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ABSTRACT
Nanocrystalline cellulose has emerged as a substantial nanomaterial in recent years due to its pe-
culiar characteristics such as bio renewability, sustainability, and low toxicity while having highme-
chanical strengths, optical transparency, and much more. Meanwhile, pineapple leaves (PL) as by-
products after fruit harvest exhibit a huge potential in cellulose and nanocellulose extraction due
to their high cellulose content (approx. more than 36%). The latest studies have successfully recov-
ered cellulose from pineapple leaves, in which the bleaching stage greatly affects the properties
of the produced cellulose. In some cases, this stage can result in a reduction in cellulose content
because of the excessive use of chemicals. However, the effects of influential factors such as solid-
liquid ratio, reaction time, and reagent concentration in the bleaching stage have not been widely
investigated although they are necessary to scale up the cellulose recovery process. In this study,
cellulose was extracted from PL using alkali treatment with sodium hydroxide and bleaching with
hydrogen peroxide before synthesizing nanocellulose. The characterization of PL, cellulose, and
nanocellulosewasperformedby Thermogravimetry Analysis (TGA), Fourier Transform spectroscopy
(FTIR), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and Dynamic Light Scatter-
ing (DLS). The results indicated that bleaching with H2O2 at 6% after 60min at a solid-liquid ratio of
1:20 yielded an impressively high cellulose content of 94.25%. Obtained nanocellulose possessed
high crystallinity index of approx. 80%with a diameter in the range of 15-30 nm. Alongwith further
research related to the application of organic nanoparticles, this study has a great impact on the
proposing processes with better stability, which is meaningful in terms of green chemistry towards
sustainable development by satisfying most principles of this theory.
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INTRODUCTION
Cellulose is considered one of the most abundant
polysaccharides on the Earth, which is usually found
in plants, waste, or agricultural residues1. This lin-
ear organic polymer consists of several hundred to
many thousands of D-glucose units linked via β -1,4-
glycosidic bonds. The intramolecular hydrogen link-
age between hydroxyl groups and oxygen of the con-
tiguous ring attributes to not only the unbranched
structure of cellulose but also to the stability of these
chains2. Along with the presence of numerous hy-
droxyl groups resulting in a strong affinity to many
substances, cellulose possesses an attractive mechani-
cal property. In specific, the tensile strength of the cel-
lulose chain is in the range of 4.9-7.5 GPa and approx-
imately 150 GPa for the theoretical modulus, in addi-
tion to its low density (nearly 1.6 g/cm3)3. Besides,
due to its low toxicity and biodegradability, cellulose
exhibits a huge potential for various applications such
as food packing and water treatment4.
Nanocellulose (NC) is a valuable material that is ex-
tracted from cellulose and is usually categorized into

