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TÓM TẮT
Trong các thập kỷ vừa qua, việc ứng dụng trí tuệ nhân tạo trong các bài toán kỹ thuật đang trở
nên cấp thiết. Đối với kết cấu công trình xây dựng, việc dự đoán tải trọng tác dụng trong quá trình
sử dụng có ý nghĩa thực tiễn. Điều này giúp theo dõi sức khỏe và bảo đảm độ an toàn cho công
trình. Yêu cầu thực tiễn này đã thúc đẩy việc phát triển các phương pháp dự đoán không phá hủy
sử dụng các đặc trưng dao động kết hợp với các thuật toán trí tuệ nhân tạo. Bài báo này đề xuất
phương pháp dựa vào mô hình học máy sử dụng thuật toán học sâu kết hợp với tần số dao động
để dự đoán tải trọng tác dụng lên kết cấu sàn bê tông cốt thép. Đặc trưng tần số dao động của
bốn dạng dao động đầu tiên và tải trọng tác dụng tương ứng lên tấm được sử dụng để huấn luyện
một mạng nơ-ron nhân tạo (ANN). Một kết cấu tấm bê tông cốt thép chịu tải trọng phân bố đều
được mô phỏng theo phương pháp phần tử hữu hạn. Mô phỏng có xét đến ứng xử phi tuyến của
bê tông và cốt thép. Tấm được gia tải từ không đến khi phá hoại. Ứng với mỗi cấp tải, đặc trưng
dao động của bốn dạng dao động đầu tiên được trích xuất để huấn luyệnmô hình ANN với ba lớp
mạng. Kết quả phân tích cho thấy cả bốn dạng dao động đầu tiên đều có khả năng dự đoán tải
trọng tác dụng lên tấm với độ chính xác cao, đặc biệt với các cấp tải sau khi tấm đã xuất hiện vết
nứt.
Từkhoá: dự đoán tải trọng, học sâu, mạng nơ-ron nhân tạo, sàn bê tông cốt thép, tần số dao động.

GIỚI THIỆU
Sàn là kết cấu dạng tấm được sử dụng rộng rãi trong
các công trình dân dụng và công nghiệp, có vai trò
tiếp nhận trực tiếp tải trọng đứng trên công trình xây
dựng. Sàn thường được chế tạo bằng vật liệu bê tông
cốt thép vì tính chất thông dụng, phổ biến của vật liệu,
đồng thời biện pháp thi công đơn giản và chi phí rẻ1.
Tuy nhiên, vật liệu bê tông là khả năng chịu kéo kém
dẫn đến kết cấu bê tông cốt thép dễ bị nứt ở vùng chịu
ứng suất kéo. Các vết nứt này làm ảnh hưởng đến khả
năng chịu lực lâu dài và sử dụng bình thường của kết
cấu sàn. Do đó, kết cấu sàn cần được chẩn đoán để
phát hiện ra các hư hỏng kịp thời, nhằm đảm bảo sự
làm việc bình thường, an toàn của kết cấu cũng như
giảm thiểu chi phí sửa chữa, thay thế kết cấu bị hư
hỏng nặng.
Các phương pháp chẩn đoán hư hỏng được sử dụng
phổ biến hiện nay là các phương pháp không phá hủy
do chi phí thấp và tính linh hoạt trong ứng dụng, đặc
biệt là có thể áp dụng cho các kết cấu đang vận hành.
Trong số đó, các phương pháp dựa vào các đặc trưng
dao động đã chứng tỏ được hiệu quả trong việc xác
định hư hỏng với độ chính xác cao và có khả năng
xác định được mức độ hư hỏng của kết cấu2. Theo
Chen3, các phương pháp chẩn đoán hư hỏng (Struc-
tural Health Monitoring: SHM) được nghiên cứu và

