelerometer, three-axis magne-
tometer

Processor ARM Cortex M4

Communication Bluetooth Smart Wireless Technology

Power and Bat-
tery

Built-in rechargeable lithium ion battery

Interface definition

Arm size Expandable between 7.5 - 13 inches (19 - 34 cm) forearm circumference

Figure 8: Model is being operated by the actual user
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Figure 7: The system interface is displaying the cur-
rent action

Function block diagram
Figure 9 shows a diagram of the function blocks and
data streams. Firstly, the electromyography signals
of the hand are transmitted to the EMG sensors in
MyoBand. Next, after receiving a raw electrical sig-
nal, the sensor conducts pre-processing, noise filter-
ing and transmits the data to the Orange Pi PC Plus
motherboard via Bluetooth. Then, on the mother-
board, we enable a Web UI to interact with users. Ei-
ther a smartphone, a laptop or a PC with Wi-Fi con-
necting to the board can be used for interaction with
the Web UI.
Users can start training actions as well as monitor
the results of the prediction. By receiving a training
order from the user, the motherboard immediately
collects and trains data following the Random For-
est algorithm. As a result, once the training process
is completed, the input signals are automatically used
to predict the commands (the predicted outcome is in
trained actions). Based on the predicted results, the
motherboard will provide appropriate control signals
to the prosthetic arm or prosthetic model. Finally, the
identified control signals turn on/off the LEDs corre-
sponding to the shrinking fingers.

Advantages and disadvantages of this de-
sign

Advantages
Obviously with the above design, several different
parts of hardware have been used in our system imple-
mentation. During the implementation process, with
limited equipment situation, we found that this design
has these advantages:

• Easy to implement, can be purchased in the
market, not a costly solution.

• Intuitive, convenient for users to be familiar
with the system.

• The motherboard is supported for easy connec-
tion and programming.

Disadvantages
Some disadvantages of the approach include:

• Unable to perform real actions.
• Can not fully simulate a complete prosthetic
arm.

However, these are the foreseen inconveniences and
we will consider them in the future plan of this study.

METHODS

Random Forest algorithm

Building a tree using CART
CART (classification and regression tree) 10 is an algo-
rithm used to build a decision tree. We will describe
the main flow of the algorithm in the below sections.
Firstly, a binary tree is considered for a CART objec-
tive. Input data is the attribute dataset of its classes
and subclasses. Each set of n-attributes of a class is an
n-dimensional vector. Next, at each node, the algo-
rithm tries to find the best split point (greedy splitting
approach) by scanning all n-attributes of the training
data and calculating the Gini coefficients of the split
point. In each attribute, the best split point will be
chosen to compare with other attribute’s one. The best
split point of all n-attributes is considered as the root
node. After that, the training dataset is divided into
two parts based on the root node’s condition. Then,
at each node connected from the tree root, the algo-
rithm continues to scan all n-attributes and calculates
the Gini coefficients to divide the tree. The process
runs until we get the stop condition.
Finally, the stop condition is configured when either
all the leaf nodes belong to only one class or the num-
ber of samples at a node is lower than a threshold
(specified case by case). As a result, we have a clas-
sification tree.

Gini(D) = 1−∑m
i=1 p2

i (1)

The formula for calculating Gini coefficients at each
nodeD is given in (1). In this equation, pi is the prob-
ability of exporting data with an i label on the total
data at a node.
The formula for calculating the Gini coefficient of the
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Figure 9: Function block diagram

dividing point at node D follows attribute A is given
below:

GiniA(D) = 1−∑υ
j=1

∣∣D j
∣∣

|D| Gini(D j), (2)

in this equation, D j is a child of D after branching.

Random Forest construction
Firstly, to build a software module based on the
Random Forest algorithm11 we randomly divide the
training dataset into multiple subsets corresponding
to the number of trees expected. Next, for each subset,

we generate a CART tree (using the describedmethod
with (1) and (2)). The special point of Random Forest
is that in a tree, instead of scanning all n-attributes to
find the best split point at each node, it limits the num-
ber of attributes that CART can scan. Then, the al-
gorithm randomly selects attributes from n-attributes
with the number of them is smaller than a predefined
number. For the classification problem, the number
of attributes is limited to each node is usually equal to
√

n (where n is the total number of attributes of the
training dataset).
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Later on, by conducting a classification of the class
from the input data sample, Random Forest passes
that sample through all the trees in the forest. Finally,
each tree creates a subclass correspondingly and the
subclass that has the maximum number of trees pro-
duced will be selected as the expected result.

Applying Random Forest in the project
Data archived from the MyoBand sensor has a speed
of 50Hz (50 samples per second). Each time we trans-
fer data from eight EMG sensors, we have an eight-
dimensional vector. As a result, we plan to label the
vector with corresponding actions.
Firstly, in order to obtain a training dataset, each ac-
tion is collected by at least 100 data samples. Next, we
train the Random Forest model using 12 trees. The
prediction output of a chosen action is the most an-
ticipated action of the 36 most recent data samples.

Web UI
Since the application needs to interact with users eas-
ily, we build a web-app for accessible development.
The site is hosted on themotherboard itself so that the
interconnectivity within different modules is simple.
Website data is updated in real-time with the moth-
erboard. Figure 10 shows the prediction’s probabil-
ity corresponding to each gesture. The gesture pre-
diction result is presented in the Prediction tab (Fig-
ure 11). Also, the training interface (Figure 12) shows
each gesture at a time for collecting the user’s myog-
raphy data corresponding to that gesture.