three types nanocellulose fibers (CNF), nanocellulose
crystals (CNC), and bacterial nanocellulose (BNC)5.
Along with the intrinsic characteristics which are ob-
tained from cellulose, NC is utilized in various appli-
cations due to its superior properties such as high sur-
face area and high surface strength 6. CNC, known
as a typical crystalline material, has a diameter in the
range of 20-50 nm and dozen to hundreds of nanome-
ters in length. CNC could be used as a mechanical re-
inforcing agent, thickening agent, rheological modi-
fier, and in drug delivery applications, etc.7. Thus, the
CNCextraction frompineapple leaves (PL) is not only
an effective solution to solve environmental problems
of waste products from agricultural production but
also creates a foundation for the synthesis of advanced
materials.
Extensive studies have been executed to investi-
gate the extraction process of cellulose in general
and nanocellulose in particular from many types of
biomass such as rice straw, coconut coir, and sug-
arcane bagasse. Among these, PL with a produc-
tion of 28.18 Mt in 2020 occupy approx. 1 M ha of
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plantation area in the world and are one of the most
enormous cellulose-rich biomass sources8. In spe-
cific, due to the high cellulose content (more than
36%)9, PL can be employed for the synthesis of valu-
able materials and nanocellulose production, in par-
ticular10. However, as can be seen, despite a lot of
recent research on PL utilization, most of this raw
material is still processed by burning or landfilling,
which leads to a negative impact on human health and
global warming11. Studies related to the investiga-
tion of the effect of influential factors such as solid-
liquid ratio, reaction time, and reagent concentration
on the cellulose production process, have not been
widely investigated so far. Do et al. synthesized cellu-
lose microfibers from PL using alkaline and oxidation
method at a bench scale. It also revealed that obtained
product had a cellulose content of nearly 79% 12. To
be employed in diverse applications, cellulose produc-
tion should be explored to increase cellulose recov-
ery efficiency with higher cellulose purity. In another
study, Shih et al. treated PL with NaOH and HCl, fol-
lowed by bleaching 2 times with NaClO2 and 2,2,6,6-
tetramethylpiperidine-N-oxyl (TEMPO) to prepare
purified cellulose for nanocomposite production13.
Despite the successful cellulose and nanocellulose ex-
traction, this process required a long time for each
stage. Consequently, harmful components, such as
dimethyl sulfide and hydrogen sulfide, were gener-
ated after the bleaching process14. In addition, the
mechanism of this step was studied in some previ-
ous papers. Particularly, cellulose decolorization oc-
curs mainly due to the oxidation of carbonyl and
quinoid structure of the lignin side chain, which de-
stroys its chromophore sites. H2O2 may also change
the solubility of lignin, hence enhancing lignin oxida-
tive degradation, by reacting with the benzoquinone
structure or the side chain carbonyl and C-C double
bond of lignin. However, in the presence of alkali,
H2O2 treatment might lead to carbohydrate degrada-
tion. Nevertheless, H2O2 bleaching is still considered
an effective method for the treatment of lignocellu-
losic biomass15. The investigation of influential fac-
tors, therefore, plays an important role in reducing en-
ergy consumption, required time, and even the cost of
the final product. This also helps further increase the
potential of cellulose application in various fields.
In this work, the affecting factors in the bleaching
stage in cellulose preparation such as H2O2 concen-
tration, time, and solid-liquid ratio, were investi-
gated. The morphology, thermal degradation, func-
tional groups, and cellulose content after each step
were characterized using different techniques. Fi-
nally, nanocellulose was also extracted from PL to
prove the quality of obtained cellulose.

MATERIALS ANDMETHOD
Materials
PL (Ananas comosus L.) were collected in Tien Giang
province, Viet Nam after harvesting pineapple fruits.
Fresh PL were washed with tap water, dried under
the sunlight until their moisture is below 12%, and
then pulverized into powder (80 mesh). The chem-
icals purchased from the commercial were analytical
grade, including sodiumhydroxide (NaOH, 99%) and
hydrogen peroxide (H2O2, 30%) without any further
purification. All solutions were prepared in distilled
water (DW).

Investigation of the bleaching step
PL powder was treated with NaOH 5 wt.% (solid-
liquid ratio of 1:15 g/mL) for 120 min at 80 ◦C. The
solid was subsequently washed with distilled water
until reaching neutral pH, followed by drying and
grinding to obtain the pretreated PL (PP) for further
investigation of the bleaching stage. The studied pa-
rameters are shown in Table 1. The bleached pulp is
denoted as BPL.

Nanocellulose production from BPL
BPLwith the highest cellulose content was hydrolyzed
with H2SO4 64 wt.% (solid-liquid ratio of 1:20 g/mL)
at 45 ◦C for 60 min. Subsequently, DW was added
to quench the reaction, followed by centrifuging the
mixture at 5000 rpm for 5 min to collect the precipi-
tate. This step was repeated 3 times before dialyzing
the obtainedNCuntil reaching neutral pH. After dial-
ysis, theNC suspensionwas freeze-dried to collect dry
CNC.

