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ABSTRACT
This paper investigates the fracture behavior of 2-dimensional plates with through-thickness crack
by using the extended concept of the Radial Point Interpolation Method (RPIM). The attractiveness
of the RPIM shape functions is the satisfaction of the Kronecker delta property providing direct im-
position of essential boundary conditions. In the extended concept, the jump in deflection and
rotation fields caused by crack, also the stress singularity near the crack tip are described by adding
enriched functions to the interpolation equation. Particularly, Heaviside function and asymptotic
enriched function. For numerical integration, the Cartesian Transformation Method (CTM) is em-
ployed. No integration background cell is required in CTM, this technique transforms a domain
integral into a boundary integral and a 1D integral. For analysis of discontinuous problems, in this
study, the distribution of integration points is manipulated to avoid the discontinuity caused by
crack segmentation. Therefore, no subdomains are required, unlike other reference CTM studies.
To achieve that, a virtual boundary is introduced that represents the discontinuity such as holes
or cracks. This also matches the concept of the extended approach that no explicit discontinuity
exists in the geometry, instead, the discontinuity is modelled by mathematics equation. The Stress
Intensity Factors (SIFs) of the crack problems are evaluated through the interaction integral tech-
nique. The efficiency of the proposed method is illustrated through various numerical examples.
The accuracy of the obtained results are compared with other available numerical solutions and
analytical solutions.
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INTRODUCTION
The finite element method (FEM) has been popularly
used in various engineering fields such as structural
analysis, topology optimization, heat transfer. Be-
sides, fracture analysis is also one of the most inter-
ested topics since it is related to the durability and life-
time of the structure. However, using FEM to model
crack is quite complicated due to the discontinuity
of the geometry and the singularity of the stress field
asymptotic to the crack tip. Furthermore, as the crack
grows, the mesh needs to be updated at each calcu-
lation step. This remeshing task is time-consuming.
For that reason, the extended finite element method
(XFEM)1 is proposed to model discontinuity such
as crack, hole, etc by a mathematical approach and
crack propagation can be simulated without remesh-
ing. The enrichment functions are used in the XFEM
formulation to capture the displacement field discon-
tinuity across the crack and the stress field singularity
near the crack tip.
In addition to the development of mesh-based meth-
ods like FEM, the meshfree method is another class
of numerical method that being noticed and thriv-
ing recently. As the name implies, no element is

found in meshfree method, the problem domain is
discretized into a set of scattering nodes. Since the last
two decades, many meshfree methods have been in-
troduced such as the Element Free Galerkin (EFG)2,3,
Smoothed Particle Hydrodynamics (SPH)4, Moving
Kriging (MK)5,6, Radial Point Interpolation Method
(RPIM)7–10, etc. Unlike many other meshfree meth-
ods, RPIM possesses the Kronecker delta property.
For that reason, it is easy to impose the essential
boundary conditions as in the traditional FEM which
is not capable for other meshfree methods. And to
investigate the fracture behavior, Nguyen et al. de-
veloped the extended RPIM (XRPIM)9,11–13 based
on the idea of XFEM. Other meshfree methods with-
out using the “extended” concept for analyzing frac-
ture problems can be mentioned as the Integrated Lo-
cal Mesh Free model (ILMF) 14 and Weighted Least
Squares method (WLS)15.
In the meshfree method, the numerical integration
is mainly computed using the Gaussian quadrature
(GQ) and conducted on a background grid. This
technique may lead to numerical error as pointed out
by9,10. To overcome this, Khosravifard et al. 16,17 pro-
posed the Cartesian transformation method (CTM)
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as an alternative numerical integration technique.
The CTM technique can be applied even in domains
with complicated shape and does not require creat-
ing background cells. Besides the original poten-
tial of the technique, the CTM was also incorpo-
rated NURBS18,19 to deal with complex configura-
tions. Then, CTM is also implemented to analyze 2D
cracked problems in 13. However, to ensure the accu-
racy of the technique, the integral domain must not
be discontinuous due to the appearance of the crack.
Therefore, in previous studies9,13, it requires creating
subdomain tomake sure that the integration ray is not
separated by the crack. More specifically, the crack
is at the boundary of the subdomain. This approach
is suitable and convenient for simulating static crack,
but there would be difficulties when the crack propa-
gates.
In this study, the authors follow the original idea of
CTM to create integration points. The integration in-
terval in each integration ray is manipulated to avoid
the crack, this ensures the continuity of the integral
domain. Hence, there is no need to create subdo-
mains. Besides, the region close to the crack needs
many integration points to obtain good approxima-
tions, so the distribution of integration points in this
zone is also modified to get more points near the
crack. It should also be noted that, in the extended
concept, there is no explicit crack in the model, so the
crack boundary usedwhenmanipulating theCTM in-
tegral point generation process is a “virtual discontin-
uous boundary”.
This paper introduces the manipulation of CTM to
compute numerical integration without creating sub-
domains for analysis of cracked bodies. TheXRPIM is
employed for modelling cracks. The fracture param-
eters needed to be evaluated are the stress intensity
factors (SIFs), which are calculated using the interac-
tion integral approach. The accuracy of the technique
is shown by various numerical examples, proving the
validity of the method.

