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ABSTRACT
In this study, bacterial cellulose (BC) was coated with copper species via a room-temperature
hydrazine-mediated reduction reaction of copper(II) acetate in a suspension phase of nata de coco,
which was treated by freeze-drying, yielding hydrophobic lightweight aerogels. Structural and tex-
tural characteristics of the prepared aerogels were discovered using several techniques including
X-ray diffraction (XRD), thermogravimetry analysis (TGA), water contact angle measurement and
isothermal nitrogen physisorption. In detail, XRD results indicated the formation of the metallic
copper phase in the aerogel while the high cellulose crystallinity was remained unchanged. No
oxidized copper phases were detected in the material. Via the TGA profiles, the Cu loading was
determined to be in the range from 3.9 to 13.4 wt.%, depending on the copper(II) acetate amount
used for the reduction reaction. These valueswere generally lower than the theoretical Cu contents
probably due to the unexpected Cu losses during the preparation procedure. In addition, increas-
ing the Cu content in the BC aerogel led to a significant decrease in the specific surface area with
the presence of Cu in the porous structure. On the other hand, as expected, the hydrophobicity of
the BC aerogel was significantly enhancedwith the Cu content. Indeed, the Cu-coated BC aerogels
with high copper contents (> 6.2 wt.%) were hydrophobic, showing a large water-contact angle of
up to 138◦ . Therefore, the resulting hydrophobic aerogels well interactedwithwater-immiscible or-
ganic solvents including diesel oil and cyclohexane with adsorption capacities varied from 20 to 30
g/g. The successful fabrication of the hydrophobic aerogels upon the simple surface modification
of abundant bacterial cellulose with Cu species can introduce novel and efficient biomass-based
material for the treatments of oil-based liquids in the aqueous environment.
Key words: hydrophobic aerogel, bacterial cellulose, coating, copper, mild reduction

INTRODUCTION1

In the era of industrialization, inevitable water pollu-2

tion caused by hydrophobic organic solvents and oil3

spills threatens both ecosystems and human health 1,2.4

These incidents inflict substantial burdens due to lost5

resources, cleanup efforts, and potential disruptions6

to industries reliant on clean water3. As a result,7

the consequences prompted the necessity for effective8

and innovative remediation techniques to minimize9

their environmental impact and ensure public health.10

At present, the common strategies employed to cope11

with including adsorption, chemical treatment, incin-12

eration and biotreatment1. Among them, adsorption13

is deemed a promising approach to capture the con-14

taminants since the process is simply, cost-effective15

and does not generate secondary pollution3. It is,16

therefore, essential to design an effective adsorbent.17

In particular, the ideal sorbents should exhibit high18

trapping efficiency, high uptake rate, commercial via-19

bility, environmental friendliness, and facile recycla- 20

bility4. 21

Aerogels are an outstanding class of porous mate- 22

rials, with an extremely low bulk density, a very 23

high porosity, and a low thermal conductivity5,6. In 24

particular, carbon nanotubes (CNTs), graphene, as 25

well as biomass-derived materials7–10 have been the 26

outstanding precursors for aerogels fabrication to- 27

wards their application in oil spill cleanup and wa- 28

ter treatment. However, the limitations for the ap- 29

plication of CNTs and graphene are high precur- 30

sor cost, complex fabrication procedures or the need 31

for specialized equipment5. In contrast, biomass- 32

based materials can offer distinct advantages, in- 33

cluding sustainability, biodegradability and inher- 34

ent safety11. Recently, aerogels derived from bac- 35

terial cellulose have attracted attention of the scien- 36

tists as a potential material for environmental treat- 37

ments owing to their low cost, sustainability, low den- 38

sity, high porosity and biodegradability 12,13. The oil 39
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and oleophilic liquid adsorption performance of sor-40

