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ABSTRACT
The PPG signal presents considerable promise as a non-invasive technique across various applica-
tions. However, effectively utilizing this signal in real-world scenarios demands meticulous han-
dling to identify and rectify disturbances within the photo-plethysmography (PPG) signal. Among
the methodologies explored, integrating time-frequency spectra with a hybrid deep learning
model, such as convolutional – long short term memory neural network model (CNN-LSTM), has
emerged as a promising approach. Yet, prevalent methods often rely on Fourier-based algorithms
for extracting time-frequency spectra, which are prone to energy leakage issues. To surmount this
limitation, decomposition methods like Variational Mode Decomposition (VMD) coupled with the
Hilbert transform offer a compelling solution. In this study, we propose a novel algorithm lever-
aging VMD and Hilbert transform to extract time-frequency spectra as features for a convolutional
neural network model (CNN). Unlike studies employing Fourier-based time-frequency spectra and
the hybrid CNN-LSTM model, this approach adopts a simpler architecture, relying solely on a CNN
model. This simplicity owes to the efficacy of VMD and Hilbert transform in feature extraction,
streamlining the computational process without sacrificing accuracy. Remarkably, our method
yields high-performance outcomes, achieving accuracy, precision, and recall of 0.91, 0.95, 0.88, re-
spectively on the MIMICIII dataset. These results underscore the robustness and effectiveness of
our proposed methodology, offering promising avenues for enhanced utilization of the PPG signal
in diverse biomedical applications. By amalgamating advanced signal processing techniques with
deep learning models, our approach contributes to the advancement of non-invasive biomedical
signal processing, potentially healthcare monitoring and diagnosis.
Key words: photo-plethysmography, photo-plethysmography signal processing

INTRODUCTION1

Photoplethysmography (PPG) is a non-invasive tech-2

nique that is used to detect blood volume variations3

through an infrared light sensor placed on the sur-4

face of the skin1,2. Correct identification of the PPG5

waveform and its main features is essential in order to6

extract several biomarkers, such as heart rate, blood7

pressure, cardiac output, and blood oxygen satura-8

tion, when the red and infrared light are used si-9

multaneously1,3. However, the practical application10

of PPG encounters difficulties as this signal is eas-11

ily influenced by users’ movements. Consequently,12

the identification and removal of disturbed PPG seg-13

ments within the overall signal are crucial.14

The initial and most basic technique for assessing the15

PPG signal involves the Signal Quality Index (SQI).16

This approach partitions the PPG signal into multiple17

segments, subsequently computing the SQI for each18

segment. A segment is deemed to be of high qual-19

ity if its SQI value exceeds a predefined threshold4.20

The foundation of this method relies on the obser-21

vation that PPG signal waveforms undergo periodic22

changes, consequently, the SQI associated with these 23

signals is expected to exhibit a specific distribution 24

pattern5. Figure 1 indicates the disparity in kurtosis 25

and skewness distribution between quality and poor- 26

quality PPG signal. However, a drawback of the SQI 27

method lies in the multitude of proposed quality in- 28

dices. Despite Elgendi’s survey,6 favoring ”skewness” 29

as the optimal index, establishing a universal thresh- 30

old for these indices remains challenging. 31

The application of deep learning models can address 32

the limitations of the SQI method by employing a 33

deep model to learn the distinguishing features of 34

high-quality PPG signals. Li et al.7 utilized the Dy- 35

namic Time Warping (DWT) technique and a multi- 36

layer perceptron model to evaluate PPG signal. This 37

method was proposed to address physiological blood 38

flow variations, leading to changes in the morphology 39

of PPG signals. Esgalhado et al.8 conducted a sur- 40

vey on deep learningmodels to eliminate poor-quality 41

PPG signal segments. The study compared Long 42

Short-Term Memory (LSTM), Bidirectional LSTM, 43

and Convolutional Neural Network (CNN) models. 44
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Figure 1: Sample clean (a-b) and corrupted (c-d) ear-PPG segments applied with linear (a, c) and 32nd order poly-
nomial detrends (b, d) are shown along with their respective histograms and calculated kurtosis (K) and Shannon
entropy (SE) values. The higher-order polynomial detrending is critical to enhance the specificity in the presence
of physiological baseline drift (a) and the sensitivity in the presence of artifacts (c), 4 .

