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ABSTRACT
An extended meshfree method for analyzing cracked plates based on Reissner-Mindlin theory is
presented in this paper. Among a variety of meshfree formulations, the radial point interpolation
method (RPIM) is chosen in this studydue to the satisfactionof the Kronecker delta property. The es-
sential boundary conditions, therefore, are easily imposed in the RPIM. The shape function derived
from RPIM is employed to interpolate the field variables. An extended RPIM formulation is used to
model the crack segment without explicitly defining it in the discretized domain. The discontinuity
due to the crack is defined by extrinsic enriched functions, particularly, the jump in the displace-
ment field on two sides of the crack ismodelled by the Heaviside function, and the stress singularity
near the crack tip is described by the asymptotic enriched function. In this study, the stress resul-
tant intensity factors (SRIFs) are evaluated through the interaction integral approach. The obtained
SRIFs are shown in the paper through many numerical examples for comparison purposes. The
trending variation of SRIFs is also observed from the numerical results. It can be remarked that the
SRIFs depend on many factors: the number of cracks, crack orientation, load type and boundary
conditions. The numerical examples show the accuracy of the present approach. The obtained
results are compared with analytical solutions and other numerical methods.
Key words: cracked plate, Reissner-Mindlin plate, extended meshfree method, XRPIM

INTRODUCTION
Many engineering applications involve thin plate
structures, such as civil, automobile, ship and other
mechanical systems. Hence, it is essential to analyze
the behavior of plate structures. For the numerical
computation of plate structures, using a plate formu-
lation, such as Kirchhoff-Love theory1–4, Reissner-
Mindlin theory5–8, higher-order shear deformation
theory (HSDT)9–11 and so on requires less number of
degrees of freedom (DOFs) than considering it as a 3D
solid model. Hence, the computational cost for mod-
elling plate structures is reduced when using a plate
formulation. The Reissner-Mindlin theory is a sim-
ple plate formulation that considers first-order shear
deformation and is appropriate for moderately thick
plates. With a C0 continuity formulation, it does not
require higher-order shape functions.
Fracture analysis is also a crucial aspect besides the
analysis of plate structures since it affects the durabil-
ity of the structures. Therefore, more studies on the
modelling of plates with through thickness crack are
necessary. Many approaches have already been de-
veloped for solving cracked plate bending problems
using Reissner-Mindlin theory12–14, Kirchhoff-Love
theory 15,16 and HSDT17,18.

The eXtended Finite Element Method (XFEM) is a
powerful technique for modeling crack discontinuity
without explicitly defining it in the problem geome-
try and simulating crack growth without remeshing,
which was first proposed by19 and has been widely
applied. In the XFEM formulation, the enrichment
functions are used to describe the discontinuity in dis-
placement fields across the crack faces and the singu-
larity in stress fields near the crack tip.
Besides the conventional mesh-based finite element
method, the meshfree method is a developing branch
of computational method. The Radial Point Inter-
polation Method (RPIM)20,21 is a meshfree method
that has a special property called the Kronecker delta.
This makes it easy to apply the essential boundary
conditions in the RPIM, unlike many other meshfree
methods. For that reason, the RPIM is chosen in this
study. In the sameway as formulating XFEM,Nguyen
et al. combined RPIM and the extended formula-
tion with enrichment functions to introduce XPRIM,
which they used for 2D fracture problems22–24. How-
ever, there are still few studies on fracture analysis
of cracked plates using XRPIM. In the scope of this
study, cracked Reissner-Mindlin plates is analyzed by
using the XRPIM.
The stress resultant intensity factors (SRIFs) of
Reissner-Mindlin plateswith through-thickness crack
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are evaluated in this paper. The XRPIM is used for
modeling, and the radial basis to construct the shape
function is the Thin Plate Spline (TPS) function. The
accuracy of the proposed method is verified by vari-
ous numerical tests, showing the effectiveness of the
approach.

METHODOLOGY
Reissner-Mindlin plate
The first-order transverse shear deformation is con-
sidered in the Reissner-Mindlin theory, so the plate
cross-section the after deformation is still straight but
not normal to themid-surface 25. In the Cartesian co-
ordinate (see Fig. 1), the displacement components
are defined as the following equations

u1 (x1,x2,x3) = x3φ1 (x1,x2)

u2 (x1,x2,x3) = x3φ2 (x1,x2)

u3 (x1,x2,x3) = w(x1,x2)

(1)

where (x1,x2,x3) is the position of the interest point,
w is the deflection, φ1 and φ2, in that order, are the
rotation angle about x2 and x1 axes. The sign conven-
tion for φ1 and φ2 is depicted in Fig. 1.

