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ABSTRACT
High performance computing (HPC) system or computing system is very different from ordinary
service system. In general, service system only run some specific applications, e.g. web server or
mail server to serve asmany requests from users as possible while in computing system, users have
the permission to run their own applications and isolated with each other. Monitoring technique is
the key to ensure system efficiency and users satisfaction, and by combining monitoring together
with data analysis, system administrators can solve several operating problems specific to comput-
ing system such as resource allocation, application scheduling, abnormal detection, etc. Different
from service systemwhile administrators usually prefer systemoverall information rather than infor-
mation of each individual user applications in computing system. Since computing system usually
contains many applications executed simultaneously, monitoring computing system with tradi-
tional approaches would potentially consume a huge amount of storage space and would cost
more charge fee if system is deployed in cloud environment.
This article focuses on analyzing monitored memory usage data retrieved from computing pro-
gram in order to benefit its next resource allocation. Different from traditional approaches with
batch processing technique in which collected data is all stored in database before analyzing, we
utilized online analysis approaches inwhich every new coming data is captured, processed, cached
in order to transform into useful information, and only allow necessary data be stored in database.
We propose Memory Statistics Data Format (MSDF), an on-the-fly processing technique used in
monitoring memory usage of computing application for saving storage space while still preserve
enough information to solve resource allocation problem. MSDF can help to save more than 95%
of storage space while allocation efficiency is always guaranteed depend on the εparameter and
MSDF can be extended to solve other operating problem or adapted tomontior and analyze other
remaining application metrics.
Key words: System Monitoring, Memory Monitoring, Streaming Processing, Online Analysis,
Memory Allocation

INTRODUCTION1

High Performing computing (HPC) system or com-2

puting system or computing system in general is criti-3

cal for scientific research. One of its prominent exam-4

ples of application is the artificial intelligence training5

for Smart Village project. Computing system contains6

a large number of nodes with special network topol-7

ogy and technologies to boost the parallel computing8

ability as much as possible. Different from ordinary9

service system such as web or mail server, users in10

computing system have the permission to access and11

execute their own programs, i.e. application. system12

resources are shared between multiple users and is al-13

located based on user’s requirements and allocation14

policies defined by system administrators. As a conse-15

quence, efficiently managing and operating comput-16

ing system with multiple users and a vast number of17

applications running simultaneously would cost ad-18

mins much more effort.19

Monitoring computing infrastructure helps admins 20

continuously follow system operation, profile abnor- 21

mal behavior, etc. and facilitate admins to update 22

their management and operating plan in the future. 23

“We are drowning in data but starving for informa- 24

tion” 1, systemmonitoring often lacks of analysis abil- 25

ity to transform raw data into useful information and 26

knowledge, which leads to the situation where ev- 27

ery piece of data collected from any metrics consid- 28

ered potential for later analysis has to be permanently 29

stored. As a result, since monitored metrics are col- 30

lected at application level, applying traditional mon- 31

itoring in computing system would potentially con- 32

sume a huge number of storage space and cost more 33

charge fee if system is deployed in cloud environment. 34

The gap between data saved in storage and actual data 35

in use can be filled with online-analysis which stores 36

only necessary information retrieved from processing 37

raw monitoring data. 38
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Memory usage which directly reflects system health,39