Besides, they also considered about the input data45

for the model. The research findings indicated that46

the CNN-LSTM algorithm, with Synchrosqueezed47

Fourier Transform (SSFT) input, demonstrated the48

highest performance with accuracy, 0.894. To explain49

the effectiveness of their approach, the authors ex-50

plained that applying a time-frequency transform to51

the signals before classification provided the model52

with an expanded feature set. This extended dataset53

also facilitates signal projection from the time to the54

time-frequency domain, where non-stationary com-55

ponents may be better represented. Similar stud-56

ies utilizing comparable deep learning models can be57

found in 9.58

It can be seen that deep learning model with a time-59

frequency input is a good choice for detecting and60

removing non-quality part in PPG signal. However,61

Fourier based method like SSFT representations has62

drawbacks regarding “energy leakage”10. This is a63

phenomenon where energy regions of the signal have 64

low concentration density, leading to some errors in 65

CNN model processing. This drawback can be over- 66

come by a method using VMD andHilbert transform 67

to create combined time-frequency spectra with CNN 68

networks to identify and eliminate PPG signal seg- 69

ments affected by user motion. 70

MATERIALS-METHODS 71

Generating time – frequency spectrum 72

Instead of employing SSFT as in prior research, this 73

study utilized VMD to decompose the raw PPG signal 74

into sub-signals known as Intrinsic Mode Functions 75

(IMFs). Subsequently, dominant IMFs were selected 76

to generate a time-frequency spectrum by using the 77

Hilbert transform. VMD, introduced by Dragomiret- 78

skiyi et al.11, decomposes a signal into signals, called 79

2



Science & Technology Development Journal – Engineering and Technology 2024, ():1-8

Intrinsic Mode Functions (IMFs) in form:80

IMF(t) = A(t).cos(ϕ(t)) (1)

where A(t) is the amplitude over time, ϕ (t) is the fre-81

quency over time.82

VMD determine the central frequency band of each83

IMF and proceed to analyze the original signal into84

IMFs with frequency domains around the central fre-85

quency. By pre-defining the number k of IMFs that86

the signal can have, computing the IMF channels is87

performed by a recursive loop:88

In the (n+1)th iteration, the kth IMF is computed as89

follows:90

Un+1
k ( f ) =

x( f )Σi<kUn+1
k ( f )−Σi>kUn

k ( f )+
∧n

2
( f )

1+2α
{

2π
(

f − f n
k

)}2

(2)

Un+1
k ( f ) is the Fourier transform of the kth IMF in91

the (n+1)th iteration.92

Along with that, the central frequency and the La-93

grange multiplier are also updated.94

kth central frequency, f n+1
k :95

f n+1
k =

∫ ∞
0 |Un+1

k ( f ) |2 f d f∫ ∞
0 |Un+1

k ( f ) |2d f

≈
Σ f |Un+1

k ( f ) |2

Σ|Un+1
k ( f ) |2

(3)

Lagrange multiplier:96

∧n+1 ( f ) = ∧n ( f )+ τ
(

X ( f )−ΣkUn+1
k ( f )

)
where τ is the update rate of the coefficient Larrange.97

When the algorithm satisfies the following condition,98

the loop stops:99  Σk
||un+1

k (t)−un
k (t) ||

2
2

||un
k (t) ||

2
2

< εr

Σk||un+1
k (t)−un

k (t) ||
2
2 < εa

(4)

In this work, the PPG signal was decomposed into100

IMF channels through the VMD, with the algorithm’s101

parameters as follows:102

Number of IMF channels103

The number of IMF channels used in this study does104

not fix. Instead, for each PPG signal, the number of105

IMF channels is automatically adjusted based on the106

independence of IMF channels from each other us-107

ing the covariance matrix 12. When the determinant108

of the matrix is above 0.8, the parameters are selected.109

Stopping criteria parameters110 {
εa = 5.10−6

εr = 5.10−3 (5)

The IMFs which were decomposed from the raw PPG 111

signal will be used to generate time-frequency spec- 112

trum by using Hilbert transform. This transform de- 113

fines an analytic signal as: 114

z(t) = x(t)+ i.y(t) (6)

y(t) =
1
π

P
∫ +∞

−∞

x(τ)
t − τ

dτ (7)

