Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

Open Access Full Text Article

Bai nghién ciiu

MSDF: Memory Statistics Data Format used in system monitoring

La Quoc Nhut Huan"?3"*, Nguyen Manh Thin"3, Nguyen Le Duy Lai"3, Nguyen Quang Hung'3, Thoai Nam'-23

=
e

Use your smartphone to scan this
QR code and download this article

'High Performance Computing
Laboratory, Faculty of Computer Science
and Engineering (HPC Lab), Ho Chi
Minh City University of Technology
(HCMUT), 268 Ly Thuong Kiet Street,
District 10, Ho Chi Minh City, Vietnam

2Advanced Institute of Interdisciplinary
Science and Technology (iST), Ho Chi
Minh City University of Technology
(HCMUT), 268 Ly Thuong Kiet Street,
District 10, Ho Chi Minh City, Vietnam

1

*Vietnam National University Ho Chi
Minh City (VNU-HCM), Linh Trung

Ward, Thu Duc City, Ho Chi Minh City, *
Vietnam.

«

o

Correspondence

La Quoc Nhut Huan, High Performance
Computing Laboratory, Faculty of 8
Computer Science and Engineering 9
(HPC Lab), Ho Chi Minh City University

of Technology (HCMUT), 268 Ly Thuong '
Kiet Street, District 10, Ho Chi Minh City, 11

Vietnam .

~

Advanced Institute of Interdisciplinary
Science and Technology (iST), Ho Chi
Minh City University of Technology 14
(HCMUT), 268 Ly Thuong Kiet Street, 5
District 10, Ho Chi Minh City, Vietnam

13

1
Vietnam National University Ho Chi Minh
City (VNU-HCM), Linh Trung Ward, Thu "7
Duc City, Ho Chi Minh City, Vietnam. 18

Email: huan@hcmut.edu.vn. 19

ABSTRACT

High performance computing (HPC) system or computing system is very different from ordinary
service system. In general, service system only run some specific applications, e.g. web server or
mail server to serve as many requests from users as possible while in computing system, users have
the permission to run their own applications and isolated with each other. Monitoring technique is
the key to ensure system efficiency and users satisfaction, and by combining monitoring together
with data analysis, system administrators can solve several operating problems specific to comput-
ing system such as resource allocation, application scheduling, abnormal detection, etc. Different
from service system while administrators usually prefer system overall information rather than infor-
mation of each individual user applications in computing system. Since computing system usually
contains many applications executed simultaneously, monitoring computing system with tradi-
tional approaches would potentially consume a huge amount of storage space and would cost
more charge fee if system is deployed in cloud environment.

This article focuses on analyzing monitored memory usage data retrieved from computing pro-
gram in order to benefit its next resource allocation. Different from traditional approaches with
batch processing technique in which collected data is all stored in database before analyzing, we
utilized online analysis approaches in which every new coming data is captured, processed, cached
in order to transform into useful information, and only allow necessary data be stored in database.
We propose Memory Statistics Data Format (MSDF), an on-the-fly processing technigue used in
monitoring memory usage of computing application for saving storage space while still preserve
enough information to solve resource allocation problem. MSDF can help to save more than 95%
of storage space while allocation efficiency is always guaranteed depend on the eparameter and
MSDF can be extended to solve other operating problem or adapted to montior and analyze other

remaining application metrics.

Key words: System Monitoring, Memory Monitoring, Streaming Processing, Online Analysis,

Memory Allocation

INTRODUCTION

2> High Performing computing (HPC) system or com-

puting system or computing system in general is criti-
cal for scientific research. One of its prominent exam-
ples of application is the artificial intelligence training
for Smart Village project. Computing system contains

7 a large number of nodes with special network topol-

ogy and technologies to boost the parallel computing
ability as much as possible. Different from ordinary
service system such as web or mail server, users in
computing system have the permission to access and
execute their own programs, i.e. application. system
resources are shared between multiple users and is al-
located based on user’s requirements and allocation
policies defined by system administrators. Asa conse-

6 quence, efficiently managing and operating comput-

ing system with multiple users and a vast number of
applications running simultaneously would cost ad-

mins much more effort.

Monitoring computing infrastructure helps admins
continuously follow system operation, profile abnor-
mal behavior, etc. and facilitate admins to update
their management and operating plan in the future.
“We are drowning in data but starving for informa-
tion” !, system monitoring often lacks of analysis abil-
ity to transform raw data into useful information and
knowledge, which leads to the situation where ev-
ery piece of data collected from any metrics consid-
ered potential for later analysis has to be permanently
stored. As a result, since monitored metrics are col-
lected at application level, applying traditional mon-
itoring in computing system would potentially con-
sume a huge number of storage space and cost more
charge fee if system is deployed in cloud environment.
The gap between data saved in storage and actual data
in use can be filled with online-analysis which stores
only necessary information retrieved from processing

raw monitoring data.