phát triển có thể được phân làmnămcấpđộnhưminh
họa ở Hình 1. Các kỹ thuật SHM thường hướng đến
việc chẩn đoán được mức độ hư hỏng của kết cấu. Để
đạt được mục tiêu đó, cần sử dụng các đặc trưng dao
động của kết cấu ở trạng thái trước và sau hư hỏng kết
hợp với các thuật toán tối ưu tìm kiếm. Tuy nhiên,
các thuật toán tối ưu này chỉ hiệu quả trong trường
hợp vùng hư hỏng là nhỏ và mức độ hư hỏng tương
đối lớn. Đối với các hư hỏng ở phạm vi lớn, mức độ
hư hỏng nhỏ thì các thuật toán tối ưu thông thường
không có khả năng chẩn đoán được mức độ hư hỏng.
Do đó, đòi hỏi phải có các thuật toán chẩn đoán hiệu
quả hơn.
Một trong số các giải pháp tiềm năng là sử dụng kết
hợp các đặc trưng dao động với các thuật toán trí tuệ
nhân tạo (Artificial Intelligence: AI), đặc biệt là thuật
toán học máy (Machine Learning: ML). Thuật toán
này xây dựng một mô hình chẩn đoán sử dụng bộ dữ
liệu huấn luyện mà không cần lập trình cụ thể. Mô
hình sau khi được huấn luyện có khả năng dự đoán
chính xác đầu ra dựa vào dữ liệu đầu vào. Cha và
cộng sự 4 đã nghiên cứu phương pháp học sâu (Deep
Learning: DL) và ứng dụng phương pháp trong việc
chẩn đoán vị trí vết nứt trên hình chụp bề mặt cấu
kiệu có vật liệu cấu tạo là bê tông. Lin và cộng sự 5

đã đề xuất một phương pháp chẩn đoán hư hỏng mới

Trích dẫn bài báo này: Thanh Cao L, Mạnh Hùng T, Hữu Tín L T, Đức Duy H. Dự đoán tải trọng tác dụng
lên sàn bê tông cốt thép sử dụng tần số dao động kết hợp mô hình học sâu. Sci. Tech. Dev. J. - Eng.
Tech. 2026; x(x):xxxx-xxxx.

1



Tạp chí Phát triển Khoa học và Công nghệ – Engineering and Technology 2026, x(x):xxxx-xxxx

Hình 1: Năm cấp độ chẩn đoán hư hỏng. [Nguồn: Nhóm tác giả]

dựa trên thuật toánmạng nơ-ron tích chập (Convolu-
tional Neural Network: CNN) để tự động tách thông
tin cần thiết từ dữ liệu trên miền thời gian. Pathirage
và cộng sự6 đã nghiên cứu ứng dụng phương pháp
DL để chẩn đoán vị trí và mức độ hư hỏng cho kết
cấu khung thép. Alwanas và cộng sự7 đã nghiên cứu
ứng dụng phương pháp ML trong việc dự đoán khả
năng chịu lực tác dụng tối đa và dạng phá hủy của nút
khung dầm-cột bê tông cốt thép. He và cộng sự 8 đã
nghiên cứu ứng dụng phương pháp ML trong chẩn
đoán vị trí và kích thước vùng tách lớp của cấu kiện
dầm gia cường bằng tấm FRP.
Các nghiên cứu đã thực hiện chẩn đoán hư hỏng cho
các cấu kiện đã xuất hiện hư hỏng. Đối tượng nghiên
cứu thường được hướng tới là sự xuất hiện của hư
hỏng, vị trí của hư hỏng và mức độ hư hỏng. Gần
đây, một số nghiên cứu về chẩn đoán hư hỏng kết cấu
bê tông cốt thép đã được thực hiện tại Việt Nam9–11.
Tuy nhiên vẫn chưa có nhiều nghiên cứu về phương
pháp theo dõi tải trọng tác dụng lên kết cấu trước khi
bị hư hỏng. Trong lĩnh vực SHM, việc xác định được
độ lớn tải trọng tác dụng lên kết cấu giúp phân loại
hư hỏng có thể xuất hiện. Trong khi đó, phân loại hư
hỏng là cơ sở quan trọng để chẩn đoán mức độ hư
hỏng. Ngoài ra, các kết cấu đều thường xuyên trong
trạng thái làm việc và chịu tải trọng tác dụng. Trong
khoảng thời gian từ lúc phát hiện được vị trí của hư
hỏng cho đến thời điểm có thể tiếp cận và thực hiện
công tác sửa chữa, kết cấu làm việc trong điều kiện
bất lợi. Do đó, việc xác định được tải trọng tác dụng
lên kết cấu là cơ sở để cảnh báo khi nào kết cấu sắp
xuất hiện hư hỏng, từ đó có biện pháp để đưa kết cấu
về trạng thái làm việc thuận lợi về mặt chịu lực. Bên
cạnh đó, phương pháp theo dõi trạng thái làm việc của
kết cấu còn cần thiết trong việc kiểm tra công trình
có được sử dụng đúng công năng, cũng như phục vụ
công tác kiểm định công trình có được sử dụng đúng
với tải trọng thiết kế hay không. Các vấn đề nêu trên
đã đặt ra nhu cầu về phát triển các phương pháp theo
dõi tải trọng tác dụng lên kết cấu công trình một cách
nhanh chóng, hiệu quả trong thực tế.
Trong thực tiễn, việc xác định tải trọng sử dụng hiện
hành cho các kết cấu công trình là rất cần thiết. Do