Where x(t) is the IMF, y(t) is the Hilbert transform 115

of x(t), P is the Cauchy principle. Then the time- 116

frequency spectrum is: 117

H ( f0, t0) = ∑N
i, fi(t0)

= f0ai (t0) (8)

For each coordinate (t0,f0) in the spectrum, the spec- 118

trum value is the sum of all amplitudes of all IMFs at 119

time t0 with the respective frequency equal to f0. 120

Where f,t are frequency and time point of interest, a(t) 121

is the instantaneous amplitude at time, t, f(t) is the in- 122

stantaneous frequency at time, t. The instantaneous 123

amplitude and frequency of each IMF are calculate as 124

follow: 125

The instantaneous amplitude 126

a(t) =
√

x2 (t)+ y2 (t) (9)

The instantaneous frequency 127

f (t) =
1

2π
d
dt

[
arc tan

y(t)
x(t)

]
(10)

Another advantage in implementing VMD and 128

Hilbert transform is to filter out frequency band noise 129

of signal without affect to the purity of original sig- 130

nal. This is conducted via chosen IMFs with central 131

frequency regions ranging from 0.5Hz to 3Hz. The 132

central frequency region is determined based on the 133

mean and standard deviation of the instantaneous fre- 134

quency of that IMF, specifically. 135

The average instantaneous frequency 136

_
f =

1
T

∫ T

0
f (t)dt (11)

Standard deviation of the instantaneous frequency 137

_
s =

√
1
T

∫ T

0

(
f (t)−

_
f
)2

dt (12)

Then the central frequency range will be 138(_
f − _

s,
_
f +

_
s
)
. 139
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Figure 2: The pineline of the proposed method

Proposedmethod140

As mentioned earlier, the proposed methodology in141

this study relied on VMD and the Hilbert transform142

in conjunction with a CNNmodel. The pipeline illus-143

trating the entire process is depicted in Figure 2.144

Given the typical requirement of approximately 10145

seconds of data length for most PPG signal applica-146

tions, the raw PPG signal was segmented into 10-147

second segments with 1-second padding at both the148

start and end. Each segment underwent decomposi-149

tion into IntrinsicMode Functions (IMFs) usingVari-150

ational Mode Decomposition (VMD). The mean and151

standard deviation of the instantaneous frequency of152

each IMF were computed to establish the central fre-153

quency range. An IMF exhibiting a central frequency154

range between 0.5Hz and 3Hz was selected as the155

dominant IMF. The dominant IMFs were utilized to156

construct a time-frequency spectrum via the Hilbert157

transform. Subsequently, the 1-second padding at the158

spectrum’s beginning and end was removed to miti-159

gate the ’end effect’ inherent in the Hilbert transform.160

The resulting spectrum was reshaped into a image.161

This image served as input for a CNNmodel designed162

to assess the quality of the PPG signal. The architec-163

ture of this model is detailed in Table 1. The entire164

method was implemented using the PyTorch frame-165

work and Python programming language.166

Dataset167

This study obtained PPG data from a cohort of sub-168

jects sourced from the open source MIMIC-III wave-169

form database13. Each PPG signal in the dataset was 170

segmented into 10-second segments with 1-second 171

padding and labeled as either “good” or “not good” 172

via the criteria from study of Elgendi et al.6. Figure 3 173

dispicts the classcify of PPG signal. 174

The training process utilized data from only 80% of 175

the PPG segments in the MIMIC-III dataset. A de- 176

tailed statistical description of the data is presented in 177

Table 2. 178

METRIC 179

The model is evaluated based on its precision, accu- 180

racy, and recall, as most studies in this field have em- 181

ployed. The calculation formulas for these criteria are 182

as follows: 183

Precision 184

Pre =
T P

T P+FP
(13)

Recall 185

Re =
T P

T P+FN
(14)

Accuracy 186

Acc =
T P+T N

FP+T P+T N +FN
(15)

TP:Thenumber of samples that are correctly classified 187

as positive instances (i.e., the model predicts positive 188

and the actual class is positive). 189

TN: The number of samples that are correctly classi- 190

fied as negative instances (i.e., themodel predicts neg- 191

ative and the actual class is negative). 192
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Table 1: Structure of themodel