is always listed as one of the most critical metrics.40

Information get from analyzing the consumption of41

application memory benefits from solving several42

problems including resource allocation, application43

scheduling, abnormal detection, etc. In this article,44

we focus on monitoring memory data which is re-45

trieved from our monitoring framework, and analyz-46

ing these data to update memory allocation policy47

for the next execution. Different from normal ap-48

proaches in which data is collected and immediately49

passed to storage, we utilized online-analysis in which50

every new coming data is being processed, cached,51

and later converted into useful information before be-52

ing stored in database. We named this methodMem-53

ory Statistics Data Format (MSDF), for later reference54

convenience. MSDF highlights the ability to poten-55

tially save a massive amount of storage size when ap-56

ply in monitoring and analyzing application memory57

while still preserves enough information for alloca-58

tion problem.59

Monitoring framework and MSDF is currently be-60

ing developed at high performing computing cen-61

ter (HPCC) from HCMUT-VNU for our specific62

SuperNode-XP system. The following briefly summa-63

rizes the contribution of this paper:64

• Propose Kafka based monitoring framework65

which can collect application metrics and per-66

form online-analysis.67

• Propose dynamic allocation in terms ofmemory68

and extract its efficiency boundary.69

• Propose online analysis in memory monitoring70

to save storage space relating to memory alloca-71

tion for applications in computing system.72

The remain of this paper is structured as follow. Sec-73

tion 2 the related work that we have surveyed. Section74

3 introduces the architecture overview of our mon-75

itoring framework and shortly describes its compo-76

nents. Section 4 demonstrates how we apply MSDF77

in memory monitoring and allocation and Section 578

will discuss the evaluation results. Section 6 further79

discusses about analyzing memory data and MSDF.80

Finally Section 7 summarizes all of our work and out-81

lines the future works.82

RELATEDWORK83

There are immense of open source and commercial84

monitoring tools for computing system with differ-85

ent feature, different architecture. For wide range of86

used, Zabbix provides a stable solution for monitor87

host level metrics and hardware through Simple Net-88

work Management Protocol (SNMP); Prometheus is89

a new generation tool with flexible user defined met- 90

rics through custom exporter and a powerful build-in 91

query language PromQL; Nagios highlights the con- 92

tinuous real time network monitor with sensitive fail- 93

ure detection andmany other similar softwares can be 94

listed as Datadog, Icinga, SolarWinds, etc. In general, 95

these tools are all lack of streaming processing abil- 96

ity when directly forward collected metrics into long 97

term storage. 98

In recent years, Apache Kafka always stays as one of 99

the best distributed data streaming platforms. Kafka 100

provides both message queue and pub sub server 101

at the same time with consistency through syn- 102

chronize and fault tolerant through controller repli- 103

cated mechanism and can be scaled horizontally by 104

simply adding more instances to expand the traffic 105

bandwidth. Besides, Kafka come along with a vast 106

amount of processing framework including it own 107

Application Programming Interface (API) in JAVA, 108

PYTHON, SCALA, etc. which has the lowest over- 109

head and mostly used in small scale problem; Apache 110

Spark2, a micro-batch processing framework with 111

build in Kafka compatible Structured Streaming li- 112

brary, mostly used in large scale big data problem; 113

Apache Flink3, a real streaming processing framework 114

with build in Kafka library also used for large scale 115

problem. 116

Analyzing data from system monitoring is not a new 117

task, there have already been published several re- 118

searches about this field in recent year. For instance, 119

analyzing power usage of Central Processing Unit 120

(CPU) by streaming linear regression using big data 121

processing framework4; reconstructing application 122

heap from monitoring tool trace file to detect mem- 123

ory leak by offline-analysis5,6; detecting software ag- 124

ing based on memory leak investigation at software 125

runtime7. But to the best of our knowledge, this is the 126

first work which is applied streaming analysis inmon- 127

itoring of application memory to save storage space 128

with memory allocation problem case study. 129

MONITORING FRAMEWORK 130

As depicted in Figure 1, framework contains four 131

different layers. Communication Layer positions in 132

computing nodes and hardware devices, where met- 133

rics is directly collected. Communication and An- 134

alyzing Layer position in head nodes, i.e. manage- 135

ment nodes, where contain central processing logic of 136

monitoring framework in order to minimize comput- 137

ing node overhead. Finally Storage Layer positions in 138

storage nodeswhere long termdata is accumulated for 139

later purposes such as visualization or offline-analysis. 140
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Figure 1: Monitoring Framework Architecture.