Cite this article : Huan L Q N, Thin N M, Lai N L D, Hung N Q, Nam T. MSDF: Memory Statistics Data
Format used in system monitoring. Sci. Tech. Dev. J. - Engineering and Technology 2024; ():1-8.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

History

e Received: 25-9-2023
o Accepted: 29-3-2024
e Published Online:

DOl :

‘ ‘fi} Check for updates

Copyright

© VNUHCM Press. This is an open-
access article distributed under the
terms of the Creative Commons

Attribution 4.0 International license.

=

‘ G
VNUHCM PRESS

39

4

S

4

4;

)

43

4

&

4

>

4

3

48

4

o

5

=]

5

5.

N

5.

<

5

r

5!

&

5

o

5

N

5

©

5

©

6

=3

6

6.

)

6.

&

6:

by

65

66

67

68

69

70

71

72

73

7:

N

7!

@

71

o

7

N

7

>3

7!

©°

8

S

8

8.

]

8.

@

8.

R

8!

G

8

o

8

N

8

&

89

Memory usage which directly reflects system health,
is always listed as one of the most critical metrics.
Information get from analyzing the consumption of
application memory benefits from solving several
problems including resource allocation, application
scheduling, abnormal detection, etc. In this article,
we focus on monitoring memory data which is re-
trieved from our monitoring framework, and analyz-
ing these data to update memory allocation policy
for the next execution. Different from normal ap-
proaches in which data is collected and immediately
passed to storage, we utilized online-analysis in which
every new coming data is being processed, cached,
and later converted into useful information before be-
ing stored in database. We named this method Mem-
ory Statistics Data Format (MSDEF), for later reference
convenience. MSDF highlights the ability to poten-
tially save a massive amount of storage size when ap-
ply in monitoring and analyzing application memory
while still preserves enough information for alloca-
tion problem.

Monitoring framework and MSDF is currently be-
ing developed at high performing computing cen-
ter (HPCC) from HCMUT-VNU for our specific
SuperNode-XP system. The following briefly summa-
rizes the contribution of this paper:

« Propose Kafka based monitoring framework
which can collect application metrics and per-
form online-analysis.

« Propose dynamic allocation in terms of memory
and extract its efficiency boundary.

« Propose online analysis in memory monitoring
to save storage space relating to memory alloca-
tion for applications in computing system.

The remain of this paper is structured as follow. Sec-
tion 2 the related work that we have surveyed. Section
3 introduces the architecture overview of our mon-
itoring framework and shortly describes its compo-
nents. Section 4 demonstrates how we apply MSDF
in memory monitoring and allocation and Section 5
will discuss the evaluation results. Section 6 further
discusses about analyzing memory data and MSDE
Finally Section 7 summarizes all of our work and out-
lines the future works.

RELATED WORK

There are immense of open source and commercial
monitoring tools for computing system with differ-
ent feature, different architecture. For wide range of
used, Zabbix provides a stable solution for monitor
host level metrics and hardware through Simple Net-
work Management Protocol (SNMP); Prometheus is

a new generation tool with flexible user defined met-
rics through custom exporter and a powerful build-in
query language PromQL; Nagios highlights the con-
tinuous real time network monitor with sensitive fail-
ure detection and many other similar softwares can be
listed as Datadog, Icinga, SolarWinds, etc. In general,
these tools are all lack of streaming processing abil-
ity when directly forward collected metrics into long
term storage.

In recent years, Apache Kafka always stays as one of
the best distributed data streaming platforms. Kafka
provides both message queue and pub sub server
at the same time with consistency through syn-
chronize and fault tolerant through controller repli-
cated mechanism and can be scaled horizontally by
simply adding more instances to expand the traffic
bandwidth. Besides, Kafka come along with a vast
amount of processing framework including it own
Application Programming Interface (API) in JAVA,
PYTHON, SCALA, etc. which has the lowest over-
head and mostly used in small scale problem; Apache
Spark?, a micro-batch processing framework with
build in Kafka compatible Structured Streaming li-
brary, mostly used in large scale big data problem;
Apache Flink?, a real streaming processing framework
with build in Kafka library also used for large scale
problem.

Analyzing data from system monitoring is not a new
task, there have already been published several re-
searches about this field in recent year. For instance,
analyzing power usage of Central Processing Unit
(CPU) by streaming linear regression using big data
processing framework?; reconstructing application
heap from monitoring tool trace file to detect mem-
ory leak by offline-analysis °; detecting software ag-
ing based on memory leak investigation at software
runtime’. But to the best of our knowledge, this is the
first work which is applied streaming analysis in mon-
itoring of application memory to save storage space
with memory allocation problem case study.

MONITORING FRAMEWORK

As depicted in Figure 1, framework contains four
different layers. Communication Layer positions in
computing nodes and hardware devices, where met-
rics is directly collected. Communication and An-
alyzing Layer position in head nodes, i.e. manage-
ment nodes, where contain central processing logic of
monitoring framework in order to minimize comput-
ing node overhead. Finally Storage Layer positions in
storage nodes where long term data is accumulated for
later purposes such as visualization or offline-analysis.