Layer Type Kernel Strike Channels Shape

1 CNV 5×9 1 8 128×512×3

LeakyReLU - - - 128×512×8

MAX 5×9 1 - 128×512×8

2 CNV 5×9 1 8 128×512×8

LeakyReLU - - - 128×512×8

MAX 5×9 2 - 128×512×8

3 CNV 5×9 1 8 64×256×8

LeakyReLU - - - 64×256×16

MAX 5×9 1 - 64×256×16

4 CNV 5×9 1 16 64×256×16

LeakyReLU - - - 64×256×16

MAX 5×9 2 - 64×256×16

5 CNV 3×5 1 16 32×128×16

LeakyReLU - - - 32×128×16

MAX 3×5 2 - 32×128×16

6 CNV 1×3 1 16 16×64×16

LeakyReLU - - - 16×64×16

MAX 3×5 2 - 16×64×16

7 CNV 1×3 1 16 8×32×16

LeakyReLU - - - 8×32×16

MAX 3×5 2 - 8×32×16

8 Fully connected layer - - 256 1024

9 Fully connected layer - - - 256

10 Fully connected layer - - - 150

11 Output - - - 2

Table 2: Statistical description of the data.

MIMIC 140 subjects

Total segment 3500 segments

Quality Non - quality

Training set 912 1187

Validation set 316 383

Test set 354 346

5
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Figure 3: The classification criteria for PPG signals adhere to the methodology outlined by Elgendi et al. 6.

FP:The number of samples that are incorrectly classi-193

fied as positive instances (i.e., the model predicts pos-194

itive but the actual class is negative).195

FN:The number of samples that are incorrectly classi-196

fied as negative instances (i.e., themodel predicts neg-197

ative but the actual class is positive).198

RESULT199

The training process consists of 45 epochswith a batch200

size of 512, learning rate of 0.0001. Figure 4 and Fig-201

ure 5 illustrate the training and validation accuracy202

for each epoch. It is evident that the loss and accuracy203

values for both datasets are closely aligned, indicating204

the absence of overfitting.205

The identification results for the test set demonstrate206

high performance. As shown in Table 3, the confu-207

sion matrix indicates an accuracy of 0.91, a precision208

of 0.95, and a recall of 0.88.209

DISCUSSION210

Compared to other time-frequency spectrum and211

deep model-based approaches, the proposed method212

achieves similar high performance with a simpler213

deep model. This advantage contributes to its imple-214

mentation for applications on edge devices. Esgal-215

hado et al.8 utilized a hybrid CNN-LSTMmodel with216

Figure 4: Loss value in training process.

SSFT time-frequency spectrum input and achieved 217

performance with accuracy 0.89, precision 0.92, and 218

recall 0.91. In contrast, the proposed method only 219

employed CNN and demonstrated comparable per- 220

formance in terms of accuracy 0.91, precision 0.95, 221

and recall 0.88. This disparity can be attributed to 222

differences in time-frequency spectrum generation 223

methods. Fourier-based methods, such as SSFT used 224

in8, exhibit energy leakage phenomena. This leads 225

to less dense spectra, necessitating more complex 226

models to enhance sparsity at each layer for accu- 227

6
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Table 3: Confusionmatrix of the propsedmethod’s result on test set.

Confusion matrix True class

Positive Negative

Predicated class Positive TP = 339 FP = 15

Negative FN = 44 TN = 302

Figure 6: Time-frequency spectrums of a PPG signal (A) generated by SSFT (B) and VMD-Hilbert (C) respectrively

Figure 5: Accuracy value in training proces.

