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Accelerating the nonlinear analysis of hyper-elastic behavior by
GMDH-assisted Newton-Raphson scheme

Minh. N. Nguyen1,2,*

ABSTRACT
This paper presents an accelerated iterative scheme for nonlinear problems. Commonly, analysis
of nonlinear behavior is conducted by the Newton-Raphson (NR) method. It is well-known that the
number of iterations required depends on the deviation between the ``starting point'' and the con-
verged solution. In practice, the solution of previous load step is taken as the ``starting point'', while
the converged solution of the current load step is not known beforehand. Therefore, difficulties or
even non-convergence may occur. Recently, it is suggested that a neural network is employed to
predict the solution of the current load step. This prediction is then used as the ``starting point''
for NR scheme. It is expected, that the true converged solution (of current step) is closer to the
prediction by neural network than to the solution of previous load step. As a result, the scheme
becomes faster due to less iterations. Obviously, any techniques for time-series forecasting can be
used. Here, the GroupMethod of Data Handling (GMDH) is proposed. Loosely speaking, GMDH is a
feedforward neural network without backpropagation. Practically, the GMDH-assisted NR scheme
should not take longer time than conventional NR scheme. The advantage of GMDH is fast com-
putation; however, the accuracymay be not as high as a network that has backpropagation. There-
fore, careful consideration on the construction of GMDH network is needed. In the current work,
the performance of GMDH-assisted NR scheme is investigated in analysis of hyper-elastic behavior,
which involves both geometrical and material nonlinearity. A study on the influence of activation
function on the accuracy is presented. Also, it is found that prediction for incremental displace-
ment (between the current load step and the previous load step) could be better than prediction
of displacement of the current load step.
Key words: Time-series forecasting, GMDH network, Newton-Raphson scheme, Accelerated
nonlinear analysis

INTRODUCTION
Nonlinear behaviors are usually encountered in en-
gineering problems. Therefore, an efficient algo-
rithm for nonlinear analysis is always needed. In
practice, the iterative Newton-Raphson (NR) scheme
is the most commonly used, due to simple imple-
mentation and quadratic convergence rate. The
method has beenwidely applied in analyses of unsatu-
rated flow1, plastic deformation2,3, geometrical non-
linearity 4–6, hyper-elastic behavior7–9, temperature-
dependent heat transfer10–12 andmany other types of
problem.
It is common knowledge if the deviation between the
converged solution and the “initial guess” or “start-
ing point” is large, difficulties may occur13–15, be-
ing reflected in the large number of iterations. Non-
convergence may even be encountered. Practically,
the converged solution of previous load step is used as
the “starting point” for the current load step. Usu-
ally, small step size is applied, with the hope to in-
crease the possibility of convergence. However, the

process would be very time-consuming. In 2001, Kim
and Kim introduced the employment of neural net-
work to predict the starting point13. A pre-analysis is
required to compute parameters that are characteris-
tic to the pattern of the three previous converged so-
lutions. The neural network is then trained to learn
the pattern and estimate a starting point for itera-
tions of the current load step. Recently, Nguyen T.
N. et al.14 directly exploits the time-series forecast-
ing ofGMDH-type neural network to predict the con-
verged solution of the current load step. The pre-
dicted values are thenused as the starting point forNR
scheme. Ref.15 further discussed that a careful selec-
tion of parameters for GMDH-network could reduce
the number of iterations to one iteration. Neverthe-
less, Refs. 14,15 were limited to geometrically nonlin-
ear analysis of shell structures. Furthermore, from a
practical point of view, a neural-network-assisted NR
scheme should take less time than the conventional
NR scheme. Probably this is the reason that therewere
not much publications on this area, since it is difficult
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to select a network that satisfies both accuracy and
speed.
For analysis of hyper-elastic behaviors of neo-
Hookean type materials, which include both geomet-
rical and material nonlinearities, there were some
attempts to accelerate the computational process,
for e.g. by POD-DEIM16, or by the reduced-basis
technique namely Combined Approximations (CA) 8.
However, the purpose of Refs. 8,16 is saving time
in each iteration, rather than reduction of number
of iterations as in Refs. 14,15. Being inspired from
the Refs.14,15, in this paper the GMDH-assisted NR
scheme is further investigated for analysis of hyper-
elastic solids.
This report is organized as follows. Right after the In-
troduction, a brief review on hyper-elastic behavior
is presented in Section 2. The time-series forecasting
GMDHnetwork is described in Section 3. Section 4 is
reserved for numerical results and discussion. Finally,
concluding remarks are drawn in the last section.