90

91

92

93

94

95

96

97

98

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

14

142

14

@

14

&

146

14

3

14

3

149

150

15

15

o

153

15:

by

15!

a

15¢

o

15

R

15

@

159

160

16

16,

[N

163

16:

iy

165

161

-

16

N

168

169

171

=)

17

e || B =l
o3 g >))
2z &JE’ 5 TimescaleDB
JDBC
~
o
c —
52
T & Processing module 1 Processing module 2 ¥l Processing module N
c -«
oo <
38+ Consumer
Iz API
5 s
x ¢ Kraft
[Kafka Broker 1 Kafka Broker 2 Kafka Broker N Controller
o
-
o r
g g Praducer
5 . Cluster 1 Cluster N API
= o
£8 g
5 - Node Node HW HW Node HW
4 8
2, & E3 EIB BN -
£ 0 2
ER] ° @ m
a9
Q
[}
-

Figure 1: Monitoring Framework Architecture.

Collector Layer. The lowest layer responsible for col-
lecting monitoring metrics. Since load from com-
puting system mostly from scientific programs exe-
cuted by system users, monitoring framework must
be able to collect metrics from each user application.
Sensor from monitoring framework, which is a dae-
mon program installed at every computing node, is
responsible for collecting resource usage correspond-
ing to each user and application such as CPU uti-
lization, memory usage, network traffic, etc. Beside,
Sensor also considers to collect other hardwares met-
rics such as network devices which exports through
SNMP protocol; Uninterruptible Power Supply (UPS)
devices which exports through SNMP; temperature,
humidity sensor through Message Queuing Teleme-
try Transport (MQTT) protocol.

Theoretically, each cluster in computing system has
different role, different behavior hence Sensor must
be able to configure to collect only applicable metrics
with appropriate interval. Additionally, sensors also
can perform simple preprocessing step without cost-
ing too much computing resources if necessary. These
data will eventually be pushed up to Communication
Layer through Kafka Producer APL

Communication Layer. Because of a large number of
applications executed at the same time, the commu-
nication between Analyzing Layer and data source
become extremely complicated. Apache Kafka takes
role as an intermediate data broker to provide a re-
liable transmission channel. Kafka implements the
message queue and pub sub server where Collector

Layer take role as publishers push data to Kafka un-
der specific topics and Analyzing Layer takes role as
consumers fetch data from subscribed topics. Further
more, Kafka provides a powerful streaming process-
ing API for Analyzing Layer to conveniently perform
online processing and analysis. Kafka is coordinated
by Kraft Controller which acts as a gateway to receive
all request from both producers and consumers and
dispatch them to appropriate broker server.

Different type of metrics can be organized under
different topic follow Linux hierarchical file system
structure. For example <organization name>/<cluster
name>/<node id> contains metrics of a specific com-
puting node at host level such as CPU load, free disk,
etc.; <organization name>/<cluster name>/<node
id>/<user id> contains metrics of any applications
executed under that user id in a specific computing
node. Moreover, independent type of metrics can be
put under different topic partitions to leverage paral-
lel processing.

Analyzing Layer. 'This layer is responsible for han-
dling streaming data from Communication Layer,
each Processing Module will have different operations
based on topic-name and partition-id. In relatively
small system, Processing Module uses simple API
which is JAVA Kafka Consumer to process streaming
data and Java Database Connectivity (JDBC) driver
to ingress into storage. But in large scale computing
system with a vast number of clusters, users and ap-
plications where monitoring metrics from Collector
Layer are considered big data, streaming processing
with Apache Spark is seem to be more suitable.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

204

205

206

207

208

209

210

21

212

213

214

215

216

217

218

219

220

22

222

223

224

225

227

228

229

23

S

232

233

234

235

236

237

238

239

240

24

242

243

244

245

246

247

248

249

250

25

252

253

254

Streaming processing ability can be utilized to create
new metrics in more generalized level, for example
aggregating each individual node health status to get
the overall cluster health; or to immediately response
when errors occur, for example auto shut down all
infrastructure when detected power cut. Moreover,
performing online-analysis in system monitoring can
significantly reduce the total amount of data store and
computing effort. We will further discuss how to ap-
ply online-analysis in case of memory monitoring in
Section 4.

Storage Layer. This layer contains database for long
term storing where data can later be used in offline-
analysis phrase, e.g applying machine learning algo-
rithm to predict future trend to generate the next up-
grade plan. Naturally, monitoring data is time series
but because of Extract-Load-Transform (ETL) pro-
cess in Analyzing Layer, storage should also support
data warehouse along with time series database. We
use TimescaleDB an extension of PostgreSQL utilizes
for time series data but still maintaining relational
data model.

MSDF METHOD

Memory Allocation

Computing resources is shared between multiple pro-
grams executed by different users. An effective alloca-
tion strategy can result in more applications execute at
the same time and hence boosting system efficiency.
Allocation mechanism is usually classified as static
and dynamic allocating. With naive static allocation,
memory is given for application based on the maxi-
mum usage which is collected from execution in the
past. This strategy advantages can be listed as simple
implementation, can prevent application from crash-
ing and memory overflow, but is ineffective because of
memory wasting. As in Figure 2, memory usage usu-
ally will fluctuate within a certain range of value for a
specific time before significant change happen; and in
most of the time, memory usage is far from its maxi-
mum value. Other applications may have more stable
memory lines however allocating with static policy is
not effective with this type of application and com-
puting system in general. Thus, dynamic allocation
should be utilized to only give application the most
appropriate memory at specific period of time in exe-
cution to increase allocation efficiency.