Collector Layer. The lowest layer responsible for col-141

lecting monitoring metrics. Since load from com-142

puting system mostly from scientific programs exe-143

cuted by system users, monitoring framework must144

be able to collect metrics from each user application.145

Sensor from monitoring framework, which is a dae-146

mon program installed at every computing node, is147

responsible for collecting resource usage correspond-148

ing to each user and application such as CPU uti-149

lization, memory usage, network traffic, etc. Beside,150

Sensor also considers to collect other hardwares met-151

rics such as network devices which exports through152

SNMP protocol; Uninterruptible Power Supply (UPS)153

devices which exports through SNMP; temperature,154

humidity sensor through Message Queuing Teleme-155

try Transport (MQTT) protocol.156

Theoretically, each cluster in computing system has157

different role, different behavior hence Sensor must158

be able to configure to collect only applicable metrics159

with appropriate interval. Additionally, sensors also160

can perform simple preprocessing step without cost-161

ing toomuch computing resources if necessary. These162

data will eventually be pushed up to Communication163

Layer through Kafka Producer API.164

Communication Layer. Because of a large number of165

applications executed at the same time, the commu-166

nication between Analyzing Layer and data source167

become extremely complicated. Apache Kafka takes168

role as an intermediate data broker to provide a re-169

liable transmission channel. Kafka implements the170

message queue and pub sub server where Collector171

Layer take role as publishers push data to Kafka un- 172

der specific topics and Analyzing Layer takes role as 173

consumers fetch data from subscribed topics. Further 174

more, Kafka provides a powerful streaming process- 175

ing API for Analyzing Layer to conveniently perform 176

online processing and analysis. Kafka is coordinated 177

by Kraft Controller which acts as a gateway to receive 178

all request from both producers and consumers and 179

dispatch them to appropriate broker server. 180

Different type of metrics can be organized under 181

different topic follow Linux hierarchical file system 182

structure. For example <organization name>/<cluster 183

name>/<node id> contains metrics of a specific com- 184

puting node at host level such as CPU load, free disk, 185

etc.; <organization name>/<cluster name>/<node 186

id>/<user id> contains metrics of any applications 187

executed under that user id in a specific computing 188

node. Moreover, independent type of metrics can be 189

put under different topic partitions to leverage paral- 190

lel processing. 191

Analyzing Layer. This layer is responsible for han- 192

dling streaming data from Communication Layer, 193

each ProcessingModule will have different operations 194

based on topic-name and partition-id. In relatively 195

small system, Processing Module uses simple API 196

which is JAVA Kafka Consumer to process streaming 197

data and Java Database Connectivity (JDBC) driver 198

to ingress into storage. But in large scale computing 199

system with a vast number of clusters, users and ap- 200

plications where monitoring metrics from Collector 201

Layer are considered big data, streaming processing 202

with Apache Spark is seem to be more suitable. 203
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Streaming processing ability can be utilized to create204