rate processing. Conversely, time-frequency spectra228

from VMD and Hilbert transform offer denser spec-229

tra, enabling simpler models to handle them more230

effectively. Figure 6 illustrates time-frequency spec-231

tra of the same PPG signal generated by SSFT and232

VMD-Hilbert methods, respectively. Upon initial233

inspection, the signal exhibits two disturbance seg-234

ments around sample 200 and sample 1200, both235

of which are clearly depicted in both spectra with236

chaotic frequency zones at the respective samples.237

Moreover, there is a significant difference between238

the two spectra, influencing their effectiveness as239

model inputs. The spectrum generated by the VMD-240

Hilbert method features three distinct frequency241

modes around 0.84Hz, 1.56Hz, and 2.27Hz. In con-242

trast, although also depicting two frequency modes243

around 0.84Hz and 1.56Hz, the spectrum from SSFT244

exhibits significant energy leakage with numerous 245

frequency zones, rendering the frequency mode at 246

2.27Hz nearly indistinct. The explanation for this 247

disparity lies in the VMD method, which decom- 248

poses the signal into individual modes, each repre- 249

senting a specific frequency zone while preserving 250

the signal’s non-linear and continuous instantaneous 251

frequency characteristics. Due to its ability to sep- 252

arate frequency modes distinctly, it becomes easier 253

to eliminate unrelated components, such as those in- 254

duced by environmental noise, based on the central 255

frequency range mentioned earlier. This process en- 256

sures that the final spectrum retains only the domi- 257

nant frequency modes, revealing the essential aspects 258

of the signal. In contrast, the SSFT analyzes the entire 259

signal directly from the raw data. While the imple- 260

mentation of a bandpass filter can mitigate this issue, 261

it risks eliminating crucial signal features, as noted 262

in14. Additionally, employing the Hilbert transform 263

for each IMF enhances independence between indi- 264

vidual IMFs. This independence contributes to the 265

density of the spectrum compared to SSFT, which an- 266

alyzes data along sliding windows without consider- 267

ing the independent nature of each frequency mode. 268

CONCLUSION 269

This paper presents a method for identifying and re- 270

moving disturbed PPG segments. The algorithm’s 271

key feature is based on the exceptional non-stationary 272

analysis capabilities of VMD and the Hilbert trans- 273

form. Despite the utilization of a deep model, it re- 274

mains simple enough to be applied in practice with 275

edge devices. 276

7



Science & Technology Development Journal – Engineering and Technology 2024, ():1-8