bents are not only determined by their density and41

porosity, but is also significantly influenced by sur-42

face properties14. Common strategies for cellulose43

fibers comprising of chemical vapor deposition, cold44

plasma treatment and atomic layer deposition are ap-45

plied with the low-surface-energy alkyl or fluorine46

functional groups to obtain the hydrophobicity 15–17.47

However, these methods involve the expensive and48

toxic organic modifiers. Therefore, the development49

of a facile and cost-effective approach for the fabri-50

cation of hydrophobic cellulose aerogels is of impor-51

tance. As ideal sorbents for water-immiscible sol-52

vents and oil, cellulose-based aerogels need tailor-53

ing to tune the aerogel structure toward improved54

hydrophobicity 4. Recently, we have demonstrated55

promising hydrophobic organic solvent adsorption by56

copper-modified bacterial cellulose aerogels, which57

was attributed to the copper particles covering polar58

hydroxyl groups via mild reduction reaction5. How-59

ever, the hydrophobicity of the obtained aerogels was60

not fully investigated.61

Herein, the present study focused on a further inves-62

tigation of the hydrophobic characteristics of copper-63

coated BC-based aerogels, thereby achieving a com-64

plete hydrophobicity and enhancing the selectivity to65

the oil phase for practical application.66

MATERIALS ANDMETHOD67

Materials68

Nata de coco pieces with an average BC content of 0.869

wt.% were purchased from the Bich Lien Duong sup-70

plier (Ben Tre, Vietnam). A Philips HR2531 hand-71

blender (650W)was employed to grind themixture of72

nata de coco pieces (125 g, containing approximately73

1 g of BC) and water (125 g) for 2 min, yielding a sus-74

pension phase of nata de coco.75

In a typical procedure for coating BC with Cu which76

was based on the previous studywithminormodifica-77

tions, the obtained suspension phase of nata de coco78

was added with Cu(CH3COO)2.H2O (1 mmol) in a79

500-mL Erlenmeyer flask under vigorous stirring for80

3 h. Subsequently, 50 equivalents of hydrazine hy-81

drate (N2H4.H2O) was added dropwise under vig-82

orous stirring, followed by the Cu2+ reduction re-83

action for 15 h. After reaction completion, the Cu-84

modified BC was collected by gravity filtration and85

washed repeatedly with water until a neutral pH value86

was obtained. The resulting mixture was remained87

on the filter paper for 30 min for further water re-88

lease and then transferred to propylene boxes, which89

were frozen at −20 ◦C for 24 hours. The bacte-90

rial cellulose aerogels were obtained via freeze-drying,91

yielding cylinder-shaped aerogels, which were de- 92

noted as “Cell–Cu=1:1” expressing 1 g of BC:1 mmol 93

of Cu(CH3COO)2. Further samples including Cell– 94

Cu=1:2, Cell–Cu=1:3, and Cell–Cu=1:4 were fabri- 95

cated under similar conditions using 1 g of BC and the 96

varied Cu(CH3COO)2 amount, namely, 2, 3, and 4 97

mmol, respectively. An aerogel sample named “Cell” 98

was prepared without the modification of Cu for the 99

comparison purpose5. 100

Characterization of the obtainedmaterials 101

Crystallinity of the materials was discovered by X- 102

ray diffraction measurements on a diffractometer de- 103

vice using Cu radiation (D8 Advance, Bruker, Ger- 104

many). Morphological photographs of the aerogel 105

samples were achieved on an electron scanning mi- 106

croscope (S-4000, Hitachi, Japan). Thermal behav- 107

ior of the aerogels was investigated on a thermal 108

gravimetric analyzer (SDT Q600, TA Instruments, 109

USA). Their textural properties were determined by 110

77 K-isothermal nitrogen adsorption/desorption us- 111

ing a high-performance sorption analyzer (ASAP 112

2020, Micromeritics, USA). 113

Adsorption study 114

Theadsorption capacity of the copper-coated aerogels 115

for cyclohexane and diesel oil was discovered. 0.02 116

g of the aerogel sample was dipped into a glass vial 117

containing 10 mL of the corresponding solvent. The 118

solvent-trapping sample was taken out from the liq- 119

uid phase but still remained in the vial. Until there 120

were no more solvent drops back to the liquid phase, 121

the sample was completely removed. The cyclohex- 122

ane solvent adsorption efficiency of the copper-coated 123

aerogels was calculated according to the formula: Q = 124

(m1 – m2)/maerogel (g/g), where m1 and m2 are the 125

total weight of the glass vial containing the tested sol- 126

vent before and after the adsorption, respectively. 127

RESULTS ANDDISCUSSION 128

Coating copper particles on the surface of bacterial 129

cellulose fibers and bundles was employed via the 130

Cu(II) to Cu(0) reduction stage by hydrazine in an 131

aqueous phase, which was considered as an effec- 132

tive reducing agent thanks to numerous advantages 133

of high efficiency, fast reaction speed, and room- 134

temperature operation5,18. Due to the addition of hy- 135

drazine, the solution color changed from blue of the 136

Cu2+ cation to red-brown of the Cu0 clusters (Fig- 137

ure 1), proving the successful reduction of Cu2+ to 138

Cu0 by hydrazine under ambient conditions. The 139
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presence of the BC fibers in the same reaction envi-140