RESULTS ANDDISCUSSION
Initial results
The time from the start of the action to the time when
the algorithm can recognize the action is approxi-
mately 720ms.
By the comparison during practical runtime, we se-
lect 36 recent samples which should create the best
accuracy. Otherwise, if less than 30 data samples
are collected, the accuracy is relatively reduced (no
characteristic of action is found). On the contrary, if
more than 40 samples are archived, the action is corre-
spondingly time-consuming (since there is remaining
time to transmit control signals to the hardware).
Therefore, the embedded board running Linux oper-
ating system creates advantages for our development.
Besides, we have conducted several tests on a practi-
cal handicapped user using a LED hand model (Fig-
ure 8). After having trained the model and been fa-
miliar with the system, users can control the scheme
and rule the hardware with accuracy up to 47/50 ac-
tions (over 90%).

Advantages and disadvantages of the
method

Advantages
• Hi-speed training and prediction.
• Inexpensive hardware resources, suitable for de-
ployment on embedded boards.

• High-accuracy (90%+).

Disadvantages
• Users need to study the behavior of how the sys-
tem works and get used to its processing ap-
proaches.

• A stable embedded Linux board is required.

Compare with other algorithms
The side-by-side review data on Table 3 with related
methods shows that our approach ensures the best
output based on two main-factors (processing time
for training and recognition, as well as accuracy).
Specifically, our system has real-time processing for a
sample of approximately 20ms (because of the limita-
tion of 20ms sampling period fromhardware devices),
but still reaches an average accuracy of 47/50 (94%).
In the same scenarios, the K-Nearest Neighbors al-
gorithm costs the same running time but can only
achieve lower accuracy of 38/50 (76%). Another ex-
ample, the Multilayer Perceptron algorithm provides
the same accuracy, but its execution time takes nearly
five times higher than our approach. In summary, the
Random Forest algorithm outperforms other meth-
ods by the combination of processing time and accu-
racy, thus we select it in our implementation.

The feasibility of upgrading
Based on the above promising results, it is applicable
to create prosthetic limbs using artificial intelligence.
In terms of cost, it will be a bit higher than other ex-
isting designs since we use modern sensors and em-
bedded boards. However, as the motherboard is run-
ning embedded Linux, the program is upgradable and
the algorithm is configurable. Besides, our hardware
design creates much ease in interface connectivities,
program maintenance, and software enhancement.

CONCLUSION
Current solution
By using the Random Forest algorithm, the system
is able to be trained and recognize the actions from
limbs successfully. With the above results, the solu-
tion can be effectively applied in the practical creation
of prostheses for real patients.
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Figure 10: Interface for evaluating the ability to perform actions

Figure 11: Hand movements prediction interface

Table 3: Comparison of Random Forest with some similar classification algorithms

Algorithm Predict time (s) Training
1 sample time (s)

Accuracy
(50 times)

Random Forest 0.002 – 0.02 0.016 –0.027 47/50

K-Nearest Neighbors 0.002 – 0.020 0.003 – 0.022 38/50

Multi-layer Perceptron 0.0005 – 0.020 0.0002 – 0.1175 48/50
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Figure 12: Training interface

Future development
Weare investigating some approaches, so that the next
phase of this study is applicable, such as:

• Use 3Dprinting technology or specialized hand-
held devices to complete the final stage of the
system to help hand-cutoff people use it in their
daily activities.

• Apply Deep Learning12 models to increase the
accuracy and speed of prediction.

• Combine a number of other tools to help pros-
thetic hands respond to external conditions.

• Research to apply this model for prosthetic legs.
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TÓM TẮT
Chi giả (tay hoặc chân giả) là thiết bị được cung cấp cho người khuyết tật bị mất một phần chi,
giúp họ có được hoạt động gần như bình thường qua hoạt động hằng ngày hoặc các hoạt động
gắng sức. Chi giả càng được cải tiến tiện lợi và thông minh thì con người càng dễ điều khiển và
hoạt động của họ càng linh hoạt. Việc sản xuất và phát triển chi giả là công việc liên ngành của
các bác sĩ thần kinh, bác sĩ phẫu thuật ngoại khoa, bác sĩ vật lý trị liệu và các kỹ sư chế tạo phát
triển thiết bị. Khoa học máy tính đóng vai trò lớn trong bước thiết kế, hỗ trợ chế tạo, huấn luyện
và nhận dạng để phù hợp với ngoại hình và chức năng cần thiết của khách hàng. Người sử dụng
cũng cần có nhiều lựa chọn chẳng hạn là một thiết bị chức năng thẩm mỹ (aesthetic functional
device), một thiết bị điện cơ (myoelectric), một thiết bị chạy bằng cơ thể (body-powered device)
hoặc là thiết bị dành cho hoạt động nhất định (activity specified device). Càng có nhiều lựa chọn
và càng phù hợp về chức năng, giá thành, thì việc sử dụng của họ càng thuận lợi. Trong bài báo
này, chúng tôi đưa ra một giải pháp hữu hiệu vàmạnhmẽ trong việc phân tích, thiết kế phần cứng
và hiện thực phần mềm để huấn luyện và nhận dạng cử chỉ hoạt động tay cho cánh tay giả. Đây
là một hệ thống khá đầy đủ, thuận tiện làm giải pháp cho người khuyết tật tay có thể điều khiển
tay giả thông qua chuyển động cơ điều khiển của họ. Kết quả thống kê cho thấy khả năng đáp
ứng tốt và rất triển vọng của bộ huấn luyện (training) và nhận dạng (recognition). Việc hiện thực
ra phần cứng tay giả cũng đã được mô phỏng qua một mô hình tay bằng đèn LED cho độ chính
xác cao và sẽ được hiện thực trong tương lai.
Từ khoá: Điện cơ, Cảm biến MyoBand, Tay giả, Rừng ngẫu nhiên
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