METHODOLOGY
Extended Radial Point Interpolation
Method
In the XRPIM formulation, the approximate displace-
ment field uh (x) at an interest point x is expressed as
the equation below11–13

uh (x) = ∑i∈W ϕi (x)ui +∑ j∈Ws
ϕ j (x)

(
H −H j

)
b j

+∑k∈Wt
ϕi (x)

[
∑4

l=1 (Fl −Flk)clk
] (1)

in which the step by step to construct the RPIM shape
function ϕi can be found in20. W denotes the set of all

nodes inside the support domain of the interest point
x, Ws collects split nodes that have support domains
cut by the crack and Wt contains tip nodes that con-
tains crack tip in the support domain (see Figure 1).
For the enrichment part, the value of Heaviside func-
tion H is defined as the following equation

H ( f (x)) =

{
+1 i f f (x)> 0
−1 i f f (x)< 0

(2)

The tip-enriched function Fl is defined as1

Fl (r, θ) = {
√

r sin
θ
2
,
√

r cos
θ
2
,

√
r sin

θ
2

sinθ ,
√

r cos
θ
2

sinθ}
(3)

where r and θ are illustrated in Figure 1.
To compute the stiffness matrix of the cracked body,
the strain computing matrix B is now including
the standard Bs tandard and enriched Benriched con-
stituents

B =
[
Bs tandard , Benriched] (4)

The enriched matrix Benriched for split nodes and tip
nodes are given as

Bspit enr =

[
[ϕI (H −HI)],1 0

0 [ϕI (H −HI)],2

]
(5)

Btip enr,l =

[ϕI (Fl −FlI)],1 0
0 [ϕI (Fl −FlI)],2

[ϕI (Fl −FlI)],2 [ϕI (Fl −FlI)],1

 (6)

In fracture analysis, stress intensity factors (SIFs) play
an important role and need to be evaluated. The SIFs
values are usually computed by the interaction inte-
gral approach1 which is defined as the following ex-
pression

I =
∫

A

(
δi juaux

i,1 +δ aux
i j ui,1 −W intδ1 j

)
q, jdA (7)

where the auxiliary state is expressed by the super-
script “aux”. The auxiliary fields can be found in 1. q
is a weight function and defined as the following ex-
pression

q =

(
1−2

|x1 − xtip
1 |

c

)(
1−2

|x2 − xtip
2 |

c

)
(8)

in which c denotes the side length of the square do-
main having the crack-tip as its center.
The interaction strain energy is computed as below

W int =
1
2

(
δi jεaux

i j +δ aux
i j εi j

)
(9)