ronment led to the development of the Cu crystal on141

the fiber surface, affording successful Cu coating.142

Pure cellulose aerogels exhibited non-selective affinity143

for both water and oil. This limitation can be solved144

by introducing copper species to the aerogel, which145

modified the surface properties of the aerogels. Cop-146

per particles effectively shielded the hydroxyl groups147

(-OH) on BC fibers, decreasing hydrophilicity of the148

BC aerogels. As described in our previous study, upon149

contact with the copper-coated aerogels, the water150

droplet was remained on the surface with a water-151

contact angle of 133◦, preventing water penetration152

into the porous structure. In contrast, cyclohexane153

was rapidly trapped into the cellulose matrix 5. The154

present work focuses on further investigating the in-155

fluence of the Cu content on the material hydropho-156

bicity.157

XRD analysis was employed to confirm the success-158

ful deposition of copper onto the bacterial cellulose159

(BC) surface and evaluate its impact on the crystalline160

structure (Figure 2). The XRD pattern exhibits two161

characteristic diffraction peaks at 2θ = 14.6 ◦, 16.7162

◦ and 22.7 ◦, corresponding to the (1
_
10), (110) and163

(020) lattice planes of crystalline cellulose, respec-164

tively19. The result indicated that the copper coating165

process had negligible impact on the inherent crys-166

tallinity of the BC. Notably, no further required toxic167

chemicals-involving treatments as compared to plant168

cellulose 20,21. In addition, the XRD pattern indicated169

the successful incorporation of copper particles on170

cellulose fibers, as confirmed by the presence of char-171

acteristic peaks of 2θ = 43.5◦, 50.5◦ and 74.2◦, corre-172

sponding to the lattice planes of (111), (200), (220) of173

pure metallic copper phase (JCPDS No. 003–1018),174

thus proving the effectiveness of the reduction reac-175

tion of Cu2+ to Cu0 at room temperature5,22. These176

results are consistent with previous research by Li and177

coworkers on the modification of plant-derived cellu-178

lose with copper nanoparticles18.179

Further analysis using TGA revealed the thermal sta-180

bility and discovered the copper content of the aero-181

gels (Figure 3). The obtained aerogels exhibited the182

thermal stability were up to 220 ◦C with a minor183

mass loss of approximately 6% due to the elimina-184

tion of adsorbed water from the aerogelmatrix, which185

was consistent with the previous study of Mohite and186

co-workers23. Above 220 ◦C, the rapid decomposi-187

tion occurred, generating carbon oxides, water and188

other gaseous compounds24. As reported in our pre-189

vious study, upon the completion of the combustion,190

a negligible residual mass of approximately 0.7% for191

Figure 2: XRD patterns of pristine and Cu-coated
bacterial cellulose aerogels.

the pristine BC aerogel was observed, which was at- 192

tributed to unwashed inorganic additives used in the 193

preparation of nata de coco5. For the Cu-containing 194

aerogel samples, assuming that the residue was cop- 195

per(II) oxide after the combustion in air, the Cu con- 196

tent was determined to be 3.9, 6.2, 10.7, and 13.4 for 197

Cell:Cu=1:1, Cell:Cu=1:2, Cell:Cu=1:3, Cell:Cu=1:4, 198

respectively (Table 1). 199

Figure 3: TGA profiles of the Cu-free and Cu-
modified BC aerogels 5 .

As can be seen in Table 1, the theoretical copper con- 200

tent was higher than the TGA-based result, suggest- 201

ing copper losses probably during the sample prepa- 202

ration. Under the applied preparation conditions, the 203

loss reason might be explained based on the two facts 204

that excess, non-adherent copper species on cellulose 205

fibers could be leached intowater andnano-sized cop- 206

per particles could pass through the filter paper. 207

Nitrogen sorption analysis revealed the textural char- 208

acteristics of the fabricated aerogels (Figure 4). The 209

isotherms exhibited similar adsorption tendencies at 210

P/Po values between 0 and 0.8, indicating negligible 211

presence of micro- and mesopores. A sharp rise in 212

adsorption capacity above P/Po of 0.8 confirmed that 213

macropore was dominant in the aerogel structures. 214

3
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Figure 1: The BC suspension phase in water (a); after the addition of copper(II) acetate (b); after the addition of
hydrazine for 1 min (c); after the addition of hydrazine for 14 h (d)

Table 1: Copper content in Cu-modified bacterial cellulose aerogels.