đó, việc phát triển các phương pháp dự đoán tải trọng
không làmphá hủy và ảnh hưởng đến sự làmviệc bình
thường của kết cấu, ví dụ như thông qua việc đo dao
động của kết cấu, là hữu ích. Mục tiêu của nghiên cứu
này là xây dựng phương pháp sử dụng đặc trưng động
học cơ bản là tần số dao động kết hợp với mạng nơ-
ron nhân tạo để dự đoán tải trọng tác dụng lên kết cấu
tấm sàn bê tông cốt thép. Một bài toán mô phỏng số
được thực hiện trên tấm sàn bê tông cốt thép chịu tác
dụng của tải trọng phân bố đều để kiểm chứng hiệu
quả của phương pháp đề xuất. Tấm được mô hình và
phân tích bằng phần mềm ANSYS; trong đó, có xét
đến mô hình ứng xử phi tuyến của vật liệu bê tông và
cốt thép.

PHƯƠNG PHÁP VÀMÔHÌNH DỰ
ĐOÁN
Thuật toánmạng nơ-ron nhân tạo
Họcmáy làmột lĩnh vực của trí tuệ nhân tạo, tập trung
vào việc phát triển các thuật toán vàmôhình cho phép
máy tính học hỏi từ dữ liệu và cải thiện hiệu suất của
chúng mà không cần lập trình rõ ràng cho từng tác
vụ cụ thể. Học máy dựa trên các phương pháp thống
kê và toán học để phân tích dữ liệu và rút ra các mẫu
hoặc dự đoán từ dữ liệu đó. Học sâu là một nhánh
con của học máy, sử dụng các mạng nơ-ron nhân tạo
với nhiều lớp (layers) để mô hình hóa và học từ dữ
liệu phức tạp nhằm tạo ra các mô hình có khả năng
dự đoán chính xác và hoạt động hiệu quả trên dữ liệu
mới. Ưu điểm nổi bật của học sâu là có khả năng tự
học và trích xuất các đặc trưng quan trọng từ dữ liệu
mà không cần nhiều bước xử lý đặc trưng thủ công
như học máy. Trong nghiên cứu này, thuật toán học
sâu được sử dụng để xây dựng một mô hình hồi quy
(regression) nhằm dự đoán tải trọng tác dụng lên tấm
dựa vào tần số dao động tự nhiên của tấm. Tập dữ
liệu được sử dụng để huấn luyện dựng mô hình học
sâu là tần số daođộng tại các cấp tải trọng tác dụng của
tấm. Độ chính xác của mô hình học sâu được đánh
giá bằng cách so sánh kết quả thu được khi nhập tần
số dao động vàomô hình xấp xỉ với tải trọng tác dụng
trong thực tế.
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Các mạng nơ-ron trong thuật toán học sâu bao gồm
nhiều lớp ẩn (hidden layers) giữa đầu vào và đầu ra
nên được gọi là mạng nơ-ron sâu (Deep Neural Net-
work: DNN). Trong mỗi lớp, các nơ-ron trong mạng
được kết nối với nhau theo kiểu phổ biến nhất là kết
nối lan truyền thẳng. Các nơ-ron nhân tạo có hình
dạng và chức năng tương tự nhưmột nơ-ron sinh học.
Mô hình toán của mỗi nơ-ron nhân tạo bao gồm các
thành phần: bộ nhân, bộ cộng và hàm kích hoạt, được
biểu diễn theo Hình 2 và bằng công thức (1).

trong đó y là đầu ra của nơ-ron, f là hàm kích hoạt,
xi là các đầu vào, wi là các trọng số của các đầu vào
tương ứng và b là giá trị độ lệch.

