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ABSTRACT

This paper presents an accelerated iterative scheme for nonlinear problems. Commonly, analysis
of nonlinear behavior is conducted by the Newton-Raphson (NR) method. It is well-known that the
number of iterations required depends on the deviation between the **starting point" and the con-
verged solution. In practice, the solution of previous load step is taken as the “*starting point", while
the converged solution of the current load step is not known beforehand. Therefore, difficulties or
even non-convergence may occur. Recently, it is suggested that a neural network is employed to
predict the solution of the current load step. This prediction is then used as the “starting point"
for NR scheme. It is expected, that the true converged solution (of current step) is closer to the
prediction by neural network than to the solution of previous load step. As a result, the scheme
becomes faster due to less iterations. Obviously, any techniques for time-series forecasting can be
used. Here, the Group Method of Data Handling (GMDH) is proposed. Loosely speaking, GMDH is a
feedforward neural network without backpropagation. Practically, the GMDH-assisted NR scheme
should not take longer time than conventional NR scheme. The advantage of GMDH is fast com-
putation; however, the accuracy may be not as high as a network that has backpropagation. There-
fore, careful consideration on the construction of GMDH network is needed. In the current work,
the performance of GMDH-assisted NR scheme is investigated in analysis of hyper-elastic behavior,
which involves both geometrical and material nonlinearity. A study on the influence of activation
function on the accuracy is presented. Also, it is found that prediction for incremental displace-
ment (between the current load step and the previous load step) could be better than prediction

of displacement of the current load step.

Key words: Time-series forecasting, GMDH network, Newton-Raphson scheme, Accelerated

nonlinear analysis

INTRODUCTION

Nonlinear behaviors are usually encountered in en-
gineering problems. Therefore, an efficient algo-
rithm for nonlinear analysis is always needed. In
practice, the iterative Newton-Raphson (NR) scheme
is the most commonly used, due to simple imple-
mentation and quadratic convergence rate. The
method has been widely applied in analyses of unsatu-
rated flow !, plastic deformation 23 geometrical non-
linearity4‘6, hyper-elastic behavior 79 temperature-

dependent heat transfer '0-12

and many other types of
problem.

It is common knowledge if the deviation between the
converged solution and the “initial guess” or “start-
ing point” is large, difficulties may occur '*~!°, be-
ing reflected in the large number of iterations. Non-
convergence may even be encountered. Practically,
the converged solution of previous load step is used as
the “starting point” for the current load step. Usu-
ally, small step size is applied, with the hope to in-

crease the possibility of convergence. However, the

process would be very time-consuming. In 2001, Kim
and Kim introduced the employment of neural net-
work to predict the starting point 1°. A pre-analysis is
required to compute parameters that are characteris-
tic to the pattern of the three previous converged so-
lutions. The neural network is then trained to learn
the pattern and estimate a starting point for itera-
tions of the current load step. Recently, Nguyen T.
N. et al.'* directly exploits the time-series forecast-
ing of GMDH-type neural network to predict the con-
verged solution of the current load step. The pre-
dicted values are then used as the starting point for NR
scheme. Ref. !° further discussed that a careful selec-
tion of parameters for GMDH-network could reduce
the number of iterations to one iteration. Neverthe-
less, Refs. !> were limited to geometrically nonlin-
ear analysis of shell structures. Furthermore, from a
practical point of view, a neural-network-assisted NR
scheme should take less time than the conventional
NR scheme. Probably this is the reason that there were
not much publications on this area, since it is difficult
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to select a network that satisfies both accuracy and
speed.

For analysis of hyper-elastic behaviors of neo-
Hookean type materials, which include both geomet-
rical and material nonlinearities, there were some
attempts to accelerate the computational process,
for e.g. by POD-DEIM '°, or by the reduced-basis
technique namely Combined Approximations (CA) .

8,16

However, the purpose of Refs. is saving time

in each iteration, rather than reduction of number
of iterations as in Refs.!®!>. Being inspired from
the Refs.'#!%, in this paper the GMDH-assisted NR
scheme is further investigated for analysis of hyper-
elastic solids.

This report is organized as follows. Right after the In-
troduction, a brief review on hyper-elastic behavior
is presented in Section 2. The time-series forecasting
GMDH network is described in Section 3. Section 4 is
reserved for numerical results and discussion. Finally,
concluding remarks are drawn in the last section.

HYPER-ELASTIC BEHAVIOR

Let us consider a two-dimensional (2D) solid domain
Q, bounded by I', see Figure 1. It is subject to a body
force b, while traction t is applied on the part I'; of the
boundary, and displacement constraints takes place
on [,.