Sample Cu content (wt.%)

Theoretical calculation TGA calculation

Cu:Cell=1:1 6.02 3.90

Cell:Cu=1:2 11.40 6.16

Cell:Cu=1:3 16.10 10.20

Cell:Cu=1:4 20.40 13.39

4
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It should be noted that increasing the copper con-215

tent deposited on the BC fibers resulted in a signifi-216

cant reduction in the surface area compared with the217

pristine BC aerogel whose surface area was previously218

reported to be 45 m2/g5. In detail, for the samples219

Cell:Cu=1:1 and Cell:Cu=1:2, the surface area was re-220

mained stable at approximately 13 m2/g. However,221

further increasing the copper ratio to 10.2 wt.% led222

to a drastic drop in surface area to approximately 4223

m2/g (sample Cell:Cu=1:3), similar to the value ob-224

served at the sample Cell:Cu=1:4 (Table 2). This ob-225

served trend suggested that copper particles preferen-226

tially occupied the pores available in the pristine aero-227

gel, thus reducing its surface area and pore volume18.228

Figure 4: N2 sorption isotherms of the pristine and
Cu-modified BC aerogels 5.

Water contact angle analysis revealed the surface229

characteristics of copper-loaded aerogels (Figure 5).230

The Cell:Cu=1:1 aerogel completely interacted with231

water, indicating insufficient copper particles to en-232

capsulate the highly polar hydroxyl groups of bacte-233

rial cellulose. In contrast, the samples Cell:Cu=1:2,234

Cell:Cu=1:3, and Cell:Cu=1:4 exhibited increasing235

contact angles, particularly 115.6 ◦, 131.4 ◦, and236

137.6 ◦, respectively, implying the inconsiderable in-237

teraction between water and copper-coated cellulose238

fibers. Water droplets could be remained on the aero-239

gel surface. As a result, the aerogels Cell:Cu=1:3240

and Cell:Cu=1:4 could float on water. The observed241

behavior demonstrated the good hydrophobicity of242

Cell:Cu=1:3 and Cell:Cu=1:4 aerogels. This study243

suggested a critical copper loading threshold for ac-244

complishing hydrophobicity, highlighting the poten-245

tial for tuning the surface properties via controlling246

copper content incorporation.247

The oleophilic-liquid adsorption capacity of the BC248

aerogels was discovered via using cyclohexane sol-249

vent as a typical hydrophobic phase (Figure 6). The250

obtained aerogels exhibited good adsorption due to251

the low surface energy of cyclohexane, enabling facile252

penetration into the web-like skeleton. Notably, the 253

copper-free BC-aerogels demonstrated the highest 254

adsorption capacity, reaching 37.7 g/g. However, in- 255

troducing copper particles led to a decrease in ad- 256

sorption capacity. In particular, at a 6.02% copper 257

loading (Cell:Cu=1:1), the adsorption capacity de- 258

creased by 21%. A further increase in copper con- 259

tent (Cell:Cu=1:3) resulted in a 17.2% lower adsorp- 260

tion efficiency compared to Cell:Cu=1:1, but only 4% 261

lower thanCell:Cu=1:2. The lowest adsorption capac- 262

ity was observed for the Cell:Cu=1:4, which was a sig- 263

nificant reduction compared to the copper-free and 264

lower copper-loading samples. In fact, pristine cel- 265

lulose aerogels possess the ability to adsorb different 266

liquids but with an unclear selectivity in terms of po- 267

larity, which could inhibit the removal efficiency of 268

immiscible liquid from aqueous medium18,25. 269

Extended investigation into the adsorption capacity 270

of BC - based aerogels for diesel oil revealed a similar 271

trend observed for cyclohexane, namely a decrease in 272

adsorption efficiency with increasing copper content. 273

Thismight be owing to the reduction in pore size upon 274

copper incorporation, consequently constraining the 275

available volume within the porous structure. As ex- 276

pected, the Cell:Cu=1:1 sample exhibited the high- 277

est adsorption capacity, followed by relatively similar 278

values for Cell:Cu=1:2 and Cell:Cu=1:3, with an ob- 279

vious drop observed for Cell:Cu=1:4. This suggested 280

that factors beyond pore size, namely hydrophobicity 281

and hydrophilicity balance also determined adsorp- 282

tion behavior. It should be noted that the Cell:Cu=1:1 283

sample remained hydrophilic, promoting oil adsorp- 284

tion, while the Cell:Cu=1:4 sample turned hydropho- 285

bic, potentially promoting oil interaction. However, 286

its significantly lower surface area inhibited its overall 287

