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ABSTRACT
Well control is an important aspect of drilling operations because improper well control can result
in kicks and blowouts with grave consequences. A successful well control requires a good under-
standing of the relationships between drilling mud pressure and formation pressure, as well as the
variation of bottom hole pressure during drilling operations. As the hydrostatic pressure of the
drilling mud column accounts for most of the pressure, a more accurate control of the changes
of mud density will contribute to a more accurate bottom hole pressure modeling. Regarding the
control of the mud density, a practical problem has existed so far in petroleum drilling: the mud
density is determined at the surface condition, and its values vary along the depth of the well be-
cause of the changes of temperature and pressure, which consequently leads to an inaccuracy in
mud density control in reality.
In order to reduce the inaccuracy in mud density control, this research aims to provide a reliable
method to correctly predict the drilling mud's density under specific conditions. Different artificial
neural networks (ANN) were proposed to predict drilling mud density based on the value of mud
density at surface conditions, circulation rate, bottomhole pressure, and temperature. This study
then used statistical methods to compare the predicted results with results obtained from exist-
ing empirical correlations and from other researchers' works to find out the most optimal artificial
neural network which should consist of only one hidden layer. The main contributions of this re-
search in comparison with existing papers are that: 1) Existing methods did not take into account
the influence of circulation rate, therefore the real working conditions of the drilling mud were not
represented entirely. Our research included the circulating rate in the ANN modeling and in the
study of relative importance. The results indicated that the value of mud density at surface condi-
tions had the greatest effect on the prediction results, and the influence of the circulating pump
flow rate is small but should not be ignored; 2) Our research used different methods (ANN, Gener-
alized Additive, Nonlinear Function) to predict the mud density in variation with temperature and
pressure, which has never been approached in existing literature; 3) The sufficiency in the number
of data was studied in this research, which has never been treated in previous studies. The Boot-
strap method was used in this regard; 4) We remarked that the overfitting has not been treated
properly in the existing literature review in this field, hence we included a thorough analysis of the
overfitting in this paper. Finally, the results of this paper can be useful in real life because it can help
drillers to accurately predict themud density under varied conditions of pressure and temperature,
and therefore to increase the safety of the drilling operations.
Key words: mud weight, machine learning, artificial neural networks, empirical correlations

INTRODUCTION
Ensuring safety is always the top priority in the oil
and gas industry because accidents related to the
petroleum sector often lead to loss of time, infrastruc-
ture, finance, and manpower. One of the accidents
causing severe consequences is the loss of well con-
trol during the drilling process, specifically when the
pressure in the wellbore is lower than the formation
pressure. This scenario can happen if the mud density
is not controlled adequately during the drilling opera-
tion due to the variation of pressure and temperature

inside the wellbore, and consequently the mud den-
sity may be too low to maintain bottomhole pressure
equal to formation pressure Cormack, 20171. There-
fore, being able to accurately calculate the mud den-
sity will help to assure a successful drilling operation.
In order to achieve this objective, studying the influ-
ence of different factors affecting the density of the
drilling fluid is extremely necessary.
In literature, there have been various studies relat-
ing to the prediction of drilling mud density at dif-
ferent conditions. It is well known that when bottom-
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hole pressure increases, drilling mud density will in-
crease since the drilling fluid volume is compressed,
and conversely, when the bottom hole temperature
increases, the drilling fluid volume expands leading
to a decrease in its density, which is mentioned in
Babu, 19962; Hussein and Amin, 20103; An et al.,
20154. McMordie et al., 19825 conducted an exper-
imental research about the changes of drilling mud
density with temperature (70-400 oF) and pressure (0-
14000 psi). Similarly, Demirdal & Cunha, 2009 6 con-
ducted experiments to study the variation of drilling
mud density with the same range of pressure (0-14000
psi) but with a different range of temperature (25-
175 oC). Zamora et al., 20137 also conducted experi-
ments to study the volumetric behavior and the vari-
ation of density of base oils, brines, and drilling flu-
ids with the range of temperature (36oF–600oF) and
pressure (0-30000 psi). Some studies provided em-
pirical correlations between mud density and pres-
sure and temperature, such as Kemp, 1989 8; Peters
et al., 19909; Isambourg et al., 1996 10; Zamora et
al., 200011; Hemphill and Isambourg, 2005 12; and
Peng et al., 201613. egarding the application of ma-
chine learning in this field, some authors used Artifi-
cial Neural Network (Osman et al., 2003 14; Adesina
201515, Okorie E. Agwu et al., 202016), while some
others used different methods such as Fuzzy logic
(Ahmadi et al., 201817), Support Vector Machine
(Xu et al., 201418; Ahmadi, 2016 19; Kamari et al.,
201720), Radial Basis Function Artificial Neural Net-
work (Rahmati & Tatar, 201921), and Particle Swarm
Optimization Artificial Neural Network (Ahmadi et
al., 2018 17; Zhou et al., 2016 22). It is also worth men-
tioning the hydraulic model proposed by Charlez et
al., 199823 to calculate downhole pressure and then
to predict fluid downhole density. In brief, the com-
mon point of these studies is to predict drilling mud
density at different bottomhole pressures and temper-
atures.
However, besides temperature and pressure, some
other factors also affect the density of drilling fluid,
such as the inclination angle of the well which was
highlighted in the study of Tian et al., 201324; or
the type of drilling fluid which was mentioned in the
studies of Demirdal et al., 2007 25 and Demirdal &
Cunha, 20096; and finally the circulation rate which
was mentioned in the studies of Kårstad & Aadnøy,
199826 and Harris & Osisanya, 2005 27. The study
of Hemphill, 199628 investigated the effect of incli-
nation angle and of cuttings on drilling fluid proper-
ties. Boatman, 1967 29 studied the influence of shale
on drilling fluid density.