Figure 1: Deflection, rotations and resultants of a
plate

In plate formulation, the constitutive relation for an
isotropic homogenous material is given as12

M =

M11

M22

M33

=
Et3

12
(
1− v2

)×


1 v 0
v 1 0

0 0
1− v

2


 φ1,1

φ2,2

φ1,2 +φ2,1

=
t3

12
Dbεb

(2)

Q =

[
Q1

Q2

]
= κt

[
µ 0
0 µ

][
φ1 +w,1

φ2 +w,2

]
= κtDsεs (3)

whereM denotes themoment resultants andQ stands
for the shear force resultants, E is the Young’s modu-
lus, µ is the shear modulus, v is the Poisson ratio, t is
plate thickness and t is the shear correction factor and

takes the value as 5/6 12. εb and εs indicate the strain
due to bending and shear, respectively.
In the above equations, Db and Ds, in that order, are
the bending stiffness tensor and shear stiffness tensor,
and defined as

Db =
E(

1− v2
)


1 v 0
v 1 0

0 0
1− v

2

 (4)

Ds =

[
µ 0
0 µ

]
(5)

The stiffness matrix of the Reissner-Mindlin plate is
derived from the weak formulation and expressed
as26

K =
t3

12

∫
Ω

BT
b DbBbdΩ+

∫
Ω

BT
s DsBsdΩ (6)

As seen in the equation, the stiffness matrix is made
up of two parts: bending (the first term on the right-
hand side) and shear components (the second term).
B-operators are defined as follow

BI
b =

0 ϕI,1 0
0 0 ϕI,2

0 ϕI,2 ϕI,1

 (7)

BI
s =

[
ϕI,1 ϕI 0
ϕI,2 0 ϕI

]
(8)

here ϕI denotes the shape function. And in this pa-
per, as indicated in the Introduction section, the shape
function is derived from the RPIM.More detail of the
construction of RPIM shape function can be found in
the reference27.
For brevity, the RPIM shape function consists of two
constituents: a radial basis and a polynomial basis. In
this study, theThin Plate Spline (TPS) function is em-
ployed as the radial basis to form the shape function
and is defined below

Ri (x1,x2) = rη
i (9)

where η is the shape parameter, ri is the distance be-
tween the interest point x and the node xi, and defined
as

Extended Radial Point Interpolation
Method
Fig. 2 shows different sets of nodes in a cracked plate
problem. W contains all nodes in the support domain
(includes grey, blue and red dots in Fig. 2). Ws con-
tains nodes whose support domain is cut by the crack
(blue dots in Fig. 2). And Wt is the set of nodes in
which the support domain contains crack tip (red dots
in Fig. 2).
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Figure 2: Type of enriched nodes and their support
domains

In the “extended” concept, the interpolation function
for an interest point x is incorporated with the en-
riched function and expressed as below

wh (x) = ∑i∈W ϕi (x)wi +∑ j∈Ws
ϕ j (x)

(
H −H j

)
bw

j
+∑k∈Wt

ϕk (x)
[
∑4

l=1 (Gl −Glk)cw
lk
] (10)

φh (x) = ∑i∈W ϕi (x)φi +∑ j∈Ws
ϕ j (x)

(
H −H j

)
bφ

j
+∑k∈Wt

ϕk (x)
[
∑4

l=1 (Fl −Flk)cφ
lk

] (11)

in whichH denotes the Heaviside function and is de-
fined as the following equation

H ( f (x)) =

{
+1 i f f (x)> 0
−1 i f f (x)< 0

(12)

In Eqs. (10) and (11), the asymptotic enrichment
functions Fl and Gl are defined as12

Fl = (r,θ) = {
√

r sin
θ
2
,
√

r cos
θ
2
,

√
r sin

θ
2

sinθ ,
√

r cos
θ
2

sinθ}
(13)

Gl = (r,θ) = {r3/2 sin
θ
2
,r3/2 cos

θ
2
,

r3/2 sin
3θ
2
, r3/2 cos

3θ
2
}

(14)

where r is the distance from the interest point x to
the crack tip xT IP, θ denotes the angle made up of
the crack segment and the line connecting the interest
point x and the crack tip xT IP.
As can be seen from Eqs. (13) and (14), Fl is the en-
richment functions for the bending components ap-
pearing in the interpolation equation of the rotation
angle. Fl contains terms proportional to r1/2. Gl is
the enrichment functions for the shear components
appearing in the equation of deflection. Gl contains
terms proportional to r3/2.
In order to compute the stiffness matrix as in Eq
(6), the B-operator is now including the standard
Bs tandard and enrichedBenriched components, namely