Hình 2: Minh họa một nơ-ron nhân tạo. [Nguồn:
Nhóm tác giả]

Hàm kích hoạt f, hay còn gọi là hàm truyền là phương
trình toán học xác định ngõ ra của các nơ-ron. Trong
mạng nơ-ron nhân tạo, hàm truyền quyết định các
nơ-ron là tích cực hay không, tức là tạo ra xung ngõ
ra cho các nơ-ron kết nối sau nó hay không khi ngõ
vào đạt đến một mức nào đó. Việc lựa chọn hàm kích
hoạt được dựa trên mục tiêu của bài toán đặt ra. Đối
với các bài toán chẩn đoán tải trọng tác dụng, hàm
kích hoạt dạng phi tuyến (hay còn gọi là hàm logistic)
được đề xuất sử dụng. Hàm kích hoạt logistic (hay
còn gọi là hàm sigmoid) được sử dụng phổ biến cho
các nơ-ron ở các lớp ẩn. Đặc điểm của hàm này là giá
trị đầu ra trong (0,1); đồng thời đồ thị của hàm sig-
moid có dạng hình chữ S (Hình 3), giúp làmmềm các
thay đổi lớn ở đầu vào thành các thay đổi nhỏ ở đầu
ra. Công thức của hàm kích hoạt sigmoid được biểu
diễn như sau:

trong đó σ(x)là đầu ra của hàm sigmoid khi đầu vào
là x.

Xây dựng kiến trúcmạng nơ-ron nhân tạo
Trong kiến trúc mạng nơ-ron nhân tạo, mỗi nơ-ron
thuộc lớp sau có dữ liệu đầu vào là dữ liệu đầu ra của
tất cả các nơ-ron thuộc lớp trước. Mạng nơ-ron nhân
tạo trong bài toán dự đoán tải trọng tác dụng lên tấm

Hình 3: Đồ thị hàm sigmoid. [Nguồn: Nhóm tác giả]

bê tông cốt thép có ba loại lớp (Hình 4). Lớp đầu vào
(Input layer) là lớp đầu tiên của mạng và chỉ có một
nút mạng là giá trị tần số dao động của tấm. Lớp đầu
ra (Output layer) là lớp cuối cùng của mạng, cũng chỉ
có một nút mạng là giá trị tải trọng tác dụng lên tấm
được dự đoán. Lớp ẩn (Hidden layer) là các lớp trung
gian của mạng, đại diện cho tính suy luận logic của
mạng. Việc lựa chọn số lượng nút và số lớp ẩn trong
mạng nơ-ron nhân tạo có ảnh hưởng lớn đến hiệu
suất và khả năng của mô hình. Đối các bài toán phức
tạp như nhận diện hình ảnh, xử lý ngôn ngữ tự nhiên,
… cần nhiều nút và lớpmạng đểmô hình có khả năng
học được nhiều đặc trưng phức tạp từ dữ liệu. Trong
bài toán dự đoán tải trọng từ tần số dao động, đường
đặc trưng giữa tần số và tải trọng tác dụng không quá
phức tạp, lớp đầu vào và đầu ra chỉ có 1 nút mạng. Do
đó, mô hình dự đoán được xây dựng gồm có ba lớp
ẩn với số nút lần lượt của từng lớp ẩn là 100, 50 và 10
nút. Giá trị dự đoán của mạng nơ-ron nhân tạo ứng
vớimột dữ liệu đầu vào x được xác định theo các công
thức dạng ma trận như sau:

trong đó, al
jlà đầu ra của nơ-ron thứ j trong lớp thứ l;

bl
jlà độ lệch của nơ-ron thứ j trong lớp thứ l; k là số

lượng nơ-ron trong lớp thứ (l-1).
Cuối cùng, giá trị dự đoán ŷchính là giá trị đầu ra ở
lớp thứ 4 của mạng nơ-ron nhân tạo.

Trongmạng nơ-ron nhân tạo, hàmmấtmát được tính
cho các nơ-ron ở lớp đầu ra thông qua các phép ước
lượng sai số giữa ngõ ra dự đoán và ngõ ra mong
muốn. Phương pháp tính sai số củamôhình trên toàn
bộ tệp dữ liệu được sử dụng là phương pháp sai số
bình phương trung bình (Mean Squared Error: MSE).
Do đó, hàm mất mát C có dạng như công thức (6).