In reality, it is challenging to observe the changes
in drilling fluid density because of costly specialized
measuring equipment which must comply with well
design requirements. Ombe et al., 2020 30 developed
a specific measurement to achieve this task. Hosein-
pour et al., 202231 combined well logging and geome-
chanical parameters to determine the mud window,
but the authors could not predict the variation of the
mud density in function of pressure, temperature, and
some other factors.
In brief, the above literature review showed that de-
veloping a new method to accurately predict drilling
muddensity in thewell under influence of various fac-
tors is necessary, which is the objective of our study.
In this study, we resorted to not only machine learn-
ing methods but also empirical correlations as well as
mathematical, and statistical methods.
Regarding the empirical correlations, Furbish, 1997 32

provided the following equation of state for liquid
density:

ρ = ρ0 [1−α (T −T0)+β (P−P0)] (1)

ρ (ppg) is predicted drilling mud density, ρ0 is value
of mud density at surface conditions, T and P are fi-
nal temperature (oF) and pressure (psi), T0 and P0

are standard temperature (oF) and pressure (psi), α
(oF−1) is isobaric coefficient and β (oF−1) is isother-
mal compressibility. These coefficients were taken
from the work of Zamora et al. (2000) wherein they
used 0.0002546 và 2.823 × 10−6 for α and β respec-
tively for oil-based mud.
Another empirical correlation given by Hoberock
et al., 198233 predicted oil-based mud density and
water-based mud through the law of conservation of
mass as detailed in the following:

ρ (P2,T2) =
ρ1

1+ f0

(
ρ01

ρ02
−1

)
+ fw

(
ρw1

ρw2
−1

)
(2)

ρ (P2,T2) is predicted drillingmuddensity, ρ1 (ppg) is
value of mud density at surface conditions, ρ01 (ppg)
is initial oil density, ρ02 (ppg) is oil density in pre-
dicted drilling mud, ρw1 (ppg) is water density in ini-
tial drilling mud, ρw2 (ppg) is water density in pre-
dicted drillingmud, f0 (%) is the percentage of oil vol-
ume in the drilling fluid, fw (%) is the percentage of
water volume in the drilling fluid.
Kutasov, 198834 presented an empirical correlation to
calculate drilling mud density:

ρm = ρmoe[α(P−P0)−β (T−T0)−γ(T−T0)] (3)

ρm (ppg) is the predicted drilling mud density, ρmo

(ppg) is the drilling mud density at standard condi-
tions. P0(psi) and T0(oF) are standard pressure and
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temperature. P(psi) and T(oF) are the pressure and
temperature at the predicted position. Kutasov eval-
uated α , β , γ , and ρmo with 5 drilling mud examples
from McMordie et al., 19825. Besides, Kutasov’s cor-
relation can be applied to oil-based mud and water-
based mud. In our paper, the values of , and , which
were taken from the work of Micah, 2011 35, were
3.0997 × 10−6, 2.2139 × 10−4, and 5.0123 × 10−7,
respectively.
Sorelle et al., 1982 36 focused on the changes in the
volume of the components in drilling fluid caused by
temperature and pressure, as being shown in the fol-
lowing formula:

ρ f =
ρi

1+
△Vo

V
+

△Vw

V
(4)