HYPER-ELASTIC BEHAVIOR
Let us consider a two-dimensional (2D) solid domain
Ω, bounded by Γ, see Figure 1. It is subject to a body
force b, while traction t is applied on the part Γt of the
boundary, and displacement constraints takes place
on Γu.

Figure 1: Sketch of a 2D solid domain

By denoting x the current position of a point in Ω,
and X the position of that point in the initial configu-
ration of the body, the displacement vector is u = x –
X. Using finite element analysis, the governing equa-
tion for equilibrium problem can be written using the
initial configuration as follows

G(u) = Fint −Fext = 0 (1)

where the internal force, Fint, and the external force,
Fext, are given by

Fint =
∫□

Ω BT
1 SdΩ (2)

Fext =
∫□

Ω NT bdΩ+
∫□

Γt
NT tdΓ (3)

Here, S is the second Piola-Kirchhoff stress tensor, N
is the vector of shape functions andB1 is the derivative
operator. Applying the total Lagrangian approach,
linearization of Equation (1) for Newton-Raphson it-
erative scheme takes the following form 8,9

Ktanδu=−G, (4)

where δu is the change of displacement between two
consecutive iterations andKtan is the tangent stiffness

Ktan=K1+K2, (5)

K1 =
∫□

Ω BT
1 DB1dΩ, (6)

K2 =
∫□

Ω BT
2 S̃B2dΩ, (7)

In Equation (6), D is the fourth-order constitutive
tensor, which relates strain and stress components.
The matrix B1 and B2 are calculated by

B1 =
[
B1

1 B2
1 . . . Bn

1

]
, (8)

B2 =
[
B1

2 B2
2 . . . Bn

2

]
, (9)

where n is the number of node within an element. For
each local node i (i = 1, 2, …, n), we have

Bi
1 =

 F11Ni,1 F21Ni,1

F12Ni,2 F22Ni,2

F11Ni,2 +F12Ni,1 F21Ni,2 +F22Ni,1

 , (10)

Bi
2 =


Ni,1 0
Ni,2 0

0 Ni,1

0 Ni,2

 . (11)

In Equation (10), FIJ are components of the deforma-
tion gradient tensor F, which are given by

F =
∂x
∂X

= 1+
∂u
∂X

, (12)

where 1 is second-order identity tensor. The
“comma” sign (,) in Equation (10) and (11) denotes
spatial derivative; for e.g., Ni,1 is the derivative of Ni

with respect to X1.
The matrix S̃ in Equation (7) stores the components
of the second Piola-Kirchhoff stress

S̃ =


S11 S12 0 0
S12 S22 0 0
0 0 S11 S12

0 0 S12 S22

 . (13)



Science & Technology Development Journal – Engineering and Technology 2023, 6(3):1946-1954

The second Piola-Kirchhoff stress tensor S (see Equa-
tion (2)) is symmetric and can be calculated by

S = 2
∂W
∂C

= 2∑3
k=1

∂W
∂ Ik

∂ Ik

∂C
(14)

where C = FT F is the right Cauchy-strain tensor. I1,
I2, I3 are the three invariants of tensor C:

I1 = trace(C) , (15)

I2 =
1
2

[
(trace(C))2 − trace

(
C2

)]
, (16)

I3 = det (C) . (17)

The strain energy functionW is characteristic to each
type of hyper-elastic material. Under the assumption
of neo-Hookean materials,W is given by