Allocation from serverless computing® is rated as one
the best among dynamic allocation mechanism, in
which application continuously requests the amount
of memory needed and allocator will then give exactly
that amount of memory. Nevertheless, applications

in computing system are mostly located inside con-
tainer environment, although we can dynamically ad-
just the environment resources, we can not continu-
ously update its configuration due to technology lim-
ited. Inspired from serverless computing, suppose the
next execution is nearly similar to previous one, appli-
cation runtime can be split into multiple continuous
segments and each with different allocation of mem-
ory. Memory given in each segment should be around
the maximum value recorded in history correspond-
ing to that segment. Recall from Figure 2, theoreti-
cally data points in each segment should be stable and
as close to the maximum value of that segment as pos-
sible to maximize allocation efficiency. Thus, any free
data points, i.e have not yet belonged to any segments
before significant change happen, should be grouped
into the same segment.

MSDF Approach

Allocation strategy from Section 4.1 only requires
the maximum memory usage. With normal ap-
proach, monitoring framework permanently stored
every memory data of application collecting at dif-
ferent timestamp, allocator queries and traverses
through all of that data to compute the maximum
value at each different segment. Based on sensor in-
terval and application run time, each execution could
end up thousand to million of records in database
which will largely cost storage size and computing ef-
fort. Instead with applying online processing in mon-
itoring, when new data is coming, MSDF can calcu-
late segment statistic value immediately and store only
necessary data.

In particular, MSDF calculates the max, min, mean,
and amount of data points of each segment. Suppose
the new coming data at n/thoffset is M_n, and current
max, min are MAX and MIN, new values can be easily
calculated with below formula:

MAX = Greater(M,, MAX).
Min = Lesser(M,,MIN).

Calculating mean (#,,) from previous mean n-1 value
is a bit more complicated by following the formula be-
low:

_ M, x(n—1)+M,

M, =
n

We defined €€(0,1] is the Threshold parameter and
can be configured, a significant change is considered

to happen when new coming data exceeds the given
ethreshold:

|M”il _Mn| >
Mn—l

€. (1)

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

299

300

301

302

303

304

305

306

30

<

308

309

310

31

313

314

315

316

317

318

319

320

32

322

323

324

50

40

30

memory (GB)

20 A

10 A

Application Memory Usage
—
08-06 12 08-06 18 08-07 00 08-07 06 08-07 12 08-07 18 08-08 00 08-08 06
timestamp

Figure 2: Efficiency and records stored in Storage Layer associate with different thresholds.

Then MSDF store the information related to that seg-
ment into database, reset n=0, move to the next seg-
ment and calculate new statistics value. By leveraging
streaming processing technique, the final memory in-
formation of application execution saved in database
is only statistics values including mean, max, min and
number of data points corresponding to each seg-
ment.

Allocation Efficiency

We define a metric to estimate the efficiency of mem-
ory allocation corresponding to each threshold €.
Suppose f(t) is the memory usage function of appli-
cation at time t, segment begins at t, and ends at t,
and the total memory used by application in this seg-
ment is defined as:

MemoryUsage = fti‘ Of (r)ds. (2)

In fact, since the f(t) function is unknown, we
only have the set of discrete data points, where
M_iindicated memory used at a specific time twhich
is collected from monitoring application. Suppose
segment contains kdata points with Iindicated the
sample interval of monitoring sensor. Integral (2) is
now being calculated by discrete rectangle method:

MemoryUsage = Zf-;l OM; « At;

3
< MemoryUsage = I*):f:l 0M;. 3)

As mentioned before, the memory allocated to each
segment is approximate to MAX value of that seg-
ment. Applying (3), the expected memory consump-
tion is:
IxYk OMm;
kxIxMAX
725?:1 OM; * 1
k (5)
MAX

SegmentE f ficiency =

& SegmentE f ficiency =

=

& SegmentE f ficiency = X

S

With (5) is the allocation efficiency of each segment,
suppose we have nsegments, T; is the iAthsegment
length and K; is the number of data points in the i’
segment, the total efficiency corresponding to the de-
fined threshold is:

o
i= '
TotalE f ficiency = %
i=1 i 6)
n M
i=1 A
.. MAX
& TotalE f ficiency = ————="—
;.1:1 OK;
Efficiency Boundary

Efficiency boundary of each segment can guarantee
the quality of whole allocation solution. Naturally,
the upper bound reaches 1 and represented the most
ideal scenario when application used exactly the same
amount of given memory. And lower bound repre-
sents the worst situation that allocation strategy can
be encountered. Thus this subsection will mainly fo-
cus on finding the lower bound of the solution from
Section 4.1.

In each segment, suppose M is the first data point
of segment and (M) = Mj. Maximum value of seg-
ment reaches its highest threshold when data points in
segment progressively increase by a largest allowable

value between any data points. From (1), we have:
Mn—l —M, > *gMn—] (7)
S M, <M, %(1+¢).