ρ f (ppg) is the predicted drilling mud density, ρi

(ppg) is the value ofmuddensity at surface conditions,
△Vo (gal) is the change in oil volume,△Vw (gal) is the
change in water volume, V(gal) is the total volume.
The literature review allowed us to see some possi-
ble contributions that we can bring to the research in
this domain. Firstly, the study developed an artificial
neural networkmodeling to predict drilling fluid den-
sity, combined with various mathematical, statistical
(generalized additive model) and experimental mod-
els on the same dataset to provide a comprehensive
and multidimensional understanding of the changes
in drilling fluid density inside the wellbore. The simu-
lation results were compared with actual data to verify
the accuracy of the model.
Secondly, the number of features that our research
used for the artificial neural network was greater than
in previous studies. As mentioned above, previous
papers considered mostly temperature and pressure
as input features, while this study presented an arti-
ficial neural network modeling with inputs consist-
ing of not only bottomhole temperature and pressure
but initial drilling fluid density and circulation rate
as well. Consequently, this paper conducted a study
about the effect of various influencing factors men-
tioned above, besides pressure and temperature, on
the drilling mud density.
Thirdy, this paper took into account the possible influ-
ence of the low number of input data used for ANN
modeling. It is difficult to answer the question if a
data set is enough for neural networks modeling be-
cause the conclusion depends on each particular case.
Hence, in this study, we tried to answer this question
by using the Bootstrap method to resample the data.
Finally, we remarked that the overfitting analysis was
neglected inmany previous researches as shown in the

above literature review, we therefore included in this
paper a thorough solution for the overfitting problem.
The findings of this study have the potential to be ap-
plied in real life because they help to improve the ac-
curacy of the mud density’s determination, which in
turn will improve the safety of the operations.

METHODOLOGY
Mathematical models
Regarding the mathematical models, we initially in-
tended to use a linear function, which is easy to im-
plement, to calculate the drilling mud density based
on bottomhole pressure, bottomhole temperature and
value of mud density at surface conditions. However,
there are some assumptions that wemust comply with
which can be found in Dahraj & Bhutto, 201437 and
Molnar, 202138. The input data was collected from
the works of McMordie et al., 19825 and Demirdal &
Cunha, 2009 6, which were summarized in Figure 1.
Figure 1 illustrates the variation of drilling mud den-
sity in function of temperature and pressure. The blue
graph represents the temperature, the orange graph
shows the pressure and the green one describes the
value of mud density at surface conditions.
Figure 2 to Figure 4 showed that all the histograms of
variables are not bell-shaped. Moreover, we also an-
alyzed the distribution of residuals in Figure 5. We
observed that the distribution of residuals was not in
shape with the red curve, which presented the normal
distribution. Instead, the distribution was likely the
fat-tailed distribution, which was not normal distri-
bution, so the linear function was not suitable in this
case. Consequently, we had to think about another
method, which is the nonlinear function, to deal with
the problem. This nonlinear functionwill also be used
later to verify the results given by the artificial neural
network modeling.
For the nonlinear function, the quadratic and cu-
bic functions were tested, and we obtained that the
correlation coefficient of the cubic function (0.9997)
was higher than the one of the quadratic functions
(0.9994). In reality, there may be other nonlinear
functions with higher correlation coefficients, how-
ever, the more complex the function, the higher the
risk of overfitting. The cubic function was therefore
chosen for this study.
The nonlinear model was constructed by solving the
linear least squares problems while using QR factor-
ization which can be referred to the work of Golub &
Loan, 1996 39. The cubic function has the following
form:

ρ =
(
Aρ2

i +Bρ2
i +Cρ3

i
)
+(

D×P3 +E ×P2 +F ×P
)

+
(
G×T 3 +H ×T 2 + I ×T

)
+ J

(5)
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Figure 1: The data collected from the works of McMordie et al. (1982) and Demirdal & Cunha (2009) were used in
this research for the nonlinear function

ρI (ppg) the value of mud density at surface condi-
tions, P and T are pressure (psi) and temperature (oF)
at the location of interest. The values from A to J were
determined and listed in the following:

A =−2.761 × 10−3

B = 9.753 × 10−2

C =−5.393 × 10−2

D = 1.412 × 10−13

E =−4.372 × 10−9

F = 8.317 × 10−5

G =−2.058 × 10−8

H = 1.532 × 10−5

I =−6.673 × 10−3

J = 3.785

Thenonlinear function presented a high coefficient of
determination R2 = 0.9994. Moreover, the value of
mean square error was also accepted, with the MSE =
0.00971 for the nonlinear function (the caluclation of

MSE is described in detail in the Appendix section).
With input taken from Table 1, the calculated values
of drilling mud density (ppg) from empirical corre-
lations and nonlinear function are presented in Table
2.
Table 2 showed that results obtained from the empir-
ical correlations are close to results obtained from the
nonlinear function. Hence, the nonlinear function
can be used as an alternative method to predict the
drilling fluid density in function of pressure and tem-
perature. However, these methods do not take into
account the influence of other factors such as the cir-
culation rate. Hence, in the next section, an artificial
neural network modeling will be presented.