The SIFs can be derived by using the relation

I =
2
(
KIKaux

I +KIIKaux
II
)

_
E

(10)
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Figure 1: Types of enriched nodes and local polar coordinate at the crack tip. Blue dot indicates split node and
red dot is the tip node.

for example, the opening mode SIF KI is obtained by
settingKaux

I = 1 andKaux
II = 1. The term

_
E in Eq. (10)

is defined as{ _
E = E plane stress_
E = E/

(
1− v2) plane strain

(11)

Cartesian TransformationMethod
To simplify the ideas for the proposed method, a 2D
integration domain Ω that contains a hole inside is
considered. The domain integral M of a function F(x,
y) over the domainΩ can be described as the equation
below

M =
∫

M F (x,y)dΩ (12)

Now create an auxiliary domain ΩA containing the
initial domain , see Figure 2. One can use any arbi-
trary shapes for the domainΩA

16,17, but a rectangular
domain should be chosen for the simplicity. Define a
function

_
F (x,y) in the whole domain ΩA as below

_
F (x,y) =

{
F (x,y) (x,y) ∈ Ω
0 (x,y) ̸∈ Ω

(13)

Due to the rectangular domain, the integral in Eq.
(12) is rewritten as16,17

M =
∫ y2

y1

∫ b
a

_
F (x,y)dxdy =

∫ y2
y1

h(y)dy (14)

The Gaussian quadrature (GQ) is employed to com-
pute the 1D integral in Eq. (14)

M = ∑n
i=1

(∫ yi+1
yi

h(y)dy
)
= ∑n

i=1

(∫ 1
−1 h(η)Jdη

)
= ∑n

i=1 ∑m
j=1 h

(
η j
)

Jw j
(15)

Figure 2: Description of an auxiliary rectangular do-
main ΩA contains the initial domain Ω.

In Eq. (15), h(y)= h(y(η)),η j stands for the jth inte-
gration point (see Figure 3 (a)), w j denotes the weight
number of the jth integration point and J = dy/dη =

(yi+1 − yi)/2.
Draw an integration ray through the jth Gaus-
sian point η j , parallel with the horizontal axis and
cross the domain Ω16. Now the integral h(y) =∫ b

a
_
F (x,y)dx in each integration ray is computed by

using the GQ

h(yi) =
∫ b

a
_
F (x,yi)dx

= ∑k
q=1

(∫ x2q
x2q−1

F (x,yi)dx
) (16)

∫ x2q
x2q−1

F (x,yi)dx = ∑l
s=1

(∫ 1
−1 F (ξ ,yi)Jdξ

)
= ∑k

q=1 ∑l
s=1 F (ξs,yi)Jws

(17)

where (ξs,yi) is the sth integration point on the ith
integration ray, ws is the weight number of the point
(ξs,yi) and J =

(
x2q − x2q−1

)
/2.

In previous reference studies 9,13, to ensure the conti-
nuity of the integration domain, particularly the inte-
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Figure 3: Description of integration intervals, rays
and points.

gration interval, the whole body is divided into sub-
domains. The crack is at the boundary of the subdo-
main as shown in Figure 4. This approach is suitable
and convenient for simulating static crack, but there
would be difficulties when the crack propagates. For
that reason, this paper aims to introduce a so-called
“manipulated CTM” for computing the numerical in-
tegration without creating subdomains.

Figure 4: An example of subdomains for CTM inte-
gration in a cracked plate.

Now considering the circular hole in the integration
domain Ω (Figure 3(a)) becomes slender as in Fig-

ure 3(b) and then becomes a straight line as in Fig-
ure 3(c). The boundary of the interval on two sides
of the circle (square marker) is now combined into
one. The integration intervals on two sides of the
straight line (or crack) are now continuous. However,
in the “extended” concept of themeshfree method, no
explicit crack in the geometry is performed. There-
fore, the discontinuity is now considered as a “virtual
boundary” (see Figures 3 and 5). This virtual discon-
tinuous boundary is for defining enriched nodes and
the integration intervals. Overall, the geometry of the
problem remains intact.