Equal sign from (7) occurs in any data points, for all
k > 1, mean value of the first kdata points in segment
can be calculated as below:

(k=)M+ (1)
= T
My =M +(1+%). (9

M
=

O

9) =M =M +(1+5) (10
9),(10) = Mz < My + (1+5)". (12)

(
(

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

348

349

350

35

35

Y

35

<

354

35

a

35

-\

35

S

35

©

359

360

36

362

363

36

by

365

36

-

368

36

©

370

37

372

373

374

375

37

o

37

N

378

37

©°

In contrast, Minimum value of segment reaches it
lowest threshold when data points in segment pro-
gressively decrease by a largest allowable value be-
tween any data points. From (1), we have:

My —Mp < eMp,_;

9
S My >M,—1x(1—¢). ©)

And similarly, equal sign from (9) occurs in any data
points. The mean value of first k data points in seg-
ment is:

e 1)

e\ k-1 (10)
éMk>M1*<1—E> .
In order to figure out the allocation lower bound, the
situation when efficiency become worst must be first
determined. There are three different cases of mem-
ory consumption:
A: Memory is progressively increases within thresh-
olds.
B: Memory is progressively decreases within thresh-
olds.
C: Memory is randomly changes within thresholds.
From (7) and (8), suppose segment has kdata points,
the efficiency of case A is:

t
o Ml*Hﬁ:2<1+;)
- €
MAX Ml*Hﬁ;;(l"")*(]"‘e) (11)
€ n
- Wi _1+E
MAX 1+¢’

From (9) and (10, suppose segment has k data points,
the efficiency of case B is:

&
]_/[Ml*Hfl:z (1—;)
M,
wax =2 (1-3)

Forallk >2and € € (0,1], (11) > (12) by using inves-
tigating function approach. Therefore, the efficiency

(12)

from case B is worse than case A.
k=2=1+5>(1-5)(1+¢)
k=3=1+5>(1-5)(1-5)(1+¢)

k>3= 5> (-5 (-5 0-50-9=
T > (1-5).

The efficiency from case C is equal to the case when all
data points in case C is sorted in gradually decreasing
order. In this case, we can consider each data point
is changed a time compared to mean value of previ-
ous data points. Additionally, the difference between

MAX and MIN in case C is smaller than the difference
in case B. Hence, we have:

M, =M,_, *(1 7an)
o, < €,Vn

From (13), following similar step from case B, the

(13)

mean value of first k data points in segment is:

_ Q,
My =My «TIE_, (177">. (14)

From (13) and (14), suppose segment has k data
points, the efficiency of case C is:

),

_ k
g M (1

MAX_ M, (15)
M X €
o — =Tk_ (1 - 7)
MAX "2 n

The efficiency in case B is also worse then case C be-
cause of (12), (13) and (15):

1—%>1—§Vn
@H’;:2<1—%)>H’;:2(1—%>.

Thus it is confident to say the worst efficiency belongs

(16)

to case C when memory consumption is progressively
decreased. The boundary of segment efficiency is:
k € ..
e, (1 - ;> < Efficiency < 1

When k—+co, lower bound will go toward 0 but in
face, kis always a limited number and my depend on
program type, program execution time, sensor col-
lecting interval, etc. Table 1 showed the lower bound
of different ewith different k. Decreasing € can poten-
tially lead to decrease of knumber in all segments, the
smaller € value, the more efficiency could be guaran-
teed.

RESULT AND EVALUATION

MSDF proposes a way to store monitoring memory
data and retain only necessary information in order
to save storage space. In case of memory allocation
problem, € value indicates the trade off between allo-
cation efficiency and storage saving. We define some
metrics to clarify MSDF efficiency and the trade off
between these two factors with different evalue. Ef-
ficiency score showed the efficiency of memory al-
location could potentially achieve with segment in-
formation corresponding to the evalue. Number of
blocks indicates the disk block used by storage to save
monitoring data, suppose the field size of all type of
monitoring data in database is all equal to exactly on

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

41

412

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

413

IS
N

IS
X

435

436

43

S

438

43

©

44

S

s
=

442

443

444

44!

&

44

3

448

449

45

S

45

45,

o

453

454

45!

)

451

o

45

B

Table 1: Efficiency lower bound of allocation strategy corresponding to different ¢ and different k.

€ 1 0.8 0.5
K =1000 0 0 0.04
K'=10000 0 0 0.01

0.35 0.2 0.1
0.1 0.27 0.52
0.04 0.17 0.41

block. And finally, storage metrics compares the stor-
age space of MSDF approach to normal approaches
such as Zabbix or Prometheus.

As mentioned before, to our knowledge, there have
not been any works which is similar to ours. MSDF
is evaluated on four different computing programs
from civil engineering research at our SuperNode-
XP system with 10 seconds collector sensor interval.
Each program used VASP library and executed in to-
tal 196.6 hours on computing node with 48 cores, 96
threads and 256 GB memory configuration. And nor-
mal approaches which store all monitoring data is set
as the baseline for comparison purpose.