Machine learningmodel

Overview of artificial neural network
Artificial Neural Network (ANN) is an artificial intel-
ligence information processing system inspired by the
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Figure 2: Histogram of bottomhole pressure values (psi)

Figure 3: Histogram of bottomhole temperature values (oF)

operation of biological neural networks in the human
brain. One of the notable features of artificial neural
networks is their limited learning ability.
An artificial neural network usually consists of 3 lay-
ers and each layer will have a different number of neu-
rons:

• Input layer: the main function is providing nec-
essary information. A number of neurons in in-
put layer are corresponding to a number of fac-

tors and these factors are assumed in the form of
vectors

• Hidden layers contain hidden neurons helping
the inputs connect and outputs. A neural net-
work may have one or multiple hidden layers,
and in some cases, there is no hidden layer.

• Output layer includes the neurons which hold
output information. A neural network can have
many output factors.
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Figure 4: Histogram of mud density at surface conditions (ppg)

Figure 5: Histogram of residuals
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Table 1: The input data which was used in this study for empirical correlations and nonlinear function

Bottomhole
pressure (psi)

Bottomhole
temper-
ature
(oF)

Circulation
rate
(gal/min)

Oil volume
fraction

Water vol-
ume fraction

Oil density
(ppg)

Water density
(ppg)

8562.279 128.55 0 0.67711 0.17524 6.6619 8.3641

8671.2 128.63 0 0.67715 0.17523 6.6603 8.3632

8942.688 127.15 0 0.67684 0.17532 6.6735 8.3717

8945.111 90.74 126.8 0.67572 0.17559 6.7226 8.4065

8945.056 90.28 126.8 0.67574 0.17558 6.7217 8.4059

8946.967 90.07 126.8 0.67574 0.17558 6.7217 8.4059

8944.121 90.02 126.8 0.67574 0.17558 6.7216 8.4059

8945.887 89.91 126.9 0.67574 0.17558 6.7217 8.4059

Table 2: Drillingmud density (ppg) obtained from empirical correlations and the nonlinear functions using
input data in Table 1

Furbish Hoberock Kutasov Sorelle Nonlinear function

10.8347 11.0440 10.8599 12.63049 10.8949

10.8378 11.0416 10.8633 12.63005 10.8989

10.8501 11.0613 10.8771 12.63331 10.9150

10.9500 11.1354 10.9852 12.64592 11.0635

10.9513 11.1341 10.9865 12.64577 11.0655

10.9519 11.1341 10.9871 12.64577 11.0665

10.9520 11.1340 10.9872 12.64577 11.0666

10.9523 11.1341 10.9876 12.64577 11.0671

Determining the number of hidden layers and the
number of neurons is a relatively complex task, there
is no rule that finds out the optimal number of hid-
den layers and hidden neurons. Themethod of select-
ing the number of neurons and layers is a trial-and-
error approach. The connections between neurons in
different layers contain their own individual weights.
The number of weights depends on network configu-
ration.
The general relationship between the input data and
output data is described below:

yk = fo
[
∑ j wk j × fh

(
∑ j w jixi +b j

)
+bk

]
(6)

xi is an input vector, w ji denotes the connection
weight from the ith neuron in the input layer to the jth
neuron in the hidden layer, b j represents the thresh-
old value or bias of jth hidden neuron, wk j stands
for the connection weight from the jth neuron in the
hidden layer to the kth neuron in the output layer, bk

refers to the bias of the kth output neuron, fh and fo

are the activation functions for the hidden and output
neuron, respectively.

The Transfer Function is responsible for transform-
ing the input variable into a different range of values.
Some commonly used transfer functions include the
logistic sigmoid function, the tangent sigmoid func-
tion, and the linear function. Each type of function
used has a different purpose for each layer and dif-
ferent types of problems. Nonlinear functions are of-
ten used for pattern recognition and discrimination
problems and are typically used in the hidden layer.
The linear function is used in matching and predic-
tion problems and is usually used in the output layer.
This study only covers basic knowledge of machine
learning, and readers can refer to additional sources
for more information, such as Ghaffari et al., 2006 40,
F. Parrella, 200741, and Mohaghegh, 2000 42.
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Figure 6: Input data used in this study to build the artificial neural network was provided by Schlumberger in
Drillbench software’s tutorial

Input data for ANNmodeling
Input data, which was used to build and calibrate
ANN in this study, covered 162 positions of a well at
different conditions. The value of drilling mud den-
sity at standard conditions is 10.7656 ppg. The data
can be viewed in Figure 6.