B =
[
Bs tandard , Benriched] (15)

The enriched B-operators for bending component are
given as

Bspit enr
b =

0 [ϕI (H −HI)],1 0
0 0 [ϕI (H −HI)],2
0 [ϕI (H −HI)],2 [ϕI (H −HI)],1

 (16)

BT IP enr,l
b =

0 [ϕI (F −FI)],1 0
0 0 [ϕI (F −FI)],2
0 [ϕI (F −FI)],2 [ϕI (F −FI)],1

 (17)

And for shear component

Bspit enr
S =

[ϕI (H −HI)],1 [ϕI (H −HI)],2
ϕI (H −HI) 0

0 ϕI (H −HI)


T

(18)

Btip enr,l
s =

[ϕI (Gl −GlI)],1 [ϕI (Gl −GlI)],2
ϕI (Fl −FlI) 0

0 ϕI (Fl −FlI)

 (19)

Stress resultant intensity factors
To evaluate the fracture behavior of cracked plates, the
factors of stress resultant intensity (SRIFs) are impor-
tant characteristics that need to be defined. SRIFs are
defined as the following equation25

K1 = lim
r→0

√
2rM22 (r,0)

K2 = lim
r→0

√
2rM12 (r,0)

K3 = lim
r→0

√
2rQ2 (r,0)

(20)

where K1 and K2 are the factors of moment intensity
and K3 is the factor of shear force intensity.
The stress intensity factors (SIFs) in 3D elasticity are
derived by the following relation [25]

k1 (x3) =
12x3

t3 K1

k2 (x3) =
12x3

t3 K2

k3 (x3) =
3
2t

[
1−
(

2x3

t

)2
]

K3

(21)

The values of SRIFs are calculated from the inter-
action integral, more detail can be found in refer-
ences28. The interaction integral for the cracked plate
is defined as the following expression

I =
∫

A(Mi jφaux
i,1 +Maux

i j φi,1 +Q jwaux
i,1 +Qaux

j w,1

−W intδ1 j)q, jdA+
∫

A[
(

Maux
i j, j −Qaux

i

)
φi,1+

Qi

(
φaux

i,1 +waux
,i1 + εaux

si,1

)
]qdA−

∫
A pwaux

,1 qdA

(22)

where “aux” is the abbreviation of the “auxiliary” state,
weight function q is defined as

q =

(
1−2

|x1 − xtip
1 |

c

)(
1−2

|x2 − xtip
2 |

c

)
(23)
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Figure 3: Interaction integral domain

In Eq. (23), c is the side length of integral domain as
shown in Fig. 3.
After computing the interaction integral I, the SRIFs
are derived by using the following relation

I(1,2,3) =
24π
Et3 (K1Kaux

1 +K2Kaux
2 )+

12π
10µt

K3Kaux
3

(24)

For example, K1 is obtained by setting Kaux
1 =

1, Kaux
2 = Kaux

3 = 0.

NUMERICAL RESULTS
There are two numerical examples in this section, and
each example contains two problems, particularly:

• Square plate with two edge-cracks.
• Square plate with inclined central crack.

In each example, there are two types of loads consid-
ered: distributed moment and uniform pressure. The
stress resultant intensity factors are computed in each
problem, and the variation of SRIFs with respect to
different crack orientations and crack lengths is also
examined.

Square plate with two edge-cracks

Distributed bending moment on opposite
edges
In this example, a square plate with the dimensions
of 2b = 2 m and thickness t is examined. The plate
contains two cracks on two opposite edges and is sub-
jected to distributed bending momentM on the other
two edges (see Fig. 4). The crack length is 2a, and the
distance between the two crack tips is 2c= 2b - 4a. The
material properties are: Young’s modulus E=1000 Pa
and Poisson ratio v = 0.3. The discretizedmodel with
40×40 nodes is used in this example.
Figure 5 presents the variation of the normalized SRIF
K1/(M

√
a) versus various ratios c/b. The results are

Figure 4: Plate with two cracks on opposite edges.

Figure 5: Normalized K1 with different c/b ratios of
two cases: b/t = 2 and b/t = 6

shown for two cases: b/t = 2 and b/t = 6. The cur-
rent XRPIM results are compared with the analytical
solution29, showing good agreement.
Several observations can be drawn from Fig. 5:
thicker plate has higher SRIF, the SRIF in both cases
tends to decrease as the c/b ratio increases from 0.1 to
0.7, and after that the SRIF slightly increases when the
c/b ratio is in the range of 0.7 – 0.9. It should be noted
that a decrease in c/b ratio means an increase in the
crack length, so the result can be interpreted as when
the crack length increases, the SRIF also increases.