Efficient scores from Table 2 confirmed the validity of
Table 1 where efficient scores are all greater than the
lower bound in the same € value. When the threshold
value is decreased, the efficiency increased but num-
ber of blocks, i.e storage size also increased. Because
lower threshold means more strict in allowing value
change to be happen, and hence will be split to more
segments which cost more storage size. But the fluctu-
ation of data points in each segment will become sta-
ble thus increasing the overall efficiency score.

When € goes toward 0, efficiency goes toward 1 and
number of records reaches total raw records in which
mean $=$ max $=$ min $=$ value. Based on the ef-
ficiency score, storage saving and the statistics value
at each segment, € value can be reconfigured to find
the best trade off between efficiency and storage sav-
ing. Different type of applications may yield more or
less optimistic result, however with VASP programs
above, MSDF is able to save 99% storage when alloca-
tion effectiveness reach more than 80%.

DISCUSSION

Allocation strategy from Section 4 suggest that at each
segment, program should be allocated to the max-
imum memory usage of that segment. In fact, at
each segment, resources must be allocated before, but
the maximum value can not be found until reaching
the end of that segment. Fortunately, applications in
computing system usually belong to parameter-sweep
class?, i.e program executes each time in the same be-
havior but with different input. Thus applications in
computing system can be assumed that memory or re-
sources between its different executions do not vary

much, so it is feasible to apply history information in-
cluding segment and segment maximum to the next
execution.

The core idea of MSDF is to group together any con-
tinuous and stable data points. MSDF accepts new
coming data changing below certain threshold com-
pared to previous data points. In case of applications
which memory usage is gradually increased or de-
creased within the allowable threshold, MSDF even-
tually will have only one segment with low efficiency
allocation. As a consequence, MSDF should not be
applied in applications with resource usage gradually
changed behavior.

Additionally, since the final data saved in storage of
each application executions is only segment informa-
tion, These value can be directly visualized as shown
in Figure 3 without being recomputed. The more
closer between line and upper rectangle boundary
compared to lower boundary indicated the more ef-
ficiency of allocation in the corresponding segment.
Moreover, by visualizing different application exe-
cutions and stacking these graphs together, system-
operating questions such as whether these applica-
tions are able to executed simultaneously can be easily
answered. In general MSDF can be utilized to use in
scheduling problem as well.

Application Memory Statistics

. H

e —

[
= .

o ® o o o o ©
WO o I oo ke o o
« « « « « « «

timestamp

Figure 3: Statistics visualization corresponding to
Figure 2. In each segment, the line represented
mean value, rectangle represented min and max
boundary. Lines without rectangle boundary rep-
resents the mean=min=max situation.

CONCLUSION

In this paper, we first introduced our monitoring
framework architecture and briefly detailed its com-
ponents. To sum up, monitoring framework can

collect metrics at application level, utilize Apache

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

485

486

487

488

Science & Technology Development Journal - Engineering and Technology 2024, ():1-8

489

490

49

49,

N

493

49:

b3

495

491

o

497

498

49!

©

50

S

50

502

50.

i

50

R

50.

a

506

50

S

508

509

51

=)

51

512

51

@

51

>

515

517

51

o

51

©

52

=3

52

522

52

@

52

X

52

)

Table 2: Efficiency and records stored in storage associate with different thresholds.

Threshold Efficiency
1 0.04

0.8 0.28

0.5 0.67

0.35 0.79

0.2 0.85

0.1 0.91
Normal Approaches ~1

Number of Blocks Storage Saving
60 99.91%

204 99.71%

400 99.43%

476 99.32%

660 99.06%

1136 98.39%

70693 100.00%

Kafka as a data broker to organize system hierar-
chy structure under different topic and also leverage
Kafka streaming processing ability to perform online-
analysis. As a use case, we demonstrated how to ap-
ply online-analysis in monitoring memory for alloca-
tion problem through MSDE. MSDF showed the trade
off between allocation efficiency and storage saving
based on the threshold €value. In conclusion, apply-
ing MSDF in monitoring and analyzing memory us-
age of computing application can save a huge storage
capacity while still ensure allocation efficiency.

In future, since setting threshold in MSDF can affect
both allocation efficiency and storage saving, we aim
to fine tuning MSDF ¢ value in order to get the best
trade off between the two factors, and in advanced
providing MSDF ability to auto update that threshold
value at application runtime. Moreover, also in mem-
ory monitoring area, we planned to adapt MSDF to
solve application scheduling problem as well.

ACKNOWLEDGMENT

This research was conducted within 58/20-
DTDL.CN-DP Smart Village project sponsored
by the Ministry of Science and Technology of
Vietnam.

We gratefully acknowledge the valuable support and
resources provided by HPC Lab at HCMUT, VNU-
HCM.

CONFLICT OF INTEREST

The authors confirm that there is not any conflict of
interest related to the content reported in this paper.

AUTHORS CONTRIBUTION

La Quoc Nhut Huan: first author, writing & editing,
investigation, formal analysis, provide solution.
Nguyen Manh Thin: supervision, validation, func-
tion testing, resources providing.