Characterization
The composition of PL including holocellulose and
lignin was determined by employing the National Re-
newable Energy Laboratory (NREL) method 16. The
residue yield (RY) is defined as the mass percentages
of the produced product compared to the initial ma-
terial in each step, as described in Eq. 1:

RYi (%) =
wi

wi−1
×100 (1)

where: Wi (g) is the product weight of step i.
Fourier Transform spectroscopy (FTIR) results were
recorded on a Bruker Tensor 37 spectrometer. Ther-
mogravimetry Analysis (TGA) was executed on a
LINSEIS DSC PT 1600 (France) interfaced with a
heated rate of 10 ◦C/min from 30 ◦C to 700 ◦C un-
der the air atmosphere. The structural characteristics
of PL, APL, and BPL samples were studied using an
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Table 1: Experimental parameters to investigate the effects of H2O2 concentration, solid-liquid ratio, and time
on cellulose content

H2O2 concentration (%) Solid-liquid ratio (g:mL) Time (min)

2; 4 ; 6; 8; 10 1:20 60

6 1:10 ; 1:15; 1:20; 1:25; 1:30 60

6 1:20 30; 45; 60; 75; 90

SEM Prisma E with a 10 kV operation voltage. X-ray
diffraction (XRD) analysis was performed by Bruker
Advance D8 Diffractometer (Germany). The crys-
tallinity index (CrI) is determined using Eq. 2:

CrI =
I002 − Iam

I002
×100 (2)

The crystalline and amorphous areas are represented
by I002 (2θ = 22.5◦) and Iam (2θ = 18◦), respectively.
The apparent size distribution and zeta potential of
the CNC sample were recorded using aMalvern Zeta-
sizer Nano ZS90. Transmission Electron Microscope
(TEM) images of CNC were captured on a JEM-1400
at 100 keV at room temperature.

RESULTS ANDDISCUSSION
Pretreatment step
As can be seen in Figure 1a, the diameter of PL fibers
was reduced to about 5 µm after grinding, with a
dark brown color due to the presence of a substan-
tial amount of non-cellulosic content (i.e., lignin and
hemicellulose). The dark color got lighter after alkali
pretreatment (Figure 1b), which indicated the par-
tial removal of lignin. This was further confirmed
through the NREL analysis (Figure 1c). The cellulose
content in raw PL was found to be 45.20%; grinding
PL into powder only helped reduce the fiber diame-
ter, as the cellulose content remained relatively un-
changed (44.88%), while alkali treatment significantly
increased this value to 73.05%. Although purified cel-
lulose was yet to be obtained after this step, alkaliza-
tion was proved to be effective in breaking the ligno-
cellulosic complex in PL structure and partially dis-
solving lignin17, serving as crucial preparation for the
following bleaching stage.

Investigation of the bleaching stage
From a general perspective, bleaching referred to as
the cellulose purification step, is a crucial stage in the
process. Asmentioned, H2O2 in the presence of alkali
could lead to a decrease in cellulose content via car-
bohydrate degradation. The concentration of H2O2

in this step, therefore, was explored, with the result
shown. The experiments were carried out at a fixed

solid-liquid ratio of 1:20 for 60 min, and the results
are shown in Figure 2.
The results showed that the holocellulose content was
in the range of 86.41% to 95.90%. As can be seen,
the lignin content gradually decreased from13.59% to
4.1%. This can be explained by the increase in H2O2

concentration which significantly affects the lignin
component deep inside the structure of PL. In addi-
tion, the amount of lignin declined marginally from
5.75 to 4.10 with increasingH2O2 concentration from
6% to 10%. However, the difference in cellulose and
lignin content of BPL did not alter significantly when
increasingH2O2 concentration over 6%, the 6% point
was considered the most suitable for this parameter.

Figure 2: Effect of H2O2 concentration on the com-
position of BPL.

Figure 3: Effect of solid-liquid ratio on the composi-
tion of BPL.
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Figure1: SEM images of (a) rawpineapple leaves (PL) fibers and (b) pretreatedPLpowder (PP); (c) cellulose content
of the samples determined by the NREL method

