
Science & Technology Development Journal – Engineering and Technology 2024, ():1-12

Open Access Full Text Article Research Article

Ho Chi Minh City University of
Technology (HCMUT), VNU-HCM,
Vietnam

Correspondence

Tran Nguyen Thien Tam, Ho Chi Minh
City University of Technology (HCMUT),
VNU-HCM, Vietnam

Email: trantam2512@hcmut.edu.vn

History
• Received: 30-9-2023
• Accepted: 25-4-2024
• Published Online:

DOI :

Copyright

© VNUHCM Press. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution 4.0 International license.

Amachine learning approach for estimating the bubblepoint
pressure of world crude oils

Tran Nguyen Thien Tam*, Hoang Trong Quang, Do PhamMinh Huong

Use your smartphone to scan this
QR code and download this article

ABSTRACT
The pressure at which the first bubble of gas exits the reservoir oil is known as the bubblepoint
pressure. This parameter affects multiphase flow in pipes and the overall recovery factor of oil from
a reservoir. Therefore, it's crucial to accurately estimate the crude oil bubblepoint pressure. There
have been a lot of studies on calculating the bubblepoint pressure from laboratory data, which can
be summarized into twomain approaches: empirical correlations andmachine learning (ML) algo-
rithms. In this study, the authors implement both empirical correlations and ML algorithms with
Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and GroupMethod
of Data Handling (GMDH). The data was collected from the open literature for world crude oils.
The estimation results of the two approaches mentioned above are compared by regression met-
rics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination
(R2). It was found that the GMDH algorithm has the accurate prediction results with the low MSE
and RMSE (336605.4 and 580.177) and the highest R2 (0.9228). Trend analysis was carried out to
strengthenmodel selection. The influence of input features on the prediction results indicates that
the GMDH algorithm has the most stability. Therefore, the GMDH model is selected for estimating
the bubblepoint pressure.
Key words: bubblepoint pressure correlation, decision tree, k-nearest neighbors, artificial neural
network, group method of data handling

INTRODUCTION1

In the reservoir’s initial condition, oil is a solution that2

involves gas. The bubblepoint pressure (pb) is de-3

fined as the pressure at which the first gas bubbles exit4

from the oil1. Bubblepoint pressure is a key param-5

eter for PVT and fluid properties calculations, pro-6

duction optimization, reservoir characterization, and7

reservoir simulation. Therefore, it is crucial to accu-8

rately calculate the bubblepoint pressure. Typically,9

bubblepoint pressure is measured by sampling fluid10

from the reservoir and analyzing the PVT (pressure-11

volume-temperature). However, this method is ex-12

pensive and takes a lot of time to implement2. For13

this reason, many mathematical methods have been14

developed to utilize measured data to quickly and ac-15

curately estimate bubblepoint pressure. There are two16

common approaches for estimating bubblepoint pres-17

sure: the first is empirical correlations, and the sec-18

ond is machine learning algorithms. The first ap-19

proach has many methods with some famous corre-20

lations, for instance, Standing3, Vazquez and Beggs 4,21

Glaso 5, Al-Marhoun6, and Petrosky and Farshad7.22

The second approach has undergone formidable de-23

velopment in recent years. In the age of artificial intel-24

ligence and machine learning, researchers have more25

powerful tools to solve petroleum engineering prob- 26

lems. Many studies focus on the application of ma- 27

chine learning for estimating oil bubblepoint pres- 28

sure. The most common machine learning algorithm 29

and earliest used to estimate pb is ANN, for example, 30

according to studies by Osman et al.8, Rasouli et al.9, 31

Obanijesu and Araromi10, Alimadadi et al.11, Al- 32

Marhoun et al.12, Adeeyo13, Fath et al.14, Hassan et 33

al.15. Over time, many other vigorous ML algorithms 34

have been implemented for bubblepoint pressure pre- 35

diction. These algorithms include support vector ma- 36

chines16–19, genetic algorithms20,21, or groups ofma- 37

chine learning algorithms22–24. 38

In this study, the authors extend predictive methods 39

based onANN, DT, KNN, andGMDH. Research data 40

collected from the many literature. To identify the 41

most optimal method in this work, we use statistical 42

metrics for the regression problem, including MSE, 43

RMSE, and R2. 44

METHODS 45

As stated previously, there are two usual methods for 46

estimating the bubblepoint pressure: empirical corre- 47

lations and machine learning algorithms. Below is a 48

summary of the methods belonging to the two main 49
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groups above.50