Figure 5: “Virtual boundary” of crack.

For illustration,Figure 6 shows the distribution of in-
tegration points in a square domain with an inclined
crack. As seen in the figure, the region around the
crack is manipulated to have a large number of in-
tegral points. More details on the procedure of dis-
tributing these integration points are discussed in Sec-
tion discussions.
Notice that for a horizontal crack that parallels the in-
tegration ray, it is easy to manipulate the integration
ray not coincident with the crack and then no treat-
ment is needed. Figure 7 shows two approaches of
creating integration points when the crack parallels
the integration ray. If the integration ray does not
coincide with the crack as in Figure 7(a), this can be
considered as an ordinary CTM. When the integra-
tion ray coincides with the crack, the boundary of the
interval must be defined as the crack tip as in Fig-
ure 7(b).
The implementation procedure is summarized in Ta-
ble 1. Compared with the original CTM, only steps 3
and 4 are inserted, steps 2 and 6 are also slightly mod-
ified.

RESULTS
Asmentioned above, for the horizontal crack that par-
allels to the x-axis (and integration rays), it is conve-
nient to create integration points avoiding the crack.
Therefore, two numerical examples of inclined crack
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Table 1: Summary of the implementation procedure

Step 1. Create integration intervals on the y-axis and define the position of integration rays.
Step 2. Create integration rays, more rays in the region of crack.
Step 3. Check if the current integration ray intersects with crack. If “Yes”, move to Step 4, if “No”, move to
Step 5.
Step 4. Define the intersect locations.
Step 5. Create integration intervals on each ray.
Step 6. Creating integration points, more points in the interval adjacent to the crack.

Figure 6: Integration points distribution inmanipu-
lated CTM.

model are investigated in this part to present the effi-
ciency of the proposed method, particularly:

• Square plate with slant crack at center.
• Rectangular plate with a slant edge crack.

Square plate with slant crack at center
In this first example, a square plate of side 2b = 2 m
with a slant crack (see Figure 8) is examined. The
crack length is 2a = 0.2 m. The plate is subjected to
distributed force δ0 = 1 Pa on top and bottom edges.
The material properties are E=1000 Pa and v = 0.3,
and the plane strain state is assumed. The discretized
model of 50× 50 nodes is consider for this problem.

Figure 7: Two approaches of creating integration
point inmanipulatedCTM: (a) avoid coincidence, (b)
coincidence.

The distribution of integration points is similar to the
illustration in Figure 6.
The accuracy of the XRPIM approach with the ma-
nipulated CTM is shown by the comparison between
the obtained stress intensity factors KI and KII with
the analytical solutions. According to1, the analytical
solution for SIFs is found as

KI = δ0
√

πacos2 β ,
KII = δ0

√
πacosβ sinβ .

(18)

where β is the crack angle as shown in Figure 8.
The change of the stress intensity factors KI and KII

versus angle of inclination β is displayed in Figure 9.

37



Science & Technology Development Journal – Engineering and Technology 2023, 5(SI2):33-43

Figure 9: Variation of the SIFs KI ,KII versus the crack angle β .

Figure 8: Square plate with slant crack at center.

The obtained results given by the present approach
fit well with reference ones. It can be concluded that
the manipulated CTM has high accuracy. However,

a slight deviation is observed in the figure, which can
be explained that the number of integration points in
the region around the crack is not sufficiently large.
This can be solved by increasing the number of inte-
gration rays and points in the intervals near the crack.
Of course, the computational cost will also increase.
The figure also shows that when the orientation an-
gle β increases, decreases. Meanwhile KII increases
and decreases symmetrically. The distribution of von
Mises stress is shown in Figure 10 for the case of in-
clined angle β = 600. It is easy to observe the stress
concentration at the two crack tips.