With an H2O2 concentration of 6%, the impact of
the solid-liquid ratio on cellulose content was stud-
ied in 60 min. The results (Figure 3) demonstrate
that the obtained holocellulose content was in the
range of 85.19% to 94.25% and slightly affected by
the solid-liquid ratio. The highest holocellulose con-
tent reached the point of 94.25% with the solid-liquid
ratio at 1:20 and the lowest was 85.19% at the ratio
of 1:30. In addition, the holocellulose content de-
creased gradually when increasing the ratio from 1:20
(94.25%) to 1:30 (85.19%). This can be explained by
the larger amount of H2O2 in the reaction. Apart
from decolorizing and removing lignin in PL, H2O2

also causes cellulose degradation. When the solid-
liquid ratio increased to a point that the majority of
lignin was removed, the cellulose breakdown started
to be more noticeable, which lower the cellulose con-
tent and hence, amplified the lignin concentration in
the product. Based on the results obtained, the solid-
liquid ratio of 1:20 was chosen for the following ex-
periments on bleaching time.
To investigate the effect of bleaching time on cellu-
lose content, PP was bleached using H2O2 6% with
the solid-liquid ratio at 1:20 at a different time (from
30-90 min). Figure 4 reveals that holocellulose con-
tent rose gradually from 30 min (86.52%) to 60 min
(94.30%) before a downward trend in longer reaction
time. In the previous work,Wu et al. proved that long
bleaching time led to a decrease in the cellulose con-

Figure 4: Effect of reaction time on the composition
of BPL.

tent of the final product 18. After most of the recal-
citrant compounds such as lignin and hemicellulose
were removed, the oxidant (H2O2) caused carbohy-
drate degradation. This directly influences the cellu-
lose content and results in an increase in lignin con-
tent after 60 min of bleaching. Kenly et al. reported
that the bleaching stage using H2O2 for nanocellu-
lose production required a shorter reaction time than
TEMPO oxidation19. Therefore, the 60-min duration
was selected as the most appropriate bleaching time.
After bleaching, the cellulose obtained a bright ap-
pearance (Figure 5a) and a purity of over 94%, with
a diameter of around 5 µm (Figure 5a).
The changes in material components and properties,
as well as the effectiveness of the bleaching step, were
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Figure 5: (a) Appearance and SEM image of cellu-
lose from pineapple leaves; (b) TGA results and (c)
FTIR spectrum of the samples

confirmed through FTIR and TGA. The removal of
the majority of hemicellulose, lignin, and pectin from
PL after alkalization and bleaching was attributed to
the difference in TGA results (Figure 5b). Specifi-
cally, the initial decomposition temperature of about
20% mass was found at approximately 250 ◦C for
PL, while this figure was up to 325 ◦C for cellulose.
The significant improvement in cellulose decomposi-
tion temperature could be explained by the absence of
components degrading at a lower temperature such
as hemicellulose in raw material 20. The elimination
of non-cellulosic components in PL was confirmed
by FTIR spectra (Figure 5c). Signals at 1738 cm−1,
1517 cm−1, and 1255 cm−1 were assigned to the vi-
brations stretching of the ether group and the occur-
rence of C=C in the aromatic ring and C=O bonds,
which indicated the existence of lignin and hemicel-
lulose 21. These bands were visible in all samples but
with significantly reduced intensities in the cellulose
sample, proving the effectiveness of the pretreatment
and bleaching stage on lignin removal.

PL-derived CNC
To assess the quality of cellulose isolated from PL in
this study, aside from analysis techniques, the cellu-
lose which was bleached with H2O2 6% in 60 min,
at a solid-liquid ratio of 1:20, was further employed
to produce CNC using hydrolysis. The obtained
nanomaterial exhibited an obvious difference in crys-
tallinity from cellulose, as determined by XRD re-
sults (Figure 6). It can be observed that both samples
show typical diffraction peaks of cellulose I at 2θ =
15.5◦, 18◦, 22◦, and 34.5◦, which represent the (110),
(101), (200), and (004) planes, respectively9. After
the bleaching stage, obtained cellulose had a relatively
low crystallinity index of nearly 67.97%, which can
be explained by the presence of amorphous cellulose
and non-cellulosic constitutes, as well as the effect of
NaOH on the structure of thematerial 22. Meanwhile,
the crystallinity index of CNC increased significantly
to more than 81%, which was the result of the elimi-
nation of these non-crystalline areas through acid hy-
drolysis.