Empirical correlations51

Standing52

In 1947, Stading developed a method for bubblepoint53

pressure with inputs of solution gas-oil ratio (Rs), gas54

specific gravity (γg), reservoir temperature (T), oil55

gravity (API)3.56

pb = 18.2

[(
Rs

γg

)0.83
(10)a −1.4

]
(1)

a = 0.00091(T −460)−0.0125(API) (2)

Vazquez & Beggs57

Vazquez and Beggs (1980) proposed a correlation for58

bubblepoint pressure as follows4:59

pb =

[(
C1

Rs

γg

)
(10)a

]c2
(3)

a =C3

(
API
T

)
(4)

Table 1: C1, C2, and C3 values

Parameter API≤ 30 API≥ 30

C1 27.624 56.18

C2 10.914328 0.84246

C3 -11.172 -10.393

Glaso60

In 1980, Glaso developed a method for bubblepoint61

pressure as below5:62

log(pb) = 1.7669+1.7447log(A)
−0.30218 [log(A)]2

(5)

A =

(
Rs

γg

)0.816 (T −460)0.172

(API)0.989 (6)

Al-Marhoun63

Al-Marhoun (1988) presented a simple correlation as64

follows:65

pb = aRb
s γc

gγd
o T e (7)

with a = 5.38088x10−3, b = 0.715082, c = -1.87784, d66

= 3.1437, and e = 1.3265767

Petrosky & Farshad 68

In 1995, Petrosky and Farshad recommended a corre- 69

lation as below: 70

pb =

[
112/727R0.577421

s
γ0.8439

g (10)x

]
−1391.051 (8)

x = 7.916
(
10−4)(API)1.5410

−4.561
(
10−5)(T −460)1.3911 (9)

Machine learning algorithms 71

Artificial Neural Network (ANN) 72

An ANN is an algorithm that is based on biologi- 73

cal processes and simulates the functions of the ner- 74

vous system. Typically, an ANN structure has three 75

layers: an input layer, a hidden layer, and an output 76

layer. Each individual node has input data, weights, 77

a bias, and an output. The output values are deter- 78

mined through transfer functions. Some of the most 79

common transfer functions are: the Sigmoid func- 80

tion, the ReLU (Rectified Linear Unit) function, the 81

Leaky ReLU function, the Hyperbolic Tangent func- 82

tion, the Softmax function, and the Heaviside func- 83

tion25. 84

The essence of the ANN process is to learn from 85

the data to renew the weights. The updating of the 86

weights is performed continuously through two pro- 87

cesses: forward propagation and backpropagation26. 88

K-Nearest Neighbors (KNN) 89

The KNN is a supervised ML algorithm that makes 90

predictions based on the neighbor data points in a fea- 91

ture space. In this algorithm, we choose the K value 92

to represent the number of neighboring points to cal- 93

culate the distance between the new point and the 94

K neighboring points. Then, identify the K-nearest 95

neighbors with the smallest distances and compute 96

the weighted average of the target values of these 97

neighbors. Finally, assign this average value as the es- 98

timated value for the new data 27. 99

Decision Tree (DT) 100

The DT is a structure that includes nodes and 101

branches, and class attributes are represented on the 102

internal nodes of the tree. Based on the class at- 103

tributes, it works by splitting the dataset into subsets. 104

This process is called attribute selection28. 105

The Information Gain method is the popular method 106

for attribute selection. This approach calculates the 107

information gain for each attribute and selects the one 108

with the highest gain as the splitting attribute at each 109

node28. 110
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GroupMethod of Data Handling (GMDH)111