Transverse uniform pressure
In the second load case, the plate is subjected to trans-
verse uniformpressure p. The plate is now simply sup-
ported on top and bottom edges (two edges without
cracks), see Fig. 6. The crack length is a, and the dis-
tance between the two crack tips is 2c = 2b - 2a. The
material properties are the same as the first problem:
E=1000 Pa and v = 0.3. This model is also discretized
into a set of 40×40 scattered nodes.
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Figure 6: Simply supported plate with two edge
cracks subjected to uniform pressure.

Figure 7 presents the variation of the normalized SRIF
K1/

(
pb2√a

)
with respect to different c/b ratios. The

results are shown for two cases: b/t = 2 and b/t =
6. The current XRPIM results are compared with
DBEM30, showing good agreement.

Figure 7: Normalized K1 with different c/b ratios

Similar to the first example, some observations can be
drawn fromFig. 7: the smaller the b/t ratio, the higher
the SRIF. The SRIF in both cases tends to decrease as
the c/b ratio increases from 0.1 to 0.7, and after that
the SRIF slightly increases.

Square plate with inclined central crack

Distributed bending moment on two oppo-
site edges
This example analyzes a square plate with dimension
2b containing an inclined crack at the center, see Fig.
8. The crack length is 2a. The plate is subject to dis-
tributed moment M on top and bottom edges. The
material properties are given as follows: E = 1000
Pa and v = 0.3. The discretized model with 50× 50
nodes is used.
The moment intensity factors K1 and K2 are com-
puted in the XRPIM approach and compared with the
analytical solutions31

K1 = ϕ (t/a)M
√

acos2 β ,
K2 = ψ (t/a)M

√
acosβ sinβ .

(25)

where β is the inclination angle (see Fig. 8). The
values of coefficients ϕ , ψ can be referred to32. For
2a = 2 m, b/t = 5 and t/a = 1, these coefficients are
ϕ = 0.7475 and ψ = 0.5218.

Figure 8: Square plate with a central slant crack un-
der bending

Figure 9 shows the change of the intensity factors K1

andK2 due to the crack angle β . The figure shows that
K1 decreases when the orientation angle β increases,
while K2 increases and decreases symmetrically. It is
also observed that the opening mode is dominant in
the range of β from 00 to 400, and after that the mag-
nitude of both SRIFs is approximate.
Figs 10 – 12 illustrate the distributions of normal
stress σ11 and σ22, and shear stress σ12. The particu-
lar case for these figures is the inclined angle β = 300.
The stress components are evaluated on the top sur-
face of the plate. The stress singularity is clearly ob-
tained at the crack tips.
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Figure 9: Variation ofK1 andK2 versus the crack an-
gle β

Figure10: Normal stress distributionσ11 (Pa) on the
top surface, β = 300 .

Figure 11: Distribution of normal stress σ22 (Pa) on
the top surface, β = 300 .

Figure 12: Distribution of shear stress σ12 (Pa) on
the top surface, β = 300 .

Transverse uniform pressure
Thesquare plate with a horizontal central crack is sub-
jected to transverse uniform pressure p. The bound-
ary condition is simply supported on all edges, see
Fig. 13. The material properties are: Young’s mod-
ulus E=1000 Pa and Poisson ratio v = 0.3. The crack
length is 2a, and the ratio b/t = 6.

Figure 13: Simply supported square plate with cen-
tral horizontal crack subjected to uniform pressure.

For horizontal crack, as shown in Fig. 9, K2 is zero.
Therefore, only K1 is considered in this example. Fig-
ure 14 illustrates the variation of the normalized SRIF
K1/

(
pb2√a

)
with respect to ratios a/b. The obtained

results by XRPIM are verified with the solution from
the conventional FEM25, showing good agreement.
It can be observed from Fig. 14 that the SRIF tends to
decrease as the a/b ratio increases. This trend as well

29



Science & Technology Development Journal – Engineering and Technology 2023, 5(SI2):24-32

Figure 14: Normalized K1 with different a/b ratios

as the slope of the curve is different from the exam-
ple in Section 3.1. These two examples both have the
same load, so the cause of this difference could be the
boundary conditions. For the two cracks case, only
two edges are simply supported while in this problem,
all four edges are simply supported.