Artificial neural networks optimization be-
fore analysis of overfitting
According to Kårstad & Aadnøy, 1998 26 and Harris
& Osisanya, 2005 27, the circulation rate also had an
effect on drilling mud density. With the desire to con-
tribute a small part to research on predicting drilling
mud density, our paper would like to introduce an
artificial neural network for predicting drilling fluid
density in the function of 4 input factors: surface
drilling fluid density, bottom hole pressure, bottom
hole temperature, and circulation rate. In the first
hidden layer, the transfer function used is the logis-
tic sigmoid function. In the second hidden layer, the
transfer function used is the tangent sigmoid func-
tion, and in the output layer, the transfer function
used is the linear function. This paper used the trial-
and-error method to build the networks. Each net-
work structure was run 10 times to avoid random dis-
tribution andwas selected based on the smallestmean
square error in the 10 training runs. In Table 3, with
the lowestmean square errorMSE , the optimized net-
work consisted of 4 neurons in the input layer, 6 neu-

rons in the first hidden layer, 10 neurons in the second
hidden layer, and 1 neuron in the output layer (Fig-
ure 7).
However, the solution is not as simple as it seems.
We remarked here that the MSE values were anomaly
small, which manifested the overfitting problem.
Hence, the model can not be used in real life. There-
fore, in the following section, we will solve the over-
fitting problem.

Solving the overfitting problemand optimiz-
ing the artificial neural network.

a. Data pre-processing
Theauthors knew that the data sets are very important
in ANN, that’s why we tried to collect as much data as
possible. In this research, we had 327 observations
for the non-linear analysis and 162 data for the neu-
ral network modeling. Understanding the number of
data might be low, hence we referred Horowitzto’s pa-
per in 2008 43 and conducted the Bootstrap method
to resample the data set and obtained a new one with
the same statistical characteristics for 400 data points.
After that, we divided the data into training set, vali-
dation set and test set with proportions of 70%, 15%,
15%, respectively, and used the sameANNmodels for
both original and Bootstrap datasets.
For the targets in neural network training, we used the
difference between the density of initial drilling mud
and density at bottomhole condition. The input and
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Figure 7: The architecture of the optimized artificial neural network resulted from this study before analysis of
overfitting

target data were normalized as shown in the following
formulas:

x j =
xi − xmin

i
xmax

i − xmin
i

(7)

y j = log(1+ yi) (8)

x j is a dimensionless value of input data, xi is a true
value of input data, y j is a dimensionless value of tar-
get data and yi is a true value of target data.

b. Artificial neural networks modeling using Bootstrap
data added to original data
Using both original and Bootstrap datasets for the
same neural network (3-6-10-1), we observed that the
overfitting was decreased (Figure 8) because the MSE
values of the test set and validation set were similar.
However, in Figure 9, we observed that although the
R values obtained from using Bootstrap data was rea-
sonably high (the overfitting problem did not occur),
but we also observed that the regression graphs were
anormal: many output values fluctuated only around
the value of 0.36, which is unusual because in reality
the values of target data were more varied. In conclu-
sion, the utilization of Bootstrapmethod could reduce
the overfitting problem, but did not provide satisfac-
tory results. Consequently, in the next section, wewill
use only original data.

c. Artificial neural networks modeling using only orig-
inal data with analysis of overfitting
After realizing that the Bootstrap method did not im-
prove the results, the author went back to the normal-
ized original datasets. We then used the same neural

network (3-6-10-1), and overfitting was observed in
the results: firstly, because the R values were abnor-
mally high (Figure 10); secondly, the MSE of testing
set is larger than the one of the training set (Figure 11).
Therefore, we trained different models which con-
sisted of two hidden layers, and the number of neu-
rons varied from 1 to 10 for each hidden layer. How-
ever, the overfitting still existed, so we had to go back
to the model with one hidden layer. The results in
Figure 12 showed the validation and test curves were
very similar, and the MSE of the test set and of the
validation set were lower than the one of the train
set, which indicated that the overfitting had been ex-
cluded. Figure 13 showed that R values and the regres-
sion graphs were reasonable without abnormal distri-
bution. In literature, the research of Okorie E. Agwu
et al., 202016 possibly had an overfitting problemwith
very high R value and the predicted values were ex-
actly the same as experimental values. The thorough
analysis of overfitting in our research helped to avoid
this same problem.
In brief, the results indicated that the optimized net-
work with the best performance without encounter-
ing overfitting consisted of one hidden layer with 5
neurons, and the transfer function was tangent sig-
moid.
The results in previous sections showed that the num-
ber of input data is not a problem for ANN model-
ing as we were afraid at first. There is no simple an-
swer to the question if a data set is enough for neu-
ral networks modeling. It really depends on each par-
ticular case. The 327 observations for the non-linear
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Figure 8: Graph shows the MSE values when using Bootstrap datasets to train the same ANN (3-6-10-1)

analysis and 162 data for the neural networkmodeling
used in this research are therefore enough for a proper
analysis. The results showed that we must choose the
right neural networkmodel with optimized layers and
nodes to have a high accuracy without encountering
an overfitting problem. For this case, using one hid-
den layer is optimized for the ANN modeling. This
can be explained by the fact that themore complicated
a neural network is, the more data it requires in order
to not be overfitted (Muhammad Uzair and Noreen
Jamil 2020 44). Hence, in this study, with our avail-
able data, the number of hidden layers must be one,
so that no overfitting can occur.