new metrics in more generalized level, for example205

aggregating each individual node health status to get206

the overall cluster health; or to immediately response207

when errors occur, for example auto shut down all208

infrastructure when detected power cut. Moreover,209

performing online-analysis in systemmonitoring can210

significantly reduce the total amount of data store and211

computing effort. We will further discuss how to ap-212

ply online-analysis in case of memory monitoring in213

Section 4.214

Storage Layer. This layer contains database for long215

term storing where data can later be used in offline-216

analysis phrase, e.g applying machine learning algo-217

rithm to predict future trend to generate the next up-218

grade plan. Naturally, monitoring data is time series219

but because of Extract-Load-Transform (ETL) pro-220

cess in Analyzing Layer, storage should also support221

data warehouse along with time series database. We222

use TimescaleDB an extension of PostgreSQL utilizes223

for time series data but still maintaining relational224

data model.225

MSDFMETHOD226

Memory Allocation227

Computing resources is shared betweenmultiple pro-228

grams executed by different users. An effective alloca-229

tion strategy can result inmore applications execute at230

the same time and hence boosting system efficiency.231

Allocation mechanism is usually classified as static232

and dynamic allocating. With naive static allocation,233

memory is given for application based on the maxi-234

mum usage which is collected from execution in the235

past. This strategy advantages can be listed as simple236

implementation, can prevent application from crash-237

ing andmemory overflow, but is ineffective because of238

memory wasting. As in Figure 2, memory usage usu-239

ally will fluctuate within a certain range of value for a240

specific time before significant change happen; and in241

most of the time, memory usage is far from its maxi-242

mum value. Other applications may have more stable243

memory lines however allocating with static policy is244

not effective with this type of application and com-245

puting system in general. Thus, dynamic allocation246

should be utilized to only give application the most247

appropriate memory at specific period of time in exe-248

cution to increase allocation efficiency.249

Allocation from serverless computing8 is rated as one250

the best among dynamic allocation mechanism, in251

which application continuously requests the amount252

ofmemory needed and allocator will then give exactly253

that amount of memory. Nevertheless, applications254

in computing system are mostly located inside con- 255

tainer environment, although we can dynamically ad- 256

just the environment resources, we can not continu- 257

ously update its configuration due to technology lim- 258

ited. Inspired from serverless computing, suppose the 259

next execution is nearly similar to previous one, appli- 260

cation runtime can be split into multiple continuous 261

segments and each with different allocation of mem- 262

ory. Memory given in each segment should be around 263

the maximum value recorded in history correspond- 264

ing to that segment. Recall from Figure 2, theoreti- 265

cally data points in each segment should be stable and 266

as close to themaximum value of that segment as pos- 267

sible to maximize allocation efficiency. Thus, any free 268

data points, i.e have not yet belonged to any segments 269

before significant change happen, should be grouped 270

into the same segment. 271

MSDF Approach 272

Allocation strategy from Section 4.1 only requires 273

the maximum memory usage. With normal ap- 274

proach, monitoring framework permanently stored 275

every memory data of application collecting at dif- 276

ferent timestamp, allocator queries and traverses 277

through all of that data to compute the maximum 278

value at each different segment. Based on sensor in- 279

terval and application run time, each execution could 280

end up thousand to million of records in database 281

which will largely cost storage size and computing ef- 282

fort. Instead with applying online processing in mon- 283

itoring, when new data is coming, MSDF can calcu- 284

late segment statistic value immediately and store only 285

necessary data. 286

In particular, MSDF calculates the max, min, mean, 287

and amount of data points of each segment. Suppose 288

the new coming data at n^thoffset isM_n, and current 289

max, min areMAX andMIN, new values can be easily 290

calculated with below formula: 291

MAX = Greater(Mn,MAX).

Min = Lesser(Mn,MIN).

Calculatingmean (
_
Mn) from previousmean n-1 value 292

is a bit more complicated by following the formula be- 293

low: 294

_
Mn =

_
Mn−1∗(n−1)+Mn

n

We defined ε∈(0,1] is the Threshold parameter and 295

can be configured, a significant change is considered 296

to happen when new coming data exceeds the given 297

εthreshold: 298

|
_
Mn−1 −Mn|_

Mn−1
> ε. (1)

4
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Figure 2: Efficiency and records stored in Storage Layer associate with different thresholds.

ThenMSDF store the information related to that seg-299

ment into database, reset n=0, move to the next seg-300

ment and calculate new statistics value. By leveraging301

streaming processing technique, the final memory in-302

formation of application execution saved in database303

is only statistics values including mean, max, min and304

number of data points corresponding to each seg-305

ment.306

Allocation Efficiency307

We define a metric to estimate the efficiency of mem-308

ory allocation corresponding to each threshold ε .309

Suppose f(t) is the memory usage function of appli-310

cation at time t, segment begins at ta and ends at tc,311

and the total memory used by application in this seg-312

ment is defined as:313

MemoryUsage =
∫ tc

ta □ f (t)dt. (2)

In fact, since the f(t) function is unknown, we314

only have the set of discrete data points, where315

M_iindicated memory used at a specific time twhich316

is collected from monitoring application. Suppose317

segment contains kdata points with Iindicated the318

sample interval of monitoring sensor. Integral (2) is319

now being calculated by discrete rectangle method:320

MemoryUsage = ∑k
i=1□Mi ∗△ti

⇔ MemoryUsage = I ∗∑k
i=1□Mi.