Rectangular plate with a slant edge crack
In this example, a rectangular plate of dimension b×
2b = 1× 2m containing an inclined crack at the left
edge (see Figure 11) is considered. The plate is sub-
ject to distributed force δ0 = 1 Pa on top and bottom
edges. The plane strain state is assumed and material
properties are elastic modulus E = 1000 Pa and Pois-
son’s ratio v = 0.3m, and. The model is discretized
uniformly with 30× 60 nodes. The inclined angle is
β = 300, various crack lengths are examined.
The obtained results are compared to XFEM results.
The XFEM model used 29 × 59 Q4 elements (also
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Figure 10: vonMises stress distribution for β = 600 .
Unit: Pa.

has 30× 60 nodes). Figure 11 illustrates the discrete
model of XFEM and XRPIM in the case of a/b = 0.6.

Figure 11: Model of a rectangular plate with a slant
edge crack under tension.

Figure 12: Discrete model when a/b = 0.6. (a) XFEM
and (b) XRPIM.

The plots in Figure 13 show the variation of the nor-
malized stress intensity factors KI and KII versus the
a/b ratio. It can be observed that results given by the
current approach fit well with reference results from
XFEM.Thefigure also shows thatKI andKII increases
when the length of crack increases. For β = 300, the
opening mode KI is dominant, this is also consistent
with the observations in the previous example.

Figure 13: Variation of normalized KI and KII with
respect to the a/b ratio.

Figure 14 illustrates the distribution of total displace-
ment field in three different a/b ratios. It can be
seen that when the crack length is small compared to
the width of the plate (Figure 14 (a)), the total dis-
placement field seem symmetry on two sides of the
plate. And when the crack length increases, the total
displacement dominant distributed on the top of the
plate and above the crack.
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Figure 14: Total displacement fields in different
crack length: (a) a/b = 0.2, (b) a/b = 0.4, (c) a/b = 0.6.
Unit: m.

Figure 15 displays the von Mises stress field in three
different a/b ratios. Based on the figure, the singular-
ity of stress is clearly recognized at the crack-tip.

DISCUSSIONS
The integration points as shown in Figure 6 is created
according to the steps in Table 1. Firstly, when creat-
ing integration intervals in the y-direction, determine
which intervals have at least one boundary point in
the region of the crack. Particularly in Fig. 6, the crack
zone is determined by the vertical distance between
two crack tips and extending by 2a/3 (a is half crack
length). Intervals that are in the crack zone havemore
integration rays. Then, when determining the inter-
section of the integration rays and the crack, those in-
tervals in the x-direction with a boundary point at the
intersection have more integration points distributed
in that interval. Finally, we get the result as shown in
Figure 6 without having to split the domain into sub-
domains.
As presented in section results, the results obtained
from the present approach show a good agreement
with those from analytical solutions and XFEM. The
trending variation of SIFs versus the angle orientation
and crack length is also observed from the numerical
results.
For the case of central crack, the following conclusion
can be drawn: when the orientation angle β increases,
KI decreases. Meanwhile KII increases and decreases
symmetrically.
For the case of edge crack, the result shows that KI

and KII increases when the length of crack increases.
For β , the openingmode is dominant, this is also con-
sistent with the observations in the central crack case.
When the crack length is small compared to the width
of the plate, the total displacement field seem sym-
metry on two sides of the plate. And when the crack
length increases, the total displacement dominant dis-
tributed on the top of the plate and above the crack.
The results obtained by the present approach are in
good agreement with reference ones. It can be con-
cluded that the manipulated CTM has high accuracy.
However, a slight deviation is observed in both ex-
amples, which can be explained that the number of
integration points in the region around the crack is
not sufficiently large. This can be solved by increas-
ing the number of integration rays and the number of
integration points in the intervals near the crack. Of
course, the computational cost will also increase.
The procedure of this “manipulated CTM” is similar
to the original one. Hence, with the existing CTM
code, only slight modifications are required.
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Figure15: Distributions of vonMises stress in differ-
ent crack length: (a) a/b = 0.2, (b) a/b = 0.4, (c) a/b =
0.6. Unit: Pa.