Figure 6: XRD patterns of cellulose and nanocellu-
lose from pineapple leaves

The size distribution of the CNC sample was esti-
mated using the DLS technique due to its facileness
and convenience. The result in Figure 7a showed the
size distribution of the sample, with an average diam-
eter was 303.9 nm and a zeta potential of -40.6 mV.
As the absolute zeta potential was higher than 30, the
sample was considered to be a stable suspension23.
Subsequently, TEM was used to confirm the shape
and dimensions of CNC derived from cellulose. The
sulfuric acid hydrolysis successfully yielded rod-like
crystals 15-30 nm wide and 150-300 nm long (Fig-
ure 7b). This result was in agreement with previous
studies24.

CONCLUSIONS
This paper comprehensively studied the effects of var-
ious factors in the bleaching step for cellulose recov-

1755



Science & Technology Development Journal – Engineering and Technology 2022, 5(4):1751-1758

Figure 7: (a) Size distribution and (b) TEM image of nanocellulose from pineapple leaves

ery from PL. By determining the most suitable ox-
idant concentration, solid-liquid ratio, and reaction
time, a facile process to extract high-purity cellulose
with minimized chemical consumption was devel-
oped. From characterization results, the obtained cel-
lulose showed little to no trace of lignin and a crys-
tallinity index of approximately 67.97%. The cellu-
lose content of over 94% obtained after the facile pro-
cess exhibited the great potential of the material in
nanocellulose production on a larger scale for various
applications.
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TÓM TẮT
Trong những năm gần đây, nano-cellulose có cấu trúc tinh thể được xem làmột vật liệu nano quan
trọng nhờ vào các đặc tính đặc biệt của chúng như khả năng tái tạo sinh học, tính bền vững, độc
tính thấp trong khi có độ bền cơ học và độ truyền suốt quang học cao cùng nhiều đặc tính khác
nữa. Trong khi đó, phụ phẩm lá dứa sau khi thu hoạch trái rất giàu tiềm năng cho việc sản xuất
cellulose cũng như nano-cellulose nhờ vào hàm lượng cellulose cao (khoảng hơn 36%). Nhiều
nghiên cứu gần đây liên quan đến việc thu hồi cellulose từ lá dứa đã chỉ ra tầm quan trọng của
công đoạn tẩy trắng đến tính chất của cellulose thu được. Trong một số trường hợp, cellulose bị
thất thoát trong công đoạn tẩy trắng do sử dụng quá mức các chất hóa học. Tuy nhiên, những tác
động của các yếu tố như tỉ lệ rắn lỏng, thời gian phản ứng, nồng độ các chất trong quá trình tẩy
trắng vẫn chưa được nghiên cứu rộng rãi, mặc dù đây là điều cần thiết để thu hồi cellulose ở quy
mô lớn. Trong nghiên cứu này, cellulose đã được thu hồi từ lá dứa bằng phương pháp kiềm hóa
với natri hydroxit và tẩy trắng với hydro peroxit trước khi được sử dụng để sản xuất nanocellulose.
Cấu trúc của lá dứa thô, cellulose và nanocellulose được phân tích bằng các phương pháp hiệt
trọng lượng (TGA), quang phổ hồng ngoại biến đổi Fourier (FTIR), nhiễu xạ tia X dạng bột (PXRD),
tán xạ ánh sáng động (DLS). Kết quả cho thấy sau quá trình tẩy trắng dài 60 phút với H2O2 6% ở
tỉ lệ rắn-lỏng 1:20, cellulose thu được có độ tinh khiết đạt 94,25%. Nanocellulose thu được sở hữu
độ tinh thể cao khoảng 80% và đường kính sợi nằm trong khoảng 15-30 nm. Cùng với những tìm
hiểu sâu hơn liên quan đến khả năng ứng dụng của hạt nano hữu cơ, nghiên cứu này có đóng góp
to lớn trong việc đề xuất những quy trình với độ ổn định cao hơn, điều có ý nghĩa về mặt hóa học
xanh hướng tới sự phát triển bền vững nhờ việc đáp ứng những tiêu chí của lý thuyết này.
Từ khoá: Tẩy trắng, Thu hồi cellulose, Nanocellulose, Hình thái học
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