Nguyen Quang Hung: solution advising, reviewing,
methodology.

Nguyen Le Duy Lai: solution advising, reviewing,
methodology.

Thoai Nam: funding acquisition, supervision, con-
ceptualization, instruction.

REFERENCES

1. Choenni S, Bakker R, Blok HE, de Laat R. Supporting tech-
nologies for knowledge management. In: Knowledge Man-
agement and Management Learning: Extending the Hori-
zons of Knowledge-based Management. Springer; 2005. p. 89-
112;Available from: https://doi.org/10.1007/0-387-25846-9_6.

2. Shoro AG, Soomro TR. Big data analysis: Ap spark perspective.
Global Journal of Computer Science and Technology: Csoft-
ware & Data Engineering. 2015;15(1):7-14;.

3. Javed MH, Lu X, Panda DK. Characterization of big data stream
processing pipeline: a case study using flink and kafka. In: Pro-
ceedings of the Fourth IEEE/ACM International Conference on
Big Data Computing, Applications and Technologies. 2017. p.
1-10;Available from: https://doi.org/10.1145/3148055.3148068.

4. Beneventi F, Bartolini A, Cavazzoni C, Benini L. Continuous
learning of hpc infrastructure models using big data analyt-
ics and in-memory processing tools. In: Design, Automation &
Test in EuropeConference & Exhibition (DATE), 2017. IEEE; 2017.
p. 1038-1043;Available from: https://doi.org/10.23919/DATE.
2017.7927143.

5. Weninger M, Lengauer P, M&ssenbdck H. User-centered offline
analysis of memory monitoring data. In: Proceedings of the 8th
ACM/SPEC on International Conference on Performance En-
gineering. 2017. p. 357-360;Available from: https://doi.org/10.
1145/3030207.3030236.

6. Weninger M, Méssenbock H. User-defined classification and
multi-level grouping of objects in memory monitoring. In:
Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering. 2018. p. 115-126;Available from:
https://doi.org/10.1145/3184407.3184412.

7. Matias R, Costa BE, Macedo A. Monitoring memory-related soft-
ware aging: An exploratory study. In: 2012 IEEE 23rd Interna-
tional Symposium on Software Reliability Engineering Work-
shops. IEEE; 2012. p. 247-252;Available from: https://doi.org/10.
1109/ISSREW.2012.90.

8. LiZ GuoL, ChengJ, Chen Q He B, Guo M. The serverless com-
puting survey: A technical primer for design architecture. ACM
Computing Surveys (CSUR). 2022;54(10s):1-34;Available from:
https://doi.org/10.1145/3508360.

9. Chirigati F, Silva V, Ogasawara E, de Oliveira D, Dias J, Porto
F, Valduriez P, Mattoso M. Evaluating parameter sweep work-
flows in high performance computing. In: Proceedings of the
1st ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies. 2012. p. 1-10;Available from: https:
//doi.org/10.1145/2443416.2443418.

526

527

528

529

530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

https://doi.org/10.1007/0-387-25846-9_6
https://doi.org/10.1145/3148055.3148068
https://doi.org/10.23919/DATE.2017.7927143
https://doi.org/10.23919/DATE.2017.7927143
https://doi.org/10.23919/DATE.2017.7927143
https://doi.org/10.1145/3030207.3030236
https://doi.org/10.1145/3030207.3030236
https://doi.org/10.1145/3030207.3030236
https://doi.org/10.1145/3184407.3184412
https://doi.org/10.1109/ISSREW.2012.90
https://doi.org/10.1109/ISSREW.2012.90
https://doi.org/10.1109/ISSREW.2012.90
https://doi.org/10.1145/3508360
https://doi.org/10.1145/2443416.2443418
https://doi.org/10.1145/2443416.2443418
https://doi.org/10.1145/2443416.2443418

Tap chi Phdt trién Khoa hoc va Céng nghé - Engineering and Technology 2024, ():1-1

Open Access Full Text Article

Bai nghién ciiu

MSDF: Dinh dang théng ké dii liéu cho bd nhé (ing dung trong

giam sat hé théng

La Quéc Nhut Huan'2?3*, Nguyén Manh Thin'-3, Nguyén Lé Duy Lai'-3, Nguyén Quang Hung'-3, Thoai Nam'23

Use your smartphone to scan this
QR code and download this article

'Phong thi nghiém tinh todn hiéu ning
cao, khoa Khoa hoc va Ky thudt mdy
tinh (HPC Lab), Truong Dai hoc Bdch
Khoa Thanh Phé H6 Chi Minh
(HCMUT), 268 Ly Thuiong Kiét, Quan
10, Thanh Phé H6 Chi Minh, Viét Nam,

2Vign Khoa hoc va Cong nghé tién tién
lién nganh (iST), Trudng Dai hoc Bdch
Khoa Thanh Phé H6 Chi Minh
(HCMUT), 268 Ly Thudng Kiét, Qudn
10, Thanh Phé H6 Chi Minh, Vi¢t Nam,

*Pai hoc Quéc gia Thanh Phé Ho Chi
Minh (VNU-HCM), Phudng Linh
Trung, Thanh Phd Thii Diic, Thanh Pho
Hoé Chi Minh, Viét Nam.