adsorption capacity. These mutual influences might 288

be responsible for the decrease in adsorption tenden- 289

cies observed, aligning with the proposed explanation 290

regarding pore size limitations. 291

Nanocellulose aerogel modified with hexade- 292

cyltrimethoxysilane exhibited an excellent ad- 293

sorption performance for cyclohexane, reaching 294

approximately 100 g/g while multifunctional poly- 295

imide aerogels revealed the similar cyclohexane 296

adsorption capacity of 33 g/g 26,27 . In contrast, the 297

sodium alginate/graphene oxide/silicon oxide aerogel 298

modified with methyltrimethoxysilane possessed 299

lower uptakes for the removal of organic solvent 300

and oils, namely 22 and 23 g/g for cyclohexane 301

and diesel oil, respectively28. It should be noted 302

that manufacturing these materials required costly 303

precursors and complicated processes which could 304

inhibit the application cope in capturing oil and 305

5
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Figure 5: Photographs of water contact angle and water interaction for the Cu-containing BC aerogel samples
Cell:Cu=1:1 (a); Cell:Cu=1:2 (b); Cell:Cu=1:3 (c); Cell:Cu=1:4 (d).
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Table 2: BET specific surface area of pure and Cu-modified BC aerogels 5.

Sample Specific surface area (m2/g)

Cell:Cu=1:1 13.4

Cell:Cu=1:2 13.9

Cell:Cu=1:3 4.05

Cell:Cu=1:4 4.59

Cell 45.0

Figure 6: Effect of Cu content and BC ratio on the cyclohexane and diesel oil adsorption capacity.

organic solvents. Therefore, the present study could306

offer a cost- and step-efficient procedure to yield hy-307

drophobic aerogels for the environmental treatments.308

309

CONCLUSIONS310

In conclusion, this study successfully accomplished311

surface-modified BC aerogels via a feasible liquid-312

phase reaction and subsequent freeze-drying. The hy-313

drophobic property of the aerogel can be obtained due314

to the Cu coating. Notably, increasing the Cu content315

can significantly improve the hydrophobicity of the316

aerogel while its surface area was declined. On the317

other hand, the adsorption capacity for cyclohexane318

and diesel oil in the range of 20-30 g/g demonstrated319

the high potential of this composite aerogel toward320

cleaning-up oil spills in the aqueous environment. Fo-321

cusing on this objective, the selective adsorption of322

the oil phase in the presence of water or in an emul- 323

sion phase would be intensively investigated. 324
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TÓM TẮT
Trong nghiên cứu này, cellulose vi khuẩn (bacterial cellulose, BC) đã được bao phủ với đồng thông
qua phản ứng khử ở nhiệt độ phòng giữa đồng(II) acetate và hydrazine trong hệ phân tán của
thạch dừa trong nước, sau đó được sấy đông khô để tạo thành các aerogel siêu nhẹ kỵ nước. Các
đặc trưng cấu trúc của aerogel đã được xác định bằng các kỹ thuật khác nhau bao gồm phương
pháp nhiễu xạ tia X (XRD), phân tích nhiệt trọng lượng (TGA), đo góc thấm ướt và hấp phụ nitrogen
đẳng nhiệt. Kết quả XRD đã chứng minh sự hình thành của pha đồng kim loại trong aerogel trong
khi độ tinh thể cao của cellulose vẫn được duy trì. Hơn nữa, các pha đồng khác không xuất hiện
trong vật liệu. Bằng phân tích TGA, hàm lượng đồng có mặt trong vật liệu đã được xác định trong
khoảng 3.9 đến 13.4% tùy thuộc vào hàm lượng đồng(II) acetate được sử dụng trong phản ứng
khử. Các giá trị này nhìn chung thấp hơn so với hàm lượng đồng theo lý thuyết do sự thất thoát
trong quá trình tổng hợp vật liệu. Việc tăng hàm lượng đồng trong aerogel đã dẫn đến diện tích
bề mặt của vật liệu giảm đáng kể với sự có mặt của đồng trong cấu trúc mao quản của vật liệu.
Tuy nhiên, như mong đợi, tính kỵ nước của vật liệu đã được cải thiện đáng kể khi tăng hàm lượng
đồng. Các mẫu aerogel chứa hàm lượng đồng cao (> 6.2 wt.%) kỵ nước với góc thấm ướt lên đến
138◦ . Do đó, các aerogel kỵ nước tương tác tốt với các dung môi hữu cơ không tan trong nước
như diesel oil và cyclohexane với hiệu quả hấp phụ từ 20 đến 30 g/g. Việc tổng hợp thành công
các aerogel kỵ nước dựa trên sự biến tính bề mặt BC với đồng có thể cung cấp những vật liệu hấp
phụ mới và hiệu quả trên cơ sở sinh khối hướng đến việc xử lý các chất lỏng dạng dầu trong môi
trường nước.
Từ khoá: aerogel kỵ nước, cellulose vi khuẩn, bao phủ, đồng, phản ứng khử êm dịu
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