ACKNOWLEDGEMENTS277

This research is funded by Department of Science278

and Technology under grant number 17/2023/HĐ-279

QKHCN.We acknowledgeHoChiMinhCityUniver-280

sity of Technology (HCMUT), VNU-HCM for sup-281

porting this study.282

LIST OF ABBREVIATIONS283

PPG: Photoplethysmography284

CNN: Convolutional neural network285

CNV: Convolution layer286

LSTM: Long short term memory287

SSFT: Synchrosqueezed Fourier Transform288

VMD: Variational Mode Decomposition289

IMF: Intrinsic Mode Function290

MAX: Max pooling layer291

CONFLICTS OF INTERESTS292

The authors declare no competing interests associated293

with the publication of this article.294

AUTHORS’ CONTRIBUTION295

Thanh Trung Thai, Khanh Duy Phan: methodology,296

Thanh Tung Luu: supervision, analysis.297

REFERENCES298

1. Allen J. Photoplethysmography and its application in clinical299

physiological measurement. Physiol Meas. 2007;28(3) ;PMID:300

17322588. Available from: https://doi.org/10.1088/0967-3334/301

28/3/R01.302

2. Elgendi M. On the analysis of fingertip photoplethysmogram303

signals. Curr Cardiol Rev. 2012;8:14-25;PMID: 22845812. Avail-304

able from: https://doi.org/10.2174/157340312801215782.305

3. Ram MR, Madhav KV, Krishna EH, Komalla NR, Reddy KA. A306

novel approach for motion artifact reduction in PPG signals307

based on AS-LMS adaptive filter. IEEE Trans Instrum Meas.308

2012;61:1445-57;Available from: https://doi.org/10.1109/TIM.309

2011.2175832.310

4. Selvaraj N, et al. Statistical approach for the detection of mo-311

tion/noise artifacts in photoplethysmogram. In: 2011 Annual312

International Conference of the IEEE Engineering in Medicine313

and Biology Society; 2011; Boston, MA, USA. IEEE; 2011. p.314

4972-5;PMID: 22255454. Available from: https://doi.org/10.315

1109/IEMBS.2011.6091232.316

5. Hanyu S, Xiaohui C. Motion artifact detection and reduction317

in PPG signals based on statistics analysis. In: 2017 29th Chi-318

nese Control and Decision Conference (CCDC); 2017; Nan-319

jing, China. IEEE; 2017;Available from: https://doi.org/10.1109/320

CCDC.2017.7979043.321

6. Elgendi M. Optimal signal quality index for photoplethys-322

mogram signals. Bioengineering. 2016;3(4):21;PMID:323

28952584. Available from: https://doi.org/10.3390/324

bioengineering3040021.325

7. Li Q, CliffordGD.Dynamic timewarping andmachine learning326

for signal quality assessment of pulsatile signals. PhysiolMeas.327

2012;33(9):1491;PMID: 22902950. Available from: https://doi.328

org/10.1088/0967-3334/33/9/1491.329

8. Esgalhado F, Fernandes B, Vassilenko V, Batista A, Russo S. The330

application of deep learning algorithms for PPG signal pro-331

cessing and classification. Computers. 2021;10(12):158;Avail-332

able from: https://doi.org/10.3390/computers10120158.333

9. Zhang T, Fu C. Application of improved VMD-LSTM 334

model in sports artificial intelligence. Comput Intell Neu- 335

rosci. 2022;2022:1-9;PMID: 35875744. Available from: 336

https://doi.org/10.1155/2022/3410153. 337

10. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et 338

al. The empirical mode decomposition and the Hilbert spec- 339

trum for nonlinear and non-stationary time series analysis. 340

Proc R Soc Lond A Math Phys Eng Sci. 1998;454(1971):903- 341

95;Available from: https://doi.org/10.1098/rspa.1998.0193. 342

11. Dragomiretskiy K, Zosso D. Variational mode decomposition. 343

IEEE Trans Signal Process. 2013;62(3):531-44;Available from: 344

https://doi.org/10.1109/TSP.2013.2288675. 345

12. Luu TT, et al. Amplitude percentage index study for beam 346

vibration signal analysis based on EEMD. J Eng Sci Technol. 347

2022;17(6):3800-14;. 348

13. WangS,McDermottMB, ChauhanG,GhassemiM,HughesMC, 349

Naumann T. Mimic-extract: A data extraction, preprocessing, 350

and representation pipeline for MIMIC-III. In: Proceedings of 351

theACMConferenceonHealth, Inference, andLearning; 2020; 352

Chicago, IL, USA. ACM; 2020. p. 222-35;Available from: https: 353

//doi.org/10.1145/3368555.3384469. 354

14. Cheng P, Chen Z, Li Q, Gong Q, Zhu J, Liang Y. Atrial fib- 355

rillation identification with PPG signals using a combina- 356

tion of time-frequency analysis and deep learning. IEEE Ac- 357

cess. 2020;8:172692-706;Available from: https://doi.org/10. 358

1109/ACCESS.2020.3025374. 359

8

https://www.ncbi.nlm.nih.gov/pubmed/17322588
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.1088/0967-3334/28/3/R01
https://www.ncbi.nlm.nih.gov/pubmed/22845812
https://doi.org/10.2174/157340312801215782
https://doi.org/10.1109/TIM.2011.2175832
https://doi.org/10.1109/TIM.2011.2175832
https://doi.org/10.1109/TIM.2011.2175832
https://www.ncbi.nlm.nih.gov/pubmed/22255454
https://doi.org/10.1109/IEMBS.2011.6091232
https://doi.org/10.1109/IEMBS.2011.6091232
https://doi.org/10.1109/IEMBS.2011.6091232
https://doi.org/10.1109/CCDC.2017.7979043
https://doi.org/10.1109/CCDC.2017.7979043
https://doi.org/10.1109/CCDC.2017.7979043
https://www.ncbi.nlm.nih.gov/pubmed/28952584
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.3390/bioengineering3040021
https://www.ncbi.nlm.nih.gov/pubmed/22902950
https://doi.org/10.1088/0967-3334/33/9/1491
https://doi.org/10.1088/0967-3334/33/9/1491
https://doi.org/10.1088/0967-3334/33/9/1491
https://doi.org/10.3390/computers10120158
https://www.ncbi.nlm.nih.gov/pubmed/35875744
https://doi.org/10.1155/2022/3410153
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1109/ACCESS.2020.3025374
https://doi.org/10.1109/ACCESS.2020.3025374
https://doi.org/10.1109/ACCESS.2020.3025374