3

z = ∑n
i=1 wixi +b; y = f (z) (1)

σ(x) =
1

1+ e−x (2)

a0
j = x j (3)

al
j = σ(zl

j) = σ(∑K
k=1 wl

j,kal−1
k +bl

j); l = 1,2,3,4 (4)

ŷ = a4 (5)

C = (y− ŷ)2 (6)
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Hình 4: Các lớp trong kiến trúc mạng nơ-ron nhân tạo. [Nguồn:Nhóm tác giả]

trong đó, y và ŷlần lượt là giá trị đầu ra mong muốn
và đầu ra dự đoán của mô hình đối với ngõ vào x.
Mục tiêu của quá trình huấn luyện mô hình là giảm
thiểu giá trị hàm mất mát MSE. Thuật toán nhằm tối
ưu hàm mất mát được sử dụng là thuật toán L-BFGS.
Thuật toán này không lưu trữ ma trận Hessian đầy đủ
mà chỉ lưu trữ một số thông tin gần nhất về gradient
và xấp xỉ ma trận Hessian, do đó tiết kiệm bộ nhớ.
Điều này làm cho L-BFGS phù hợp cho các bài toán
tối ưu hóa lớn. Ngoài ra, giải thuật L-BFGS còn có
ưu điểm là không phải lựa chọn tốc độ học cho phù
hợp bài toán, đồng thời kết quả thu được nhanh hội
tụ. Số vòng lặp huấn luyện được khảo sát theo bước
nhảy 1000 lần để tìm ra số vòng lặp tốt nhất. Kết quả
cho thấy sau 8000 vòng lặp thì giá trị hàm mất mát là
nhỏ nhất. Do đó, số vòng lặp để huấn luyện mô hình
được thiết lập là 8000 vòng.
Thuật toán học sâu sử dụng các phương pháp lan
truyền ngược sai số (Backpropagation) để tìm giá trị
trọng số wl

j,kvà độ lệch bl
jđể giá trị hàm mất mát C

đủ nhỏ theo yêu cầu. Phương pháp tính đạo hàm
của hàm mất mát C theo thứ tự từ lớp cuối đến lớp
đầu tiên. Việc tính toán đạo hàm của hàm mất mát
tại từng lớp trong mạng được thực hiện theo ba bước
tổng quát như sau:
Bước 1: Tính sai số đầu ra của nơ-ron thứ j ở lớp ngõ
ra thứ l, δ l

j :

Bước 2: Tính sai số của nơ-ron thứ j trong lớp l-1,
δ l−1

j :

Bước 3: Cập nhật trọng số của nơ-ron ở lớp ẩn l-1,
wl

j,i:

Quá trình tối ưu hàm sai số bằng kỹ thuật lan truyền
ngược qua các lớp mạng rất quan trọng trong việc xây
dựng mô hình mạng nơ-ron nhân tạo. Quá trình này
giúpmô hìnhmạng nơ-ron nhân tạo dự báo ra đầu ra
với sai số nhỏ nhất ứng với một cấu trúc mạng được
giả định trước về số lớp, số nút và hàm kích hoạt.

KẾT QUẢ VÀ THẢO LUẬN
Thiết lập bài toán
Mục tiêu của nghiên cứu này là sử dụng tần số dao
động để dự đoán tải trọng tác dụng lên kết cấu sàn bê
tông cốt thép sử dụng thuật toán học sâu. Mô hình
học máy sử dụng thuật toán mạng nơ-ron nhân tạo
được xây dựng bằng ngôn ngữ lập trình Python nhằm
đạtmục tiêu trên. Trong nghiên cứu này, một tấm sàn
bê tông cốt thép được gia tải phân bố đều với bước tải
0,05 kN/m2 cho đến khi sàn bị phá hoại. Tại mỗi cấp
tải, tấm sàn được phân tích động học ứng với độ cứng
thực tế khi xem xét đến hiện tượng nứt trong tấm. Dữ

4

δ l
j =− ∂C

∂ zl
j
= al

j(1−al
j)(y j −al

j) (7)

δ l−1
j = al−1

j (1−al−1
j )∑K

k=1 wl
k, jδ

l
k (8)

wl
j,i = wl

j,i +ηδ l
jx j,i (9)



Tạp chí Phát triển Khoa học và Công nghệ – Engineering and Technology 2026, x(x):xxxx-xxxx