W =
κ
2
(J−1)2 +

µ
2
(I1 −2logJ−3) , (18)

where κ and µ are the bulk and shear moduli, respec-
tively, and J = det(F). From Equation (14), the second
Piola-Kirchhoff stress tensor S is determined by

S = κC−1 logJ+µ
(
1−C−1) (19)

The constitutive tensorD is obtained by

D = 2
∂S
∂C

= 4
∂ 2W

∂C∂C
(20)

METHODOLOGY: GMDH-TYPE
NEURAL NETWORK
The group method of data handling (GMDH)17 is a
self-organizing deep learning technique. GMDH is
quite similar to a deep neural network, however the
number of hidden layers and the number of neurons
in each hidden layer is determined by the network it-
self during the training stage. Another requirement is
that output layer of GMDH has only one neuron.

Construction of the first hidden layer
Each neuron of the first hidden layer is equipped by
one activation function and one transfer function.
The activation function is usually a polynomial that
takes k inputs. For example, the activation function
in form of a bi-variate (two inputs) quadratic polyno-
mials is written as follows

z
(
xi,x j

)
= a0 +a1xi +a2x j

+a3x2
i +a4x2

j +a5xix j,
(21)

where xi,x j are the two arbitrary values taken from
the input layer. The neuron then produces one output
value by the transfer function, which can be chosen as
identity function or sigmoid function

Identity function:

g(z) = z, (22)

Sigmoid function:

g(z) =
1

1+ exp(−z)
(23)

Because each neuron takes two inputs, the number of
neurons in the first hidden layer can be determined
by

m =Cn
2 =

n2 −n
2

, (24)

where n is the number of inputs.
The neuron is applied to all samples of the training
dataset. Assuming that there are s samples in the
training dataset, the following equations are obtained
for each neuron

z(1) = a0 +a1xi,(1)+a2x j,(1)+

a3x2
i,(1)+a4x2

j,(1)+a5xi,(1)x j,(1)

z(2) = a0 +a1xi,(2)+a2x j,(2)+

a3x2
i,(2)+a4x2

j,(2)+a5xi,(2)x j,(2)

z(s) = a0 +a1xi,(s)+a2x j,(s)+

a3x2
i,(s)+a4x2

j,(s)+a5xi,(s)x j,(s)

Or in the matrix form

Z = XA, and XT Z = XT XA (25)

where X (size s-by-6) contains the input values and
A (size 6-by-1) stores the coefficients. Requiring that
produced values from transfer function are equal to
the true output of the dataset, we have

Y = g(Z) , thus Z = g−1 (Y ) . (26)

The vector of coefficients, A, is then calculated by

A =
(
XT X

)−1 XT Z (27)

Once all the neurons of the layer have been con-
structed, the mean squared error (MSE) between the
values produced by eachneuronwith the targeted out-
put (from the validation dataset) can be evaluated.
The neurons are then sorted byMSE (in ascending or-
der). A threshold can be applied here to remove neu-
rons that have MSE higher than threshold.
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Construction of other hidden layers
The construction of other hidden layers is similar to
that of the first layer, except that the inputs for the rth

hidden layer are taken from the produced values from
the previous layer, i.e. the (r-1)th hidden layer.
The construction stops if: (i) themaximumnumber of
hidden layers (specified by the user) is reached, or (ii)
theMSE of the best neuron of the current hidden layer
is not lower than the MSE of the best neuron of the
previous layer. Case (ii) indicates that the result can-
not be improved. Therefore, the current layer will be
removed and the construction process is terminated.
The final output of the GMDH network is the output
value of the best neuron of the very last layer.