(3)

As mentioned before, the memory allocated to each321

segment is approximate to MAX value of that seg-322

ment. Applying (3), the expected memory consump-323

tion is:324

SegmentE f f iciency =
I ∗∑k

i=1□Mi

k ∗ I ∗MAX

⇔ SegmentE f f iciency =

∑k
i=1□Mi

k
∗1

MAX

⇔ SegmentE f f iciency =

_
M

MAX
.

(5)

With (5) is the allocation efficiency of each segment, 325

suppose we have nsegments, Ti is the i^thsegment 326

length and Ki is the number of data points in the ith 327

segment, the total efficiency corresponding to the de- 328

fined threshold is: 329

TotalE f f iciency =
∑n

i=1

_
Ml

MAX
.Ti

∑n
i=1□Ti

⇔ TotalE f f iciency =
∑n

i=1

_
Ml

MAX
.Ki

∑n
i=1□Ki

.

(6)

Efficiency Boundary 330

Efficiency boundary of each segment can guarantee 331

the quality of whole allocation solution. Naturally, 332

the upper bound reaches 1 and represented the most 333

ideal scenario when application used exactly the same 334

amount of given memory. And lower bound repre- 335

sents the worst situation that allocation strategy can 336

be encountered. Thus this subsection will mainly fo- 337

cus on finding the lower bound of the solution from 338

Section 4.1. 339

In each segment, suppose M1 is the first data point 340

of segment and (
_
M1) = M1. Maximum value of seg- 341

ment reaches its highest thresholdwhen data points in 342

segment progressively increase by a largest allowable 343

value between any data points. From (1), we have: 344

_____
Mn−1 −Mn ≥−ε

_____
Mn−1

⇔ Mn ≤
_____
Mn−1 ∗ (1+ ε) .

(7)

Equal sign from (7) occurs in any data points, for all 345

k > 1, mean value of the first kdata points in segment 346

can be calculated as below: 347

_
Mk =

_____
Mk−1∗(k−1)+

_____
Mk−1∗(1+ ε)

k
⇔

_
Mk =

_____
Mk−1 ∗

(
1+ ε

k
)
. (9)

□
(9)⇒

_
M2 = M1 ∗

(
1+ ε

2
)

(10)
(9),(10)⇒

_
M3 < M1 ∗

(
1+ ε

2
)k−1

. (12)

5
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In contrast, Minimum value of segment reaches it348

lowest threshold when data points in segment pro-349

gressively decrease by a largest allowable value be-350

tween any data points. From (1), we have:351

_____
Mn−1 −Mn ≤ ε

_____
Mn−1

⇔ Mn ≥
_____
Mn−1 ∗ (1− ε) .

(9)

And similarly, equal sign from (9) occurs in any data352

points. The mean value of first k data points in seg-353

ment is:354

_
Mk =

_____
Mk−1 ∗

(
1− ε

k

)
⇒ Mk > M1 ∗

(
1− ε

k

)k−1
.

(10)

In order to figure out the allocation lower bound, the355

situation when efficiency become worst must be first356

determined. There are three different cases of mem-357

ory consumption:358

A: Memory is progressively increases within thresh-359

olds.360

B: Memory is progressively decreases within thresh-361

olds.362

C:Memory is randomly changes within thresholds.363

From (7) and (8), suppose segment has kdata points,364

the efficiency of case A is:365

_
M

MAX
=

M1 ∗Πk
n=2

(
1+

ε
n

)
M1 ∗Πk−1

n=2

(
1+

ε
n

)
∗ (1+ ε)

⇔
_
M

MAX
=

1+
ε
k

1+ ε
.

(11)

From (9) and (10, suppose segment has k data points,366

the efficiency of case B is:367

_
M

MAX
=

M1 ∗Πk
n=2

(
1− ε

n

)
M1_

M
MAX

= Πk
n=2

(
1− ε

n

)
.