liệu tần số dao động của bốn dạng dao động đầu tiên
và tải trọng tác dụng tương ứng được sử dụng để huấn
luyện mô hình học sâu nhằm xây dựng mô hình quy
hoạch mối quan hệ giữa hai đại lượng.
Việc khảo sát kết quả dự đoán của mô hình học sâu
được thực hiện thông qua bài toán thuận và bài toán
nghịch. Bài toán thuận được thực hiện với mô hình
tấm ban đầu được phân tích động học khi chịu một
tải trọng tác dụng nhất định. Bài toán ngược sử dụng
tần số dao động đã phân tích làm dữ liệu đầu vào cho
mô hình học sâu để dự đoán tải trọng tác dụng. Kết
quả dự đoán của bài toán nghịch được so sánh với
tải trọng tác dụng lên tấm mô phỏng trong bài toán
thuận để đánh giá độ chính xác của mô hình học sâu
đã xây dựng. Hai bài toán thuận - nghịch trên có thể
được coi là hai quá trình training và validation. Khi
áp dụng trong thực tế, mô hình học sâu đã được xây
dựng sẽ dự đoán tải trọng tác dụng lên kết cấu thật
thông qua kết quả đo đạc và phân tích tần số dao động
của kết cấu đó. Trong nghiên cứu này, bài toán được
thực hiện nhằm dự đoán cấp tải trước khi tấm xuất
hiện vết nứt 1,3 kN/m2; và tám cấp tải sau tấm bị nứt,
bao gồm: 3,1; 3,3; 3,7; 4,6; 6,1; 7,3; 8,5 và 9,7 kN/m2.

Môhìnhphần tử hữuhạn kết cấu sànbê tông
cốt thép
Một tấm sàn bê tông cốt thép có bốn cạnh tựa đơn,
mặt bằng hình chữ nhật, có cốt thép gia cường theo
hai phương được mô phỏng bằng phần mềm AN-
SYS APDL. Tấm sàn có kích thước các cạnh lần lượt
là 3,05×5,00×0,10 m như minh họa ởHình 5 . Cốt
thép được bố trí theo quy cách∅10@150mm theo hai
phương. Mô hình phần tử hữu hạn của tấm bê tông
cốt thép được thể hiện ở Hình 6; trong đó, bê tông
được mô phỏng bằng phần tử SOLID65, cốt thép sử
dụng phần tử BEAM188, với giả thiết giữa bê tông và
cốt thép có khả năng bám dính tốt.

Hình 5: Tấm sàn bê tông cốt thép. [Nguồn: Nhóm
tác giả]

Hình 6: Mô hình phần tử hữu hạn của tấm sàn bê
tông cốt thép. [Nguồn: Nhóm tác giả]

Các thông số của bê tông trongmô hình ANSYS được
trình bày ở Bảng 1. Đối với phần tử SOLID65, tiêu
chuẩn dẻo được định nghĩa thông qua quan hệ ứng
suất-biến dạng. Trước khi bê tông đạt đến trạng thái
chảy dẻo, mô hình vật liệu được sử dụng là mô hình
cứng hóa đẳng hướng (multilinear isotropic harden-
ing). Đường quan hệ ứng suất-biến dạng theo mô
hình trên được thể hiện ở Hình 7. Các thông số
của cốt thép trong mô hình ANSYS được trình bày
ở Bảng 2. Đường quan hệ ứng suất-biến dạng của cốt
thép được đơn giản hóa như Hình 8.

Bảng 1: Thông số của bê tông

Khối lượng riêng (kg/m3) 2400

Hệ số Poisson 0,2

Cường độ chịu nén giới hạn một trục (MPa) 11,00

Cường độ chịu kéo giới hạn một trục (MPa) 1,25

Hệ số truyền lực cắt với vết nứt đóng 1,0

Hệ số truyền lực cắt với vết nứt mở 0,2

[Nguồn: Nhóm tác giả]

Hình 7: Đường cong quan hệ ứng suất-biến dạng
của bê tông. [Nguồn: Nhóm tác giả]

Kết quả phân tích dao động
Bốn dạng dao động uốn đầu tiên của tấm được sử
dụng để huấn luyện mô hình và dự đoán tải trọng tác

5
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Bảng 2: Thông số của cốt thép

Khối lượng riêng (kg/m3) 7850

Hệ số Poisson 0,3

Mô-đun đàn hồi (MPa) 210

Cường độ chảy dẻo của thép (MPa) 295

[Nguồn: Nhóm tác giả]

Hình 8: Đường cong quan hệ ứng suất-biến dạng
của cốt thép. [Nguồn: Nhóm tác giả]

dụng. Kết quả phân tích tần số dao động của tấm tại
một số cấp tải trọng khảo sát được tổng hợp tại Bảng 3.
Hình dạng của các dạng dao động tương ứng được thể
hiện ở Hình 9.