DISCUSSIONS
As presented in Section 3, the obtained results given
by XRPIM are in good agreement with analytical so-
lutions, FEM and DBEM. The trending variation of
SRIFs is also observed from the numerical results. It
can be remarked that the SRIFs depend on many fac-
tors: the number of cracks, crack orientation, load
type and boundary conditions.
For the case of two cracks, the following conclusion
can be drawn: the plate with higher thickness has
higher SRIF, the SRIF decreases when the crack dis-
tance to plate length ratio c/b increases from 0.1 to
0.7, and after that the SRIF slightly increases when the
c/b ratio is in the range of 0.7 – 0.9. It should be noted
that a decrease in c/b ratio means an increase in the
crack length, so the result can be interpreted as when
the crack length increases, the SRIF also increases.
For the case of inclined crack, the result shows that
K1 decreases when the orientation angle β increases,
while K2 tends to increase and decrease symmetri-
cally. It is also observed that the opening mode is
dominant in the range of β from 00 to 400, and after
that the magnitude of both SRIFs is approximate.
And for the case of horizontal crack under uniform
pressure, the SRIF values decrease as the crack length
to plate length ratio a/b increases. This decreasing
trend is different from the two cracks example. These
two examples both have the same uniform pressure,
so the cause of this difference could be the boundary
conditions. For the two cracks case, only two edges

are simply supported while in the single horizontal
crack problem, all four edges are simply supported.

CONCLUSIONS
Cracked plate problems are investigated in this study
with the help of the extended meshfree XRPIM asso-
ciated with the Reissner-Mindlin plate theory. The
RPIM is different from other meshfree methods be-
cause it has the Kronecker delta property of shape
functions. This property makes it easy to impose the
essential boundary conditions in the RPIM as in the
conventional FEM. The Reissner-Mindlin theory is
suitable for the relatively thick plates due to the as-
sumtion of first-order shear deformation. With a C0

continuity formulation, it does not require higher-
order shape functions. The present meshfree method
would be possible to extend for complex cracked plate
problems such as dynamic fracture, crack growth and
nonlinear (geometry and material) analysis in future
works.
The present approach is shown to be accurate in the
evaluation of the stress resultant intensity factors.
Many numerical examples show good agreement with
analytical solutions and numerical solutions of other
methods. The trend of SRIF in different cases is also
observed.
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Phân tích tấm nứt Reissner-Mindlin bằngmột phương pháp không
lưới mở rộng

Lồ Sìu Vẫy1,2, Trương Tích Thiện1,2, Nguyễn Thanh Nhã1,2,*

TÓM TẮT
Bài báo này trình bày một phương pháp không lưới mở rộng để phân tích các tấm nứt dựa trên
lý thuyết tấm Reissner-Mindlin. Trong các phương pháp không lưới, phương pháp nội suy điểm
hướng kính (RPIM) được chọn trong nghiên cứu này do sự thỏa mãn thuộc tính Kronecker delta.
Do đó, các điều kiện biên cần thiết có thể được áp đặt dễ dàng trong RPIM. Hàm dạng RPIM được
sử dụng để nội suy chuyển vị và các biến môi trường trong bài toán. Phương pháp RPIM mở rộng
được sử dụng để mô hình vết nứt mà không cần mô tả tường minh nó trong miền rời rạc của bài
toán. Sự bất liên tục gây ra bởi vết nứt được xác định bằng các hàm làm giàu, cụ thể là, bước nhảy
trong trường chuyển vị trên hai mặt của vết nứt được mô hình hóa bằng hàm Heaviside và sự suy
biến ứng suất gần đỉnh vết nứt đượcmô tả bằng hàm làmgiàu tiệm cận đỉnh vết nứt. Trong nghiên
cứu này, các hệ số cường độ ứng suất tổng hợp (SRIFs) được đánh giá thông qua phương pháp
tích phân tương tác. Xu hướng biến thiên của SRIFs cũng được xem xét trong các kết quả tính toán
số. Có thể nhận xét rằng SRIFs phụ thuộc vào nhiều yếu tố: số lượng vết nứt, định hướng của vết
nứt, loại tải trọng và điều kiện biên. Các kết quả SRIFs thu được trong bài báo được trình bày thông
qua nhiều ví dụ số nhằmmục đích so sánh và kiểm chứng độ chính xác của phương pháp. Kết quả
thu được được so sánh với các kết quả giải tích và các phương pháp số khác.
Từ khoá: tấm nứt, tấm Reissner-Mindlin, phương pháp không lưới mở rộng, XRPIM

Trích dẫn bài báo này: Vẫy L S, Thiện T T, Nhã N T. Phân tích tấm nứt Reissner-Mindlin bằng một 
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