(12)

For all k > 2 and ε ∈ (0,1], (11) > (12) by using inves-368

tigating function approach. Therefore, the efficiency369

from case B is worse than case A.370

k = 2 ⇒ 1+ ε
2 >

(
1− ε

2
)
(1+ ε)371

k = 3 ⇒ 1+ ε
3 >

(
1− ε

2
)(

1− ε
3
)
(1+ ε)372

k > 3 ⇒ 1+ ε
k

1+ε >
(
1− ε

2
)(

1− ε
3
)(

1− ε
4
)
(1− ε) ⇒373

1+ ε
k

1+ε > Πk
n=2

(
1− ε

n
)
.374

Theefficiency from case C is equal to the case when all375

data points in case C is sorted in gradually decreasing376

order. In this case, we can consider each data point377

is changed α time compared to mean value of previ-378

ous data points. Additionally, the difference between379

MAXandMIN in case C is smaller than the difference 380

in case B. Hence, we have: 381{
Mn =

_____
Mn−1 ∗ (1−αn)

αn < ε,∀n

}
(13)

From (13), following similar step from case B, the 382

mean value of first k data points in segment is: 383

_
Mk = M1 ∗Πk

n=2

(
1− αn

n

)
. (14)

From (13) and (14), suppose segment has k data 384

points, the efficiency of case C is: 385

_
M

MAX
=

M1 ∗Πk
n=2

(
1− ε

n

)
M1

⇔
_
M

MAX
= Πk

n=2

(
1− ε

n

) (15)

The efficiency in case B is also worse then case C be- 386

cause of (12), (13) and (15): 387

1− αn

n
> 1− ε

n
∀n

⇔ Πk
n=2

(
1− αn

n

)
> Πk

n=2

(
1− ε

n

)
.

(16)

Thus it is confident to say the worst efficiency belongs 388

to case C whenmemory consumption is progressively 389

decreased. The boundary of segment efficiency is: 390

Πk
n=2

(
1− ε

n

)
< E f f iciency < 1

When k→+∞, lower bound will go toward 0 but in 391

face, kis always a limited number and my depend on 392

program type, program execution time, sensor col- 393

lecting interval, etc. Table 1 showed the lower bound 394

of different εwith different k. Decreasing ε can poten- 395

tially lead to decrease of knumber in all segments, the 396

smaller ε value, the more efficiency could be guaran- 397

teed. 398

RESULT AND EVALUATION 399

MSDF proposes a way to store monitoring memory 400

data and retain only necessary information in order 401

to save storage space. In case of memory allocation 402

problem, ε value indicates the trade off between allo- 403

cation efficiency and storage saving. We define some 404

metrics to clarify MSDF efficiency and the trade off 405

between these two factors with different εvalue. Ef- 406

ficiency score showed the efficiency of memory al- 407

location could potentially achieve with segment in- 408

formation corresponding to the εvalue. Number of 409

blocks indicates the disk block used by storage to save 410

monitoring data, suppose the field size of all type of 411

monitoring data in database is all equal to exactly on 412

6
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Table 1: Efficiency lower bound of allocation strategy corresponding to different ε and different k.