Bảng 3: Tần số dao động của bốn dạng dao động đầu
tiên ởmột số cấp tải khảo sát

Cấp tải
(kN/m2)

Tần số dao động (Hz)

Dạng 1 Dạng 2 Dạng 3 Dạng 4

0,05 19,266 34,785 61,178 62,163

0,2 19,266 34,785 61,178 62,163

5 8,348 19,489 35,815 33,130

6,5 8,047 18,355 33,562 31,570

8,75 7,887 17,323 31,510 30,542

9,8 7,819 17,074 31,060 30,198

[Nguồn: Nhóm tác giả]

Kết quả dự đoán tải trọng tác dụng sử dụng
thuật toán học sâu
Kết quả phân tích tĩnh học bằng ANSYS cho thấy ở
cấp tải trọng 3,05 kN/m2 thì tấm bắt đầu xuất hiện vết
nứt; ở cấp tải trọng 17,70 kN/m2 thì tấm bị phá hoại.
Tải trọng tác dụng và tần số dao động của bốn dạng
dao động đầu tiên của 67 cấp tải được đưa vào để huấn
luyệnmô hình. Cấp tải đầu tiên là 0,05 kN/m2, cấp tải
cuối cùng là 9,95 kN/m2, mỗi cấp tải cách nhau 0,15
kN/m2 và được thể hiện ở Bảng 4. Dữ liệu dự đoán là

tần số dao động của bốn dạng dao động của chín cấp
tải, bao gồm một cấp tải trước khi tấm xuất hiện vết
nứt và tám cấp tải sau khi tấm đã xuất hiện vết nứt.
Chi tiết tần số dao động và cấp tải tương ứng cho dữ
liệu dự đoán được thể hiện trong Bảng 5.

Bảng 4: Dữ liệu tần số dao động và cấp tải để huấn
luyệnmô hình

Cấp tải
(kN/m2)

Tần số dao động (Hz)

Dạng
1

Dạng 2 Dạng 3 Dạng 4

0,05 19,266 34,785 61,178 62,163

0,20 19,266 34,785 61,178 62,163

…

9,80 7,819 17,074 31,060 30,198

9,95 7,812 17,019 30,900 30,127

[Nguồn: Nhóm tác giả]

Bảng 5: Dữ liệu tần số dao động để dự đoán tải trọng
và cấp tải tương ứng

Cấp tải
(kN/m2)

Tần số dao động (Hz)

Dạng
1

Dạng 2 Dạng 3 Dạng 4

1,3 19,265 34,785 61,178 62,162

3,1 17,264 33,792 60,398 61,125

3,3 11,846 25,501 51,160 47,015

3,7 9,410 22,005 43,252 37,639

4,6 8,516 19,893 37,086 33,724

6,1 8,100 18,677 34,165 31,970

7,3 7,980 18,068 32,874 31,269

8,5 7,906 17,440 31,706 30,647

9,7 7,814 17,093 31,080 30,223

[Nguồn: Nhóm tác giả]

Kết quả xây dựngmô hình dự đoán tải trọng tác dụng
dựa trên thuật toán học sâu được trình bày trong
Bảng 6. Hình 10biểu diễn biểu đồ xấp xỉ mối quan
hệ giữa tải trọng tác dụng và tần số dao động tự nhiên
của tấm tương ứng với bốn dạng dạng động. Kết quả
cho thấy mô hình mạng nơ-ron nhân tạo sử dụng tần
số dao động của bốn dạng dao động uốn đầu tiên đều
có khả năng dự đoán chính xác tải trọng tác dụng lên
tấm trước khi tấm bị nứt với độ chính xác trên 85%.
Điều này có thể giải thích là khi tấm chưa bị nứt, đặc
trưng độ cứng của tấm không bị thay đổi nên tần số
dao động của tấm không bị thay đổi. Do đó, khi đưa

6
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Hình 9: Bốn dạng dao động uốn đầu tiên. [Nguồn: Nhóm tác giả]

tần số dao động của tấm chưa hư hỏng vào thì mô
hình không dự đoán chính xác cấp tải tác dụng. Tuy
nhiên, các cấp tải ứng với tấm chưa hư hỏng đều nhỏ
nên không gây nguy hiểm cho kết cấu. Trong khi đó,
kết quả dự đoán tải trọng có độ chính xác cao hơn 94%
đối với các cấp tải sau khi tấm đã bị nứt. Đặc biệt, với
các cấp tải càng cao thì sai số chẩn đoán càng thấp, có
những cấp tải sai số nhỏ hơn 1%.