GMDH-assisted Newton-Raphson scheme
Figure 2 presents an illustration for Newton-
Rapshson (NR) algorithm. Typically, in the
beginning of the current load step, namely load step
(t+1), the converged solution of the previous step,
i.e. load step (t), is taken as the “starting point” for
iterations (the solid dot in Figure 2). Here, following
Refs. 14,15, the GMDH network for time-series
forecasting is employed to predict the converged
solution of the current step. That predicted value is
then used as the “starting point” for NR scheme. It is
expected that the predicted value will be closer to the
true converged solution and thus, reduction in the
number of iterations can be achieved.
Assuming that M solutions from load step (t-M) to
load step (t) have been known. Given the number of
delays (i.e. the number of inputs in each sample), the
data can be arranged into input sets and target sets.
Figure 3 is an illustration of data preparation forM = 8
and delays = 2, where there are 7 samples of data (each
sample has 2 inputs and 1 targeted output). These data
are sent to GMDH to train and predict the solution
of load step (t+1). A portion of samples are used for
training (training dataset) and the rest are for valida-
tion (validation dataset).
It is noted that similar to any other deep learning tech-
nique, normalization of data could be necessary. Fur-
thermore, a GMDH network is needed for each un-
known degrees of freedom.
In this paper, the performance of GMDH-assisted NR
scheme for analysis of hyper-elastic behavior is inves-
tigated. Unlike in previous works14,15, where only ge-
ometrical nonlinearity is considered, both geometri-
cal and material nonlinearities are involved in behav-
ior of hyper-elastic solids. Therefore, the problem is
more complicated.
It is noted that the components of tensor D (see Eq.
(6) and Eq. (20)) at an arbitrary point are dependent

Figure 2: Illustration of Newton-Raphson scheme

on the strain values at that point, indicating mate-
rial nonlinearity. In Refs. 14,15, where material non-
linearity is not considered, tensor D would be con-
stant. Here, there are two sources of nonlinearities,
meaning that complexity is increased. As a result, it
is more difficult for the neural network to learn and
provide prediction with high accuracy.

RESULTS ANDDISCUSSION
The proposed model is applied to study behavior of
a curved beam, as sketched in Figure 4. The beam
is subject to an inclined uniform load (45o) at one
end, while the other end is fixed. The material is
assumed to be neo-Hookean type with bulk modu-
lus κ = 120.291 MPa and shear modulus µ = 80.194
MPa. The uniform load q = 0.5 N/mm2. The prob-
lemdomain is uniformly discretized by 9 x 100 8-node
quadrilateral elements (9 elements along the radial di-
rection and 100 elements along the circumferential
direction). There are 2919 nodes in total.

Figure 4: Sketch of the curved beam problem

The load is gradually increased by 40 steps, i.e. incre-
mental size ∆q = 0.0125 N/mm2. The conventional
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Figure 3: Illustration of data preparation for GMDH network

Figure 5: Number of iterations required by Conven-
tional NR for the curved beam problem

NR scheme is conducted to solve for the first M = 9
load steps. The rest of load steps are aided by GMDH
to estimate the starting point. By default, identity
function is used as transfer function and number of
delays is 3.

Figure 6: Number of iterations required by GMDH-
assisted NR for the curved beam problem
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Comparison between conventional NR and
GMDH-assisted NR
Figure 5 and Figure 6 respectively present the number
of iterations in each load step, for conventional NR
and GMDH-assisted NR using tri-variate, quadratic
polynomials (in short “3-quadratic”) as activation
function. It is observed inFigure 6 that from load step
10 to load step 40, with the aid of GMDH, the num-
ber of iterations in each load step is generally reduced,
resulting a total of 141 iterations, which is much less
than 207 iterations needed by the conventional NR.
The reduction in number of iteration indeed boosts
the computational speed, as elapsed time in GMDH-
assisted NR (The time for running GMDH is already
included) is much less than that in conventional NR,
see Table 1. Roughly 30% of total time can be saved.
In Ref.15, even one iteration for each load step can be
achieved, when only large deformation (geometrical
nonlinearity) is considered. The hyper-elastic behav-
ior ismore complicated in nature, since the nonlinear-
ities come fromboth large deformation and the stress-
strain relation.
Figure 7 depicts the curves of vertical reaction force
and vertical displacement at point A (see Figure 4).
The results by GMDH-assisted NR and Conventional
NR is in good agreement. This is as expected, because
the overall procedure of NR is not altered. The role of
GMDH is simply providing a better starting point for
iterations.