RESULTS ANDDISCUSSION
Since the authors wanted to present various models
to predict drilling mud density, a generalized additive
model (GAM) was built based on the input data in
Figure 6 and evaluated using the same data from Ta-
ble 1. A generalized additive model is a generalized
linear model with a linear predictor involving a sum
of smooth functions of covariates (Hastie and Tibshi-
rani 199045). The GAMs can model non-Gaussian
outcome variables, in terms of several predictor vari-
ables. The requirement of the generalized linearmod-
els that the relationships between the outcome and

the predictors be linear was relinquished by Vanhove,
201446. Instead, non-linear relationships can also be
modeled with the form estimated from the data. This
can be accomplished by fitting higher-order polyno-
mial regressions on subsets of the data and adding the
pieces together. The more subset regressions are fit-
ted and connected together, themore wiggly the over-
all curve will be. Fitting too many subset regressions
results in overwiggly curves that fit disproportionally
much noise in the data (‘oversmoothing’). In order
to prevent this, the algorithm can be furnished with
a cross-validation procedure or a generalized (alge-
braic) approximation (Wood, 200647).
Whereas the additive model was estimated by penal-
ized least squares, the GAM will be fitted by penal-
ized likelihoodmaximization, and in practice this will
be achieved by penalized iterative least squares. More
specific details can be viewed in the paper of Wood,
200647; Zuur et al., 200948; Vanhove, 2014 46. Table
4 will show the specific results of drilling mud density
obtained from the generalized additive model.
To confirm the effect of circulation rate on the mud
density and prove that the network obtained from this
study can be applied, the results of drilling mud den-
sity obtained fromANNmodel and generalized addi-
tive model were compared with the results from the
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Figure 9: Graph shows the R values when using Bootstrap datasets to train the same artificial neural network

ANNmodel of Okorie E. Agwu et al., 2020 16 in Table
4.
The determination coefficient between the results ob-
tained from our ANNmodel and input data is 0.9972,
which is rather similar to the determination coeffi-
cient (0.9970) obtained from the ANNmodel of Oko-
rie E. Agwu et al., 2020 16. However, the mean square
error of our network (0.01321) is lower thanOkorie E.
Agwu’s (0.04754). In addition, as mentioned above,
the overfitting problem was included in our analysis,
which was not done in Agwu et al., 202016. We con-
cluded that our ANN model provided a high value
of coefficient of determination without encountering
the overfitting problem. Moreover, the determination
coefficient given by the generalized additive model is
high (R2 = 0.99865) while the mean square error is
low (3.65 × 10−6). Hence, our ANN model and gen-
eralized additive model can be used in real life appli-
cations.

Eventually, Table 6 showed that almost all of the
methods were reliable. Only the calculated results
given by Sorelle et al., 198236 gave a significant de-
viation compared to the input data, hence using the
model of Sorelle is not highly recommended. Al-
though the determination coefficient of our ANN
model is lower than the one given by the generalized
additivemodel, the ANNmethod can still be accepted
because of its small mean square error (Table 5), and
because it can include more influence factors in the
input data than the other methods.
Figure 14 shows the predicted results obtained from
different methods that were used in this study. The
measured data in Figure 6 were the same data as the
input data used in ANNmodeling. Figure 14 allowed
us to draw the same conclusions as mentioned in the
previous paragraph.
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Figure 10: Graph shows the R values when applying the original normalized datasets to the same artificial neural
network

Table 4: Drillingmud density (ppg) obtained from different artificial neural networks and the generalized
additivemodel using the same input data in Table 1

TheoptimizedANNobtained from this study Generalized additive model ANN model of Okorie E. Agwu et al.
(2020)

11.2358 11.1515 10.9003

11.2439 11.1603 10.9044

11.2536 11.1732 10.9199

11.3584 11.2300 11.0323

11.3587 11.2302 11.0337

11.3594 11.2305 11.0345

11.3585 11.2303 11.0345

11.3592 11.2305 11.0349
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Figure 11: Graph shows the MSE values when applying the original normalized datasets to the same artificial
neural network

Table 5: The results of drillingmud density (ppg) obtained from the optimized ANN, generalized additive
model, and empirical correlations for the same input data from Table 1

Nonlinear
function

Generalized ad-
ditive model

Furbish Hoberock Kutasov Sorelle The optimized
ANN obtained
from this study

10.8949 11.1515 10.8347 11.0440 10.8599 12.63049 11.2358

10.8989 11.1603 10.8378 11.0416 10.8633 12.63005 11.2439

10.9150 11.1732 10.8501 11.0613 10.8771 12.63331 11.2536

11.0635 11.2300 10.9500 11.1354 10.9852 12.64592 11.3584

11.0655 11.2302 10.9513 11.1341 10.9865 12.64577 11.3587

11.0665 11.2305 10.9519 11.1341 10.9871 12.64577 11.3594

11.0666 11.2303 10.9520 11.1340 10.9872 12.64577 11.3585

11.0671 11.2305 10.9523 11.1341 10.9876 12.64577 11.3592
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Figure 12: Graph shows the MSE values when applying the original normalized datasets to the artificial neural
network with one hidden layer