Tạp chí Phát triển Khoa học và Công nghệ – Engineering and Technology 2024, ():1-1

Open Access Full Text Article Bài nghiên cứu

Bộ môn máy xây dựng và nâng chuyển,
Khoa Cơ khí, Trường Đại học Bách Khoa
– Đại học Quốc Gia TP.HCM, Việt Nam

Liên hệ

Lưu Thanh Tùng, Bộ môn máy xây dựng và
nâng chuyển, Khoa Cơ khí, Trường Đại học
Bách Khoa – Đại học Quốc Gia TP.HCM, Việt
Nam

Email: luuthanhtung2002@gmail.com

Lịch sử
• Ngày nhận: 03-3-2024
• Ngày chấp nhận: 04-7-2024
• Ngày đăng:

DOI :

Bản quyền
© ĐHQG Tp.HCM. Đây là bài báo công bố
mở được phát hành theo các điều khoản của
the Creative Commons Attribution 4.0
International license.

Loại bỏ nhiễu tín hiệu PPG thông qua phân giải chế độ biến đổi và
biến đổi Hilbert

Thái Thành Trung, Lưu Thanh Tùng*, Phan Khánh Duy

Use your smartphone to scan this
QR code and download this article

TÓM TẮT
Tín hiệu PPG cho thấy nhiều triển vọng nhưmột kỹ thuật không xâm lấn trong các ứng dụng khác
nhau. Tuy nhiên, để sử dụng hiệu quả tín hiệu này trong các tình huống thực tế, cần phải xử lý cẩn
thận để nhận diện và khắc phục các nhiễu trong tín hiệu photo-plethysmography (PPG). Trong số
các phương pháp đã được khám phá, việc tích hợp phổ thời gian-tần số với mô hình học sâu kết
hợp, chẳng hạn như mô hình mạng nơ-ron tích chập – bộ nhớ dài ngắn hạn (CNN-LSTM), đã nổi
lên như một phương pháp đầy hứa hẹn. Tuy nhiên, các phương pháp phổ biến thường dựa vào
các thuật toán Fourier để trích xuất phổ thời gian-tần số, vốn dễ gặp vấn đề rò rỉ năng lượng. Để
khắc phục hạn chế này, các phương pháp phân giải như Phân Giải Chế Độ Biến Đổi (VMD) kết hợp
với biến đổi Hilbert cung cấp một giải pháp hấp dẫn. Trong nghiên cứu này, chúng tôi đề xuất
một thuật toán mới sử dụng VMD và biến đổi Hilbert để trích xuất phổ thời gian-tần số làm đặc
trưng cho mô hình mạng nơ-ron tích chập (CNN). Không giống như các nghiên cứu sử dụng phổ
thời gian-tần số dựa trên Fourier và mô hình kết hợp CNN-LSTM, cách tiếp cận này áp dụng một
kiến trúc đơn giản hơn, chỉ dựa vào mô hình CNN. Sự đơn giản này nhờ vào hiệu quả của VMD và
biến đổi Hilbert trong việc trích xuất đặc trưng, giúp quá trình tính toán trở nên tinh gọnmà không
giảm độ chính xác. Đáng chú ý, phương pháp của chúng tôi đạt được kết quả hiệu suất cao, với độ
chính xác, độ chính xác và độ nhớ tương ứng là 0.91, 0.95, 0.88 trên bộ dữ liệu MIMICIII. Những kết
quả này nhấnmạnh tính bền vững và hiệu quả của phương pháp đề xuất của chúng tôi, mở ra các
hướng đi đầy hứa hẹn cho việc sử dụng tín hiệu PPG trong các ứng dụng y sinh học đa dạng. Bằng
cách kết hợp các kỹ thuật xử lý tín hiệu tiên tiến với các mô hình học sâu, cách tiếp cận của chúng
tôi góp phần vào sự tiến bộ của xử lý tín hiệu y sinh không xâm lấn, có tiềm năng trong giám sát
và chẩn đoán sức khỏe.
Từ khoá: tín hiệu photo-plethysmography, xử lý tín hiệu photo-plethysmography
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