ε 1 0.8 0.5 0.35 0.2 0.1

K = 1000 0 0 0.04 0.1 0.27 0.52

K = 10000 0 0 0.01 0.04 0.17 0.41

block. And finally, storage metrics compares the stor-413

age space of MSDF approach to normal approaches414

such as Zabbix or Prometheus.415

As mentioned before, to our knowledge, there have416

not been any works which is similar to ours. MSDF417

is evaluated on four different computing programs418

from civil engineering research at our SuperNode-419

XP system with 10 seconds collector sensor interval.420

Each program used VASP library and executed in to-421

tal 196.6 hours on computing node with 48 cores, 96422

threads and 256 GBmemory configuration. And nor-423

mal approaches which store all monitoring data is set424

as the baseline for comparison purpose.425

Efficient scores from Table 2 confirmed the validity of426

Table 1 where efficient scores are all greater than the427

lower bound in the same ε value. When the threshold428

value is decreased, the efficiency increased but num-429

ber of blocks, i.e storage size also increased. Because430

lower threshold means more strict in allowing value431

change to be happen, and hence will be split to more432

segments which costmore storage size. But the fluctu-433

ation of data points in each segment will become sta-434

ble thus increasing the overall efficiency score.435

When ε goes toward 0, efficiency goes toward 1 and436

number of records reaches total raw records in which437

mean $=$ max $=$ min $=$ value. Based on the ef-438

ficiency score, storage saving and the statistics value439

at each segment, ε value can be reconfigured to find440

the best trade off between efficiency and storage sav-441

ing. Different type of applications may yield more or442

less optimistic result, however with VASP programs443

above, MSDF is able to save 99% storage when alloca-444

tion effectiveness reach more than 80%.445

DISCUSSION446

Allocation strategy from Section 4 suggest that at each447

segment, program should be allocated to the max-448

imum memory usage of that segment. In fact, at449

each segment, resources must be allocated before, but450

the maximum value can not be found until reaching451

the end of that segment. Fortunately, applications in452

computing system usually belong to parameter-sweep453

class9, i.e program executes each time in the same be-454

havior but with different input. Thus applications in455

computing system can be assumed thatmemory or re-456

sources between its different executions do not vary457

much, so it is feasible to apply history information in- 458

cluding segment and segment maximum to the next 459

execution. 460

The core idea of MSDF is to group together any con- 461

tinuous and stable data points. MSDF accepts new 462

coming data changing below certain threshold com- 463

pared to previous data points. In case of applications 464

which memory usage is gradually increased or de- 465

creased within the allowable threshold, MSDF even- 466

tually will have only one segment with low efficiency 467

allocation. As a consequence, MSDF should not be 468

applied in applications with resource usage gradually 469

changed behavior. 470

Additionally, since the final data saved in storage of 471

each application executions is only segment informa- 472

tion, These value can be directly visualized as shown 473

in Figure 3 without being recomputed. The more 474

closer between line and upper rectangle boundary 475

compared to lower boundary indicated the more ef- 476

ficiency of allocation in the corresponding segment. 477

Moreover, by visualizing different application exe- 478

cutions and stacking these graphs together, system- 479

operating questions such as whether these applica- 480

tions are able to executed simultaneously can be easily 481

answered. In general MSDF can be utilized to use in 482

scheduling problem as well.

Figure 3: Statistics visualization corresponding to
Figure 2. In each segment, the line represented
mean value, rectangle represented min and max
boundary. Lines without rectangle boundary rep-
resents the mean=min=max situation.

483

CONCLUSION 484

In this paper, we first introduced our monitoring 485

framework architecture and briefly detailed its com- 486

ponents. To sum up, monitoring framework can 487

collect metrics at application level, utilize Apache 488

7
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Table 2: Efficiency and records stored in storage associate with different thresholds.