Table 6: Comparison of correlation coefficients and errors given by different methods

Statistical parameters MSE RMSE

Methods

The optimized ANN obtained from this study 0.01321 0.1149

ANNmodel of Okorie E. Agwu et al. (2020) 0.04754 0.2180

Furbish 0.08631 0.2938

Hoberock 0.01023 0.1011

Nonlinear function 0.04083 0.2021

Kutasov 0.06892 0.2625

Sorell 2.06639 1.4375

Generalized additive model 3.65E-06 0.0019
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Figure 13: Graph shows the R values when applying the original normalized datasets to the artificial neural net-
work with one hidden layer

Studyof relative importance of different in-
put parameters

Analyzing the impact of the three factors
(pressure, temperature, and surface density)
using the nonlinearmathematical model

To analyze the impact of the three factors, which are
pressure, temperature, and surface density, input data
in Figure 1was used for the evaluationwith help of the
Equation (5). The effect of these three factors are il-
lustrated in Figure 15. We observed that if the value of
mud density at surface conditions is reduced to 60%,
the drilling mud density at the wellbore conditions
will decrease to approximately 55%. Another remark
is that if the bottomhole temperature is reduced to
60%, the drillingmud density will increase by approx-
imately 1.05 times. Besides, if the bottomhole pres-

sure is reduced to 60%, the drilling fluid density will
be 0.95 compared to the initial value.
These above observations are similar to the ones dis-
cussed in the works of Agwu et al. 2020 16 andOsman
et al., 200314. Both of these two papers concluded that
surface density had the biggest impact, followed by
bottomhole temperature and bottomhole pressure.

Analyzing the impact of the four factors
(pressure, temperature, surface density, and
circulation rate) using generalized additive
model
Since the value of mud density at surface conditions
is constant during the operation, it may not be wise
to include it in the study. Therefore, instead of con-
sidering the impact of surface drilling fluid density
on the bottomhole drilling mud density, we evaluated
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Figure14: Graph shows results of drillingmuddensity (ppg) obtained fromempirical correlations, nonlinear func-
tion, generalized additive model, and machine learning models

Figure 15: Relative importance of bottomhole pressure, bottomhole temperature, and the value of mud density
at surface conditions to the drilling mud density
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another factor which was the circulation rate. Har-
ris and Osisanys, 2005 27 mentioned that the circula-
tion rate was proportional to the drilling fluid den-
sity at the bottomhole condition because higher flow
rates would cause the bottomhole pressure to increase
and the bottomhole temperature to decrease. Besides
that, no study about the influence of circulation rate
has ever been realized so far.
Our generalized additive model was used to study the
level of variables’ importance with help of the data
presented in Figure 6. Figure 16 showed that the effect
of the circulation rate on the drilling mud density was
quite low. Combined with the results shown in the
previous section, it can be concluded that the level of
influence of different factors on the drilling fluid den-
sity is in the following order: value of mud density at
surface conditions, bottomhole pressure, bottomhole
temperature, and circulation rate.

CONCLUSIONS
This paper presented various methods (artificial neu-
ral network, generalized additive model, nonlinear
function, empirical correlations) to predict drilling
mud density in function of temperature, pressure,
surface value of the drilling fluid, and circulation rate.
The results lead to the following conclusions:

• The Generalized Additive model and Artificial
Neural Network have higher coefficient of de-
termination R2 and lower MSE than the other
methods. However, it is recommended to
use our optimized ANN method because we
demonstrated that it did not have a problem
of overfitting, while the Generalized Additive
model presented a very low MSE, which should
be used with caution.

• The optimized ANN model consisted of only
one hidden layer. In addition, the answer to
the question if a data set is enough for neural
networks modeling is not simple because it de-
pends on each particular case. In this study, the
Bootstrapmethodwas used to resample the data
and the conclusion was that the number of input
data was enough to avoid the overfitting prob-
lem. Moreover, it is worthy to note that since
there was often a lack of overfitting analysis in
previous studies in literature review regarding
this specific case, we solved this problemby con-
ducting a thorough analysis of overfitting in this
paper.

• The nonlinear model is more appropriate than
the linear model in this case based on the anal-
ysis of the histograms of different variables.

• The empirical correlations presented higher de-
viation between predicted results and measured
data, especially the correlation given by Sorelle
et al. (1982).

• The level of impact on drilling mud density is
in the following order: value of mud density
at surface conditions, bottomhole pressure, bot-
tom hole temperature, and circulation rate.