Lién hé

La Quéc Nhut Huan, Phong thi nghiém tinh
todn hiéu ndng cao, khoa Khoa hoc va Ky
thuat may tinh (HPC Lab), Truong Bai hoc
Béch Khoa Thanh Phé H6 Chi Minh (HCMUT),
268 Ly Thudng Kiét, Quéan 10, Thanh Phé HO
Chi Minh, Viét Nam,

Vién Khoa hoc va Cong ngheé tién tién lién
nganh (iST), Trudng Bai hoc Bach Khoa
Thanh Phd H6 Chi Minh (HCMUT), 268 Ly
Thuong Kiét, Quéan 10, Thanh Phé HO Chi
Minh, Viét Nam,

Dai hoc Quéc gia Thanh Phé H6 Chi Minh
(VNU-HCM), Phusing Linh Trung, Thanh Phé
Tha Buc, Thanh Phé HE Chi Minh, Viét Nam.

Email: huan@hcmut.edu.vn.

TOM TAT

Heé théng may tinh hiéu nang cao (HPC) hodc hé théng tinh todn co su khac biét nhat dinh vai hé
théng dich vu thong thuang. Nhin chung, hé théng dich vu chi chay mét s6 tng dung cu thé, vi
du nhu méy chi web hodc may chi mail va phuc vu cling lic nhiéu ngudi dung nhéat co thé trong
khi vai hé thong tinh todn, ngudi dung trong hé théng co quyén chay cac Ung dung cua riéng ho
va hoan toan c6 lap véi ngudi dung khéac. Ky thuat giam sat la chia khéa dé dam bao hiéu qua
str dung hé théng va su hai long clia ngudi dung, bang cach két hop ky thuat gidm sat cing véi
phan tich dirliéu, quan trj vién co thé gidi quyét mat sé bai toan van hanh cu thé nhu phan bé tai
nguyén, 1ap lich ting dung, phat hién bat thuong, v.v. Khac véi hé théng dich vu trong khi cac quan
tri vién thudng sé giam sat nhiing théng tin tdng quéat cla hé théng trong khi véi hé théng tinh
todn sé can giam sat thong tin cla ting Ung dung khdi chay bai tiing ngudi dung. Do hé théng
tinh toan thuong dong thai thuc thi rét nhiéu Uing dung nén viéc giam sat bang cac phuong phap
truyén thong sé tiéu ton mot lugng I6n dung luong luu tri va khién ta chi trd nhiéu phi hon néu
hé théng dugc trién khai trén méi trudng dién toan dam may.

Bai viét nay tap trung vao viéc phan tich di liéu st dung bd nhé ctia chuong trinh tinh todn nham
gidi quyét bai toan phan bé tai nguyén cho 1an khai chay tiép theo clia Ung dung doé. Khac véi cac
phuong phap truyén théng trong doé tat ca dir liéu dugc gidm sat thu thap sé dugc luu trl trong co
s& di lieu trudce khi phan tich, ching toi st dung cac phuong phap phan tich truc tuyén trong dé
moi d{ liéu mdi sé dugc thu thap, x(r ly, luu trt trong bd nhé dém dé chuyén déi thanh théng tin
hitu ich va chi cho phép d liéu can thiét dugc ghi xudng dia cling. Ching téi dé xuat Dinh Dang
Thong Ké DU Liéu Cho BO Nhé (MSDF), mét ky thuat xdr ly truc tuyén dugce st dung trong gidm sét
b6 nhé st dung clia Uing dung nham tiét kiem dung luong luu trir trong dia ciing trong khi van luu
gilr du thong tin dé gidi quyét bai toan phan bé tai nguyén cho tng dung. MSDF c6 thé giup tiét
kiém hon 95% dung lugng luu trit trong khi ludn dam bao hiéu qua phan bé tai nguyén tuy thudc
vao tham s6 € va MSDF c6 thé dugc md rong dé gidi quyét thém nhiéu bai toan van hanh khac
hodc tinh chinh @€ thich Ung trong viéc giam st va phan tich cac théng s6 khéac clia ing dung.
Tu khoa: giam sat hé théng, gidm sat bo nhd, xt ly dong di liéu, phan tich truc tuyén (online),
phan bé tai nguyén bd nhé

Trich dan bai bdo nay: Huan L Q N, Thin N M, Lai N L D, Hing N Q, Nam T. MSDF: Dinh dang théng ké
dit liéu cho bé nhé ting dung trong giam sat hé théng. Sci. Tech. Dev. J. - Eng. Tech. 2024; ():1-1.

	MSDF: Memory Statistics Data Format used in system monitoring
	INTRODUCTION
	RELATED WORK
	MONITORING FRAMEWORK
	MSDF METHOD
	Memory Allocation
	MSDF Approach
	Allocation Efficiency
	Efficiency Boundary

	RESULT AND EVALUATION
	DISCUSSION
	Conclusion
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	AUTHORS CONTRIBUTION
	References