TheGMDHwas developed byA.G. Ivakhnenko in the112

1966 and has found applications in various fields. The113

basic procedure of GMDH is to construct the high-114

order polynomial form, which relates input variables115

to a single output variable. For each feature, build116

candidate models with different polynomial degrees117

and evaluate the models’ performance using MSE. In118

the end, perform an iterative solution to find the best119

overall model with the input features29.120

TheGroupMethod of Data Handling neural network,121

also known as the GMDH-type neural network, is122

a GMDH’s spectrum that combines the automated123

model selection of ANN and feature extraction of124

GMDH30.125

RESULTS ANDDISCUSSION126

Data127

The research data was collected from the open liter-128

ature on world crude oils31–37. It includes 567 data129

points with descriptive statistics, as shown in Table 2.130

Results of estimating thebubblepoint pres-131

sure (BPP) of world crude oils132

Empirical correlations133

a. Standing correlation134

Using equations (1) and (2), we have the predicted re-135

sults versus measured results of BPP, shown in Fig-136

ure 1.137

b. Vazquez & Beggs correlation138

Using equations (3) and (4), we have the comparison139

results shown in Figure 2.140

c. Glaso correlation141

Using equations (5) and (6), we have the predicted re-142

sults versus measured results of BPP, shown in Fig-143

ure 3.144

d. Al-Marhoun correlation145

Using equation (7), we have the comparison results146

shown in Figure 4.147

e. Petrosky & Farshad correlation148

Using equations (8) and (9), we have the predicted re-149

sults versus measured results of BPP, shown in Fig-150

ure 5.151

Machine learning algorithms152

a. Artificial Neural Network (ANN)153

Using Google Colab with the Keras library, we have154

the BPP comparison results shown in Figure 6.155

b. K-Nearest Neighbors (KNN)156

Using the KNeighborsRegressor function in Google157

Colab, we have the BPP predicted results versus mea-158

sured results, shown in Figure 7.159

c. Decision Tree (DT) 160

Using the DecisionTreeRegressor function in Google 161

Colab, we have the BPP comparison results shown in 162

Figure 8. 163

d. Group Method of Data Handling (GMDH) 164

Using Google Colab with Keras library, we have the 165

BPP predicted results versus measured results, shown 166

in Figure 9. 167

Compare results 168

Table 3 summarizes the statistical results for esti- 169

mating bubblepoint pressure by using the regression 170

model’s metrics, which include: mean squared er- 171

ror, square root of mean squared error, coefficient 172

of determination. The results show that the GMDH 173

has the highest R2 (0.9228) and low MSE and RMSE 174

(336605.4 and 580.177). 175

Trend Analysis 176

Trend analysis (TA) is a method to study the relation- 177

ship between features and prediction targets. TA can 178

also identify key relationships between input parame- 179

ters and pb predicted values and identify the most ro- 180

bust model. In this study, four input parameters Rs, 181

γg, API and T f were selected to perform TA. 182

a. Trend analysis for gas solubility 183

With T = 102 oF, API = 28.3, γg = 0.996, and Rs taken 184

from a data set of 567 points, the trend analysis for gas 185

solubility is shown in Figure 10. 186

Most models show that as Rs increases, pb also in- 187

creases; only in the model by Al-Marhoun correla- 188

tion with a low R2 value display predicted values of pb 189

much different from the other models, and the graph 190

line has many zigzags. The trend displayed by the 191

GMDHmodel shows a rigorous relationship between 192

the parameter for trend analysis and the model’s pre- 193

dicted values. At the same time, the predicted values 194

versus Rs of the GMDH model are a straight, contin- 195

uously increasing line with smooth form. 196

b. Trend analysis for oil API gravity 197

With Rs = 226 (SCF/STB), T = 102 oF, γg = 0.996, and 198

API taken from a data set, the result is shown in Fig- 199

ure 11. 200

Mostmodels show that asAPI increases, pb decreases, 201

except the Al-Marhoun model. The GMDH model 202

shows this trend clearly with a straight, continuously 203

decreasing line. 204

c. Trend analysis for temperature 205

With Rs = 226 (SCF/STB),API = 28.3, γg = 0.996, and 206

T taken from a data set, the trend analysis for temper- 207

ature is shown in Figure 12. 208

Typical, all models show that as temperature in- 209

creases, pb increases. However, somemodels exhibit a 210

3



Science & Technology Development Journal – Engineering and Technology 2024, ():1-12

Table 2: Descriptive statistics for experimental PVT data used in the study

Parameter Temperature
(F)

Solution gas oil
ratio
(SCF/STB)

API Gas specific
gravity

Bubble point pres-
sure
(psi)

Mean 193.86 636.92 35.10 1.1976 1931.97

Standard devia-
tion

51.99 405.76 6.00 0.4554 1261.45

Variance 2698.71 164349.73 35.93 0.2070 1588447.71

Minimum 74.00 26.00 19.40 0.1590 79.00

Maximum 306.00 2496.00 56.50 3.4445 6741.00

Figure 1: Measured and predicted values of the Standing correlation.