ABBREVIATIONS
ANN: Artificial neural network
f0: Percentage of oil volume in the drilling fluid
fw: Percentage of water volume in the drilling fluid
GAM: Generalized additive model
MSE: Mean Squared Error
P0 (psi): Standard pressure
P, P2 (psi): Pressure at the predicted position
RMSE: Root Mean Squared Error
T0 (oF): Standard temperature
T,T2 (oF): Temperature at the predicted position
V (gal): Total volume
△V0 (gal): Difference in oil volume
△Vw (gal): Difference in water volume
xi: A true value of input data
xmax

i : A maximum value of input data
xmin

i : A minimum value of input data
x j : A dimensionless value of input data
yi: A true value of target data
y j : A dimensionless value of target data
ρi,ρmo,ρ1 (ppg): Value ofmud density at surface con-
ditions
ρ ,ρ f ,ρm (ppg): Predicted drilling mud density
ρo1 (ppg): Initial oil density
ρo2 (ppg): Oil density in predicted drilling mud
ρw1 (ppg): Initial water density
ρw2 (ppg): Water density in predicted drilling mud
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Figure 16: Relative importance of bottomhole pressure, bottomhole temperature, and circulation rate to the
drilling mud density

APPENDIX
Mean SquaredError (MSE) is a formula for estimating
the squared value of an error. The smaller the value of
MSE, the more accurate the prediction is.

MSE =
1
N
∗

N

∑
i=1

(X∗
i −Xi)

2

Root Mean Square Error (RMSE) is used to evaluate
how well a model fits the data. When the value of
RMSE is near 0, the model will be more accurate.

RMSE =

[
∑N

i=1
(
X∗

i −Xi
)2

N

] 1
2

T-value is a measure that indicates the degree of in-
fluence of input factors on the results. The absolute
value of the t-value indicates the greater the degree of
influence. A negative t-value indicates an inverse re-
lationship between the input factor and the result, and
vice versa.
The correlation coefficient is a statistical parameter
that measures the degree of fit between predicted and
actual data of drilling fluid density.

R2 = 1− ∑N
i=1

(
X∗

i −Xi
)2

∑N
i=1

(
X∗

i − 1
N

∑N
i=1 Xi

)2

N is the total number of observations, I is the index
of I observation; Xi* is the value of drilling mud den-
sity which is predicted from empirical correlations or
machine learning models.

Pr (>|t|) is the p-value corresponding to the t-value. If
the p-value is less than the statistical significance level
α (usually 0.05), the factors associated with it will be
statistically significant in the results, otherwise, it will
be a random factor.
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Nghiên cứu về sự thay đổi tỷ trọng dung dịch khoan do nhiệt độ, áp
suất và lưu lượng bơm tuần hoàn bằng cách sử dụngmạng nơron
nhân tạo, các mô hình thống kê và các tương quan thực nghiệm

Phạm Sơn Tùng1,2,*, Phạm Thanh Nhân1,2

TÓM TẮT
Bài báo sử dụng một số phương pháp thống kê và học máy nhằm xác định tỷ trọng dung dịch
khoan trong các điều kiện áp suất và nhiệt độ khác nhau. Bên cạnh đó, sự ảnh hưởng của các
thông số vận hành như là tỷ trọng dung dịch khoan ở điều kiện tiêu chuẩn và lưu lượng bơm tuần
hoàn cũng được đề cập tới trong nghiên cứu này. Các loại mô hình khác nhau (mô hình thực
nghiệm, mạng nơrơn nhân tạo, mô hình Generalized Additive, mô hình tuyến tính) đã được xây
dựng và so sánh kết quả trên cùng các bộ số liệu đầu vào. Kết quả nghiên cứu cho thấy việc xác
định chính xác tỷ trọng dung dịch khoan ở điều kiện bềmặt có ảnh hưởng lớn nhất tới độ chính xác
của giá trị dung dịch khoan tại các độ sâu khác nhau. Ngoài ra, mức độ ảnh hưởng của lưu lượng
bơm tuần hoàn dù không lớn nhưng cũng không nên bỏ qua nếumuốn tăng tính chính xác trong
dự đoán. Phương pháp Bootstrap cũng được dùng trong nghiên cứu này nhằm giải quyết vấn đề
số lượng số liệu đầu vào bị hạn chế. Hiện tượng overfitting (quá khớp) cũng đã được nghiên cứu
kỹ lưỡng trong bài báo này, nhằm giải quyết một vấn đề thường rất hay gặp trong các nghiên cứu
sử dụng học máy ngày nay, khi mà các mô hình cho kết quả dự báo rất chính xác trên bộ số liệu
đầu vào, nhưng khi áp dụng cho số liệu thực tế thì lại không thể sử dụng được.
Từ khoá: tỷ trọng dung dịch khoan, học máy, mạng nơron nhân tạo, tương quan thực nghiệm
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