KẾT LUẬN
Trong bài báo này, một phương pháp dự đoán tải
trọng tác dụng lên kết cấu sàn bê tông cốt thép sử dụng
mô hình học sâu kết hợp với tần số dao động đã được
xây dựng thành công. Từ các kết quả phân tích, các
kết luận được rút ra như sau:
(i) Đối với các cấp tải trước khi tấm bị nứt, kết quả dự
đoán tải trọng tác dụng có sai số dưới 15%. Đối với
các cấp tải sau khi tấm bị nứt, kết quả dự đoán có sai
số dưới 6%. Ở các cấp tải lớn, kết cấu gần đạt trạng
thái phá hoại; do đó, kết quả này có ý nghĩa rất lớn
đối với việc dự đoán tải trọng tác dụng lên kết cấu sàn
bê tông cốt thép, nhằm đưa ra các cảnh bảo về việc bị

quá tải trên kết cấu.
(ii) Với các cấp tải lân cận tải gây nứt, biến động tần
số dao động là rất lớn khi thay đổi cấp tải. Điều này
dẫn đến số lượng điểm huấn luyện quanh giá trị tần
số ứng với tải gây nứt là tương đối ít. Do đó, việc tăng
số lượng các cấp tải xung quanh tải gây nứt bằng cách
sử dụng độ gia tăng tải trọng nhỏ hơn giúp tăng số
lượng điểm huấn luyện tại khu vực quanh tải gây nứt.
Từ đó, hiệu quả dự đoán của mô hình mạng nơ-ron
nhân tạo được nâng cao.
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Bảng 6: Kết quả dự đoán tải trọng tác dụng bằngmạng nơ-ron nhân tạo

Tải
trọng

Dạng dao động thứ
nhất

Dạng dao động thứ
hai

Dạng dao động thứ
ba

Dạng dao động thứ
tư

Dự
đoán

Độ lệch Dự
đoán

Độ lệch Dự
đoán

Độ lệch Dự
đoán

Độ lệch

(kN/m2) (kN/m2) (%) (kN/m2) (%) (kN/m2) (%) (kN/m2) (%)

1,3 1,2 10,85 1,1 15,10 1,1 14,64 1,2 7,97

3,1 3,2 2,05 3,0 2,50 3,4 9,34 3,5 12,54

3,3 3,2 4,07 3,1 5,78 3,4 2,78 3,5 5,85

3,7 3,7 1,27 3,7 1,31 3,7 0,73 3,6 3,59

4,6 4,6 0,66 4,6 0,59 4,5 1,49 4,6 0,14

6,1 6,1 0,28 6,0 1,19 6,0 0,97 6,1 0,18

7,3 7,4 0,86 7,2 0,77 7,3 0,00 7,2 1,60

8,5 8,4 1,16 8,5 0,39 8,5 0,09 8,5 0,37

9,7 9,8 0,58 9,6 0,78 9,7 0,18 9,7 0,18

[Nguồn: Nhóm tác giả]

kết quả và viết bản thảo bài báo. Hồ Đức Duy đã đưa
ra ý tưởng nghiên cứu, chỉnh sửa và hoàn thiện bản
thảo bài báo.
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Hình 10: Biểu đồ thể hiệnmối quan hệ tải trọng - tần số dao động khi sử dụng thuật toán học sâu [Nguồn: Nhóm
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ABSTRACT
In recent decades, the application of artificial intelligence in engineering problems has become
urgent. For civil structures, the prediction of the applied loads acting during their operation has
practical significance. This helps to monitor the health and ensure the safety of the structure. This
requirement has promoted the development of non-destructive prediction methods using vibra-
tion characteristics combined with artificial intelligence algorithms. This paper proposes a method
to predict the applied load on reinforced concrete slab structures using a machine learning model
that combines a deep learning model with the natural frequency. The natural frequencies of the
first four vibration modes and the corresponding applied loads on the slab are used to train an
artificial neural network (ANN). In order to verify the method's effectiveness, a reinforced concrete
slab subjected to uniformly distributed loads is simulated by using the finite element method. The
simulation takes into account the nonlinear behavior of concrete and reinforcements. The slab is
loaded from zero to failure. For each load level, the natural frequencies of the first four vibration
modes are extracted to train the ANN model, which consists of three network layers. The analy-
sis results show that the first four vibration modes accurately predict the load applied to the slab,
particularly at load levels where the cracks occurred.
Key words: load prediction, deep learning, artificial neural network, reinforced concrete slab,
natural frequency
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