Effects of activation function
Next, the effect of activation function is investi-
gated. Four types of polynomials are taken into ac-
count: bi-variate quadratic (2-quadratic), tri-variate
quadratic (3-quadratic), bi-variate cubic (2-cubic)
and tri-variate cubic (3-cubic). Among the four vari-
ations, 3-quadratic is computationally the most effi-
cient, as reported in Table 2. On the other hand, non-
convergence occurs in 2-cubic.

Prediction of incremental displacement
Here, we predict the incremental displacement be-
tween load step (t) and load step (t+1), ∆ u = ut+1 -
ut, instead of directly predict the displacement at load
step (t+1), ut+1. The same four variations as in sub-
section 4.2 are considered.
The performance of GMDH in Table 3 is in general
better than that in Table 2, in terms of number of iter-
ations. Convergence is achieved by all four variations.
In both Table 2 and Table 3, the tri-variate polynomi-
als are better choice for activation function than the
two-variate polynomials.

CONCLUSIONS
TheGMDH-assistedNRhas been successfully further
extended for analysis of hyper-elastic behavior of two-
dimensional solids. The prediction by GMDH pro-
vides a better starting point for NR iterative scheme,
such that the number of iterations can be reduced.
As a result, a large amount of computational time is
saved.
The efficiency of the proposed scheme comes from the
quick process of GMDH. This is important, because
the training is online, i.e. it is conducted when the
problem is solved. There is no pre-training. Further-
more, several GMDHnetworks are needed every load
steps. The number of GMDH networks is equal to
that of unknown degrees of freedom. Therefore, the
necessary to have fast computation in each individual
network is more pronounced.
It is aware that the accuracy of prediction by GMDH
is crucial. The choice of transfer function and acti-
vation function would have influence on the accu-
racy. A comparative study on activation function,
while identity function is selected as transfer function,
has shown that tri-variate polynomials would result
in better performance than two-variate polynomials.
Currently, only polynomials are considered for activa-
tion function. The possibility of other types of activa-
tion function should also be studied in future works.
Even the GMDHcould be replaced by any other time-
series forecasting network. From practical point of
view, an accelerated NR scheme is only beneficial if it
is faster than conventional NR scheme. Therefore, any
attempts to improve accuracy of prediction should al-
ways pay attention to the elapsed time. Furthermore,
it is found that prediction for incremental displace-
ment could be possibly more robust than direct pre-
diction for the converged value of displacement.
Last but not least, by a good estimation of starting
point, GMDH could help to reduce the number of it-
erations, but it does not have any role in the computa-
tional time of each iteration. On the other hand, the
reduced basis approach8 is efficient to accelerate each
iteration but cannot reduce the number of iterations.
Therefore, combination of two techniques is promis-
ing for future works.

LIST OF ABBREVIATIONS
GMDH: Group method of data handling
NR: Newton-Raphson
MSE: mean squared error
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Table 1: Comparison of elapsed time between Conventional NR and GMDH-assisted NR

Iterations Time

Conventional NR 207 ~ 701 s

GMDH-assisted NR 141 ~ 485 s

Table 2: Comparison of elapsed time variations of GMDH-assisted NR

Iterations Time

2-quadratic 174 ~ 595 s

2-cubic N/A N/A

3-quadratic 141 ~ 485 s

3-cubic 179 ~ 614 s

Figure 7: The curve of vertical reaction force and vertical displacement at point A

Table 3: Comparison of elapsed time variations of GMDH-assisted NR, in which the incremental displacements
are predicted

Iterations Time

2-quadratic 154 ~ 556 s

2-cubic 149 ~ 544 s

3-quadratic 143 ~ 525 s

3-cubic 140 ~ 516 s
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Tăng tốc phân tích phi tuyến ứng xử siêu đàn hồi bằng giải thuật
Newton-Raphson kết hợp GMDH