CONCLUSIONS
The extended RPIM has been employed to investi-
gate 2D cracked problems in this study. The RPIM
possesses the Kronecker delta property of shape func-
tions, allowing the direct imposition of the essential
boundary conditions as in the conventional FEM. For
numerical integration, the CTM is applied in which
there is no integration background cell is required.
This technique transforms a 2Ddomain integral into a
boundary integral and a 1D integral. For crack analy-
sis in this study, the distribution of integration points
is controled to avoid the discontinuity at crack. As a
result, there is no subdomain are needed, unlike other
previous CTM applications. With the existing CTM
code, only slight modifications are required since the
current technique is similar to the original one.
The accuracy of the present method is demonstrated
through the evaluation of the stress intensity factors.
The proposed approach has the potential to solve
more complicated problems, such as crack propaga-
tion, dynamic fracture and nonlinear problems (ma-
terial and geometry). To do so, the current algorithm
needs to be further modified and developed in the
next studies.
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Phân tích nứt bằngmột phương pháp không lưới mở rộng và
phương pháp biến đổi Đề-các không cần tạomiền con

Lồ Sìu Vẫy1,2, Nguyễn Thái Hiền1,2, Trương Tích Thiện1,2, Nguyễn Thanh Nhã1,2,*

TÓM TẮT
Bài báo này nghiên cứu ứng xử rạn nứt của các tấm phẳng có vết nứt xuyên suốt chiều dày bằng
cách sử dụng dạng mở rộng của Phương pháp nội suy điểm hướng kính (RPIM). Điểm thu hút của
hàm dạng RPIM đó là nó sở hữu thuộc tính Kronecker delta, do đó có thể áp đặt trực tiếp các điều
kiện biên cần thiết. Trong dạng mở rộng, bước nhảy trong trường độ võng và góc xoay do vết nứt
gây ra, cũng như sự suy biến ứng suất gần đỉnh vết nứt được mô tả bằng cách thêm các hàm làm
giàu vào phương trình nội suy. Cụ thể là hàm Heaviside và hàm làm giàu lân cận đỉnh vết nứt. Đối
với tích phân số, Phương pháp biến đổi Đề-các (CTM) được sử dụng. Trong CTM không cần ô tích
phân nền, kỹ thuật này biến tích phân miền thành tích phân trên biên và tích phân 1D. Để phân
tích các bài toán không liên tục, trong nghiên cứu này, sự phân bố của các điểm tích phân được
điều chỉnh để tránh sự gián đoạn gây ra bởi vết nứt. Do đó, không cần sử dụng miền con giống
như các nghiên cứu CTM khác. Để đạt được điều này, một biên ảo được đưa vào để đại diện cho
sự không liên tục của miền bài toán như lỗ hoặc vết nứt. Điều này cũng phù hợp với quan điểm
của cách tiếp cận mở rộng rằng không tồn tại sự gián đoạn rõ ràng trong hình học của bài toán,
thay vào đó, sự gián đoạn được mô hình hóa bằng phương trình toán học. Hệ số cường độ ứng
suất (SIFs) của bài toán nứt được đánh giá thông qua kỹ thuật tích phân tương tác. Hiệu quả của
phương pháp đề xuất được minh họa thông qua các ví dụ số khác nhau. Độ chính xác của các kết
quả thu được được so sánh với các kết quả số và kết quả giải tích có sẵn khác.
Từ khoá: Phân tích nứt, phương pháp không lưới mở rộng, XRPIM, CTM
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không lưới mở rộng và phương pháp biến đổi Đề-các không cần tạo miền con.  Sci. Tech. Dev. J. - 
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