Threshold Efficiency Number of Blocks Storage Saving

1 0.04 60 99.91%

0.8 0.28 204 99.71%

0.5 0.67 400 99.43%

0.35 0.79 476 99.32%

0.2 0.85 660 99.06%

0.1 0.91 1136 98.39%

Normal Approaches ~1 70693 100.00%

Kafka as a data broker to organize system hierar-489

chy structure under different topic and also leverage490

Kafka streaming processing ability to perform online-491

analysis. As a use case, we demonstrated how to ap-492

ply online-analysis in monitoring memory for alloca-493

tion problem throughMSDF.MSDF showed the trade494

off between allocation efficiency and storage saving495

based on the threshold εvalue. In conclusion, apply-496

ing MSDF in monitoring and analyzing memory us-497

age of computing application can save a huge storage498

capacity while still ensure allocation efficiency.499

In future, since setting threshold in MSDF can affect500

both allocation efficiency and storage saving, we aim501

to fine tuning MSDF ε value in order to get the best502

trade off between the two factors, and in advanced503

providing MSDF ability to auto update that threshold504

value at application runtime. Moreover, also in mem-505

ory monitoring area, we planned to adapt MSDF to506

solve application scheduling problem as well.507
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TÓM TẮT
Hệ thống máy tính hiệu năng cao (HPC) hoặc hệ thống tính toán có sự khác biệt nhất định với hệ
thống dịch vụ thông thường. Nhìn chung, hệ thống dịch vụ chỉ chạy một số ứng dụng cụ thể, ví
dụ nhưmáy chủ web hoặc máy chủmail và phục vụ cùng lúc nhiều người dùng nhất có thể trong
khi với hệ thống tính toán, người dùng trong hệ thống có quyền chạy các ứng dụng của riêng họ
và hoàn toàn cô lập với người dùng khác. Kỹ thuật giám sát là chìa khóa để đảm bảo hiệu quả
sử dụng hệ thống và sự hài lòng của người dùng, bằng cách kết hợp kỹ thuật giám sát cùng với
phân tích dữ liệu, quản trị viên có thể giải quyết một số bài toán vận hành cụ thể như phân bổ tài
nguyên, lập lịch ứng dụng, phát hiện bất thường, v.v. Khác với hệ thống dịch vụ trong khi các quản
trị viên thường sẽ giám sát những thông tin tổng quát của hệ thống trong khi với hệ thống tính
toán sẽ cần giám sát thông tin của từng ứng dụng khởi chạy bởi từng người dùng. Do hệ thống
tính toán thường đồng thời thực thi rất nhiều ứng dụng nên việc giám sát bằng các phương pháp
truyền thống sẽ tiêu tốn một lượng lớn dung lượng lưu trữ và khiến ta chi trả nhiều phí hơn nếu
hệ thống được triển khai trên môi trường điện toán đámmây.
Bài viết này tập trung vào việc phân tích dữ liệu sử dụng bộ nhớ của chương trình tính toán nhằm
giải quyết bài toán phân bổ tài nguyên cho lần khởi chạy tiếp theo của ứng dụng đó. Khác với các
phương pháp truyền thống trong đó tất cả dữ liệu được giám sát thu thập sẽ được lưu trữ trong cơ
sở dữ liệu trước khi phân tích, chúng tôi sử dụng các phương pháp phân tích trực tuyến trong đó
mọi dữ liệu mới sẽ được thu thập, xử lý, lưu trữ trong bộ nhớ đệm để chuyển đổi thành thông tin
hữu ích và chỉ cho phép dữ liệu cần thiết được ghi xuống đĩa cứng. Chúng tôi đề xuất Định Dạng
Thống Kê Dữ Liệu Cho Bộ Nhớ (MSDF), một kỹ thuật xử lý trực tuyến được sử dụng trong giám sát
bộ nhớ sử dụng của ứng dụng nhằm tiết kiệm dung lượng lưu trữ trong đĩa cứng trong khi vẫn lưu
giữ đủ thông tin để giải quyết bài toán phân bổ tài nguyên cho ứng dụng. MSDF có thể giúp tiết
kiệm hơn 95% dung lượng lưu trữ trong khi luôn đảm bảo hiệu quả phân bổ tài nguyên tùy thuộc
vào tham số ε và MSDF có thể được mở rộng để giải quyết thêm nhiều bài toán vận hành khác
hoặc tinh chỉnh để thích ứng trong việc giám sát và phân tích các thông số khác của ứng dụng.
Từ khoá: giám sát hệ thống, giám sát bộ nhớ, xử lý dòng dữ liệu, phân tích trực tuyến (online),
phân bổ tài nguyên bộ nhớ

Trích dẫn bài báo này: Huân L Q N, Thìn N M, Lai N L D, Hùng N Q, Nam T.MSDF: Định dạng thống kê
dữ liệu cho bộ nhớ ứng dụng trong giám sát hệ thống. Sci. Tech. Dev. J. - Eng. Tech. 2024; ():1-1.
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