Nguyễn NgọcMinh1,2,*

TÓM TẮT
Bài báo này trình bày giải thuật lặp được tăng tốc cho bài toán phi tuyến. Thông thường, việc phân
tích ứng xử phi tuyến được thực hiện bằng phương pháp Newton-Raphson (NR). Đặc điểm của
phương pháp là số lượng bước lặp phụ thuộc vào mức độ sai khác giữa ``dự đoán ban đầu'' và lời
giải hội tụ. Do đó, quá trình giải có thể gặp khó khăn, hoặc không hội tụ. Trong thực tế, lời giải hội
tụ của bước tải trước sẽ được chọn là ``dự đoán ban đầu'', trong khi lời giải hội tụ của bước tải hiện
tại hiển nhiên là không được biết trước. Gần đây, việc sử dụng hệ thần kinh nhân tạo được đề xuất
để dự đoán lời giải của bước tải hiện tại. Kết quả dự đoán này sẽ được dùng làm ``dự đoán ban
đầu'' cho quá trình lặp NR. Điều kỳ vọng là lời giải hội tụ thực tế (của bước tải hiện tại) sẽ gần với dự
đoán của hệ thần kinh nhân tạo, hơn là với lời giải hội tụ của bước tải trước. Hệ quả là quá trình lặp
sẽ nhanh hơn, do cần ít bước lặp hơn. Rõ ràng, bất cứ kỹ thuật nào dùng cho dự đoán theo diễn
tiến thời gian đều có thể áp dụng. Ở đây, phương pháp Group Method of Data Handling (GMDH)
được đề xuất. Có thể nói rằng, GMDH là một hệ thần kinh nhân tạo không có quá trình lan truyền
ngược. Trên quan điểm thực tế, việc kết hợp GMDH vào giải thuật NR phải mang lại thời gian tính
toán nhanh hơn NR thông thường. Lợi thế của GMDH là tính toán nhanh, nhưng độ chinh xác kém
hơn so với hệ có lan truyền ngược. Do đó, cần cân nhắc cẩn thận trong thiết lập hệ GMDH. Trong
nghiên cứu hiện tại, hiệu quả của thuật toán NR kết hợp GMDH sẽ được khảo sát khi phân tích ứng
xử siêu đàn hồi, trong đó bao gồm cả yếu tố phi tuyến hình học và yếu tố phi tuyến vật liệu. Một
khảo sát về ảnh hưởng của hàm kích hoạt đến độ chính xác của dự đoán bởi GMDH được trình
bày. Thêm vào đó, nghiên cứu hiện tại cũng cho thấy, dự đoán về số gia chuyển vị có thể dẫn đến
hệ hoạt động tốt hơn so với dự đoán trực tiếp giá trị chuyển vị của bước tải hiện tại.
Từ khoá: Dự đoán diễn tiến thời gian, mạng GMDH, Thuật toán Newton-Raphson, Tăng tốc phân
tích phi tuyến

Trích dẫn bài báo này: Minh N N. Tăng tốc phân tích phi tuyến ứng xử siêu đàn hồi bằng giải thuật 
Newton-Raphson kết hợp GMDH. Sci. Tech. Dev. J. - Eng. Tech. 2023, 6(3):1946-1954.

https://crossmark.crossref.org/dialog/?doi=10.32508/stdjet.v6i3.1034&domain=pdf&date_stamp=2023-9-30

	Accelerating the nonlinear analysis of hyper-elastic behavior by GMDH-assisted Newton-Raphson scheme
	INTRODUCTION
	HYPER-ELASTIC BEHAVIOR
	METHODOLOGY: GMDH-TYPE NEURAL NETWORK
	Construction of the first hidden layer
	Construction of other hidden layers
	GMDH-assisted Newton-Raphson scheme

	RESULTS AND DISCUSSION
	Comparison between conventional NR and GMDH-assisted NR
	Effects of activation function
	Prediction of incremental displacement

	 CONCLUSIONS
	List of abbreviations
	Conflict of interest
	Contribution of each author
	References