Table 3: Summary of the statistical results for estimating bubblepoint pressure

Model MSE RMSE R2

Standing 251165 501 0.8498

Vazquez & Beggs 354078 595 0.8460

Glaso 280723 530 0.8526

Al-Marhoun 2044426 1430 0.4706

Petrosky & Farshad 6096167 2469 0.8058

ANN 441419 664.394 0.737

KNN 420474 648.440 0.7947

DT 355461.982 596.206 0.788

GMDH 336605.4 580.177 0.9228

4
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Figure 2: Measured and predicted values of the Vazquez & Beggs correlation.

Figure 3: Measured and predicted values of the Glaso correlation.
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Figure 4: Measured and predicted values of the Marhoun correlation.

Figure 5: Measured and predicted values of the Petrosky & Farshad correlation.
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Figure 6: Measured and predicted values of the ANN algorithm.

Figure 7: Measured versus predicted values of the KNN algorithm.
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Figure 8: Measured and predicted values of the DT algorithm.

Figure 9: Measured and predicted values of the GMDH algorithm.
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Figure 10: Trend analysis for gas solubility.

Figure 11: Oil API gravity’s trend analysis.
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Figure 12: Trend analysis for temperature.

stepped form, and the Al-Marhoun model is far apart211

from the group of other models.212

d. Trend analysis for gas specific gravity213

With Rs = 226 (SCF/STB), API = 28.3, T = 102 oF,214

and γg taken from a data set, the trend analysis for215

gas specific gravity is shown in Figure 13.216

Basically, all models show that as gas specific grav-217

ity increases, pb decreases, but some models exhibit218

a graph line in a slightly winding form.219

CONCLUSIONS220

In this study, a dataset with 567 data points on crude221

oils at some geographical location in the world with222

four input parameters (Rs, γg, API, and T) was used223

to estimate crude oil bubblepoint pressure (pb) by two224

main approaches: empirical correlations andmachine225

learning algorithms. The result shows that theGMDH226

algorithm is the model that gives the best estimation227

for bubblepoint pressure.228

In addition, trend analysis of input parameters also229

shows that GMDH graph lines tend to be stable. This230

strongly confirms that the GMDHmodel is highly re-231

liable in bubblepoint pressure estimation and can be232

used for the calculation of other crude oil PVT data233

sets. The authors suggest that further research on the234

overfitting phenomenon is needed to increase the re-235

liability of model selection.236
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TÓM TẮT
Áp suất tại đó bong bóng khí đầu tiên thoát ra khỏi dầu vỉa chứa được gọi là áp suất điểm bọt.
Thông số này ảnh hưởng đến dòng chảy đa pha trong đường ống và hệ số thu hồi dầu từ vỉa chứa.
Do đó, điều quan trọng là phải ước tính chính xác áp suất điểm bọt dầu thô. Đã có rất nhiều nghiên
cứu về tính toán áp suất điểm bọt từ dữ liệu trong phòng thí nghiệm, có thể tóm lược thành hai
cách tiếp cận chính: tương quan thực nghiệm và thuật toán học máy. Trong nghiên cứu này, các
tác giả thực hiện tính toán theo cả hai cách tương quan thực nghiệm và thuật toán học máy với
Cây quyết định (DT), K láng giếng gần nhất (KNN), Mạng nơron nhân tạo (ANN) và Phương pháp
xử lý dữ liệu nhóm (GMDH). Dữ liệu được thu thập từ các tài liệu đã công bố về dầu thô thế giới.
Kết quả ước lượng của hai cách tiếp cận trên được so sánh bằng các tham số đánh giá mô hình
hồi quy bao gồm: sai số toàn phương trung bình (MSE), căn bậc hai của sai số bình phương trung
bình (RMSE) và hệ số xác định (R2). Kết quả cho thấy thuật toán GMDH cho dự đoán chính xác với
MSE và RMSE thấp (336605,4 và 580,177) và R2 cao nhất (0,9228). Phân tích xu hướng được thực
hiện để tăng tính tin cậy cho việc lựa chọnmô hình. Ảnh hưởng của các thông số đầu vào đến kết
quả dự đoán chỉ ra rằng mô hình GMDH có độ ổn định cao nhất. Vì vậy, mô hình GMDH được lựa
chọn để ước lượng áp suất điểm bọt của dầu thô.
Từ khoá: tương quan áp suất điểm bọt, cây quyết định, k láng giếng gần nhất, mạng nơron nhân
tạo, phương pháp xử lý dữ liệu nhóm

Trích dẫn bài báo này: Tâm T N T, Quang H T, Hương D P M. Ứng dụng phương pháp học máy để ước
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