Xl

Figure 1: Sketch of a 2D solid domain

By denoting x the current position of a point in Q,
and X the position of that point in the initial configu-
ration of the body, the displacement vector is u =x —
X. Using finite element analysis, the governing equa-
tion for equilibrium problem can be written using the
initial configuration as follows

G(”):E‘nthext:O (1

where the internal force, Fj;, and the external force,
Fy:, are given by

Fie = [§ BT SdQ )

Feu = J§ NTbdQ + [ N tdT 3)

Here, S is the second Piola-Kirchhoff stress tensor, N
is the vector of shape functions and B; is the derivative
operator. Applying the total Lagrangian approach,
linearization of Equation (1) for Newton-Raphson it-

erative scheme takes the following form °

Ktan Su=—G, (4)

where Su is the change of displacement between two
consecutive iterations and Ky, is the tangent stiffness

Ktan:K| +K>, (5)
Ki = [§ BT DBdQ, (6)
Ky = [§ BISB,dQ, )

In Equation (6), D is the fourth-order constitutive
tensor, which relates strain and stress components.
The matrix B; and B, are calculated by

Bi=[B B B, ®)

B=[8 B B, ©)

where 7 is the number of node within an element. For
each localnodei(i=1, 2, ..., n), we have

F11N; Fo1N;
B = FioNio FxNip , (10)
Fi1iNip + FioNi1 F21Nip + FoNj
Ni,1 0
B — Niz = 0 (11)
0 Ni,l
0 N>

In Equation (10), F;; are components of the deforma-
tion gradient tensor F, which are given by

dx du
F=—=14— 12
x T (2
where 1 is second-order identity tensor.  The

“comma” sign (,) in Equation (10) and (11) denotes
spatial derivative; for e.g., N is the derivative of N;
with respect to Xj.

The matrix S in Equation (7) stores the components
of the second Piola-Kirchhoff stress

Si1 S22 O 0
S St S» 0 0
0 0 S S»

(13)
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The second Piola-Kirchhoft stress tensor S (see Equa-
tion (2)) is symmetric and can be calculated by

oW oW I,

SZZT_zzk 191, 9C

(14)

where C = F F is the right Cauchy-strain tensor. Iy,
Ip, I5 are the three invariants of tensor C:

I} =trace(C), (15)
L= % [(trace (C))? —trace (C2>] , (16)
=det (C). (17)

The strain energy function W is characteristic to each
type of hyper-elastic material. Under the assumption
of neo-Hookean materials, W is given by

K 2 M

W=—-({-1 -

S U=D"+5 (4
where x and  are the bulk and shear moduli, respec-
tively, and J = det(F). From Equation (14), the second
Piola-Kirchhoff stress tensor S is determined by

—2logJ —3), (18)

S=xCogJ+pu(1-C71) (19)
The constitutive tensor D is obtained by
s W
D=2-"=4 (20)
dC  dCaC

METHODOLOGY: GMDH-TYPE
NEURAL NETWORK

The group method of data handling (GMDH) 7 is a
self-organizing deep learning technique. GMDH is
quite similar to a deep neural network, however the
number of hidden layers and the number of neurons
in each hidden layer is determined by the network it-
self during the training stage. Another requirement is
that output layer of GMDH has only one neuron.

Construction of the first hidden layer

Each neuron of the first hidden layer is equipped by
one activation function and one transfer function.
The activation function is usually a polynomial that
takes k inputs. For example, the activation function
in form of a bi-variate (two inputs) quadratic polyno-
mials is written as follows

z (xi,xj) =ap+ayx;+axx;

21
—|—a3xl~2 + a4x% + asxixj, 1)

where x;,x; are the two arbitrary values taken from
the input layer. The neuron then produces one output
value by the transfer function, which can be chosen as
identity function or sigmoid function

Identity function:
gl =z (22)
Sigmoid function:
©=1r— e3)
)=T——""=
§ I+exp(—z)

Because each neuron takes two inputs, the number of

neurons in the first hidden layer can be determined
by

m=Ch = (24)

where 7 is the number of inputs.

The neuron is applied to all samples of the training
dataset. Assuming that there are s samples in the
training dataset, the following equations are obtained

for each neuron

&) = a0t ar ) +azxj o)+
a3x2< >+a4x2 1) +asx; (l)x (1)
Z(z)z_ ap —|—a1xl [(2) ta2x; )=+
a3x; >+a4x 2) +asx; )X (2)
Us) = Ao+ a1y F a2 o F
azx; (s )+a4x (5) +asx; (s ) j.(s)

Or in the matrix form

Z=XA, and XTZ=XTXA (25)
where X (size s-by-6) contains the input values and
A (size 6-by-1) stores the coefficients. Requiring that
produced values from transfer function are equal to
the true output of the dataset, we have

Y=g(Z), thusZ=g" ' (). (26)

The vector of coeflicients, A, is then calculated by

A= (xTx)'xTz @7
Once all the neurons of the layer have been con-
structed, the mean squared error (MSE) between the
values produced by each neuron with the targeted out-
put (from the validation dataset) can be evaluated.
The neurons are then sorted by MSE (in ascending or-
der). A threshold can be applied here to remove neu-

rons that have MSE higher than threshold.
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Construction of other hidden layers

The construction of other hidden layers is similar to
that of the first layer, except that the inputs for the "
hidden layer are taken from the produced values from
the previous layer, i.e. the (r-1)™ hidden layer.

The construction stops if: (i) the maximum number of
hidden layers (specified by the user) is reached, or (ii)
the MSE of the best neuron of the current hidden layer
is not lower than the MSE of the best neuron of the
previous layer. Case (ii) indicates that the result can-
not be improved. Therefore, the current layer will be
removed and the construction process is terminated.

The final output of the GMDH network is the output
value of the best neuron of the very last layer.

GMDH-assisted Newton-Raphson scheme

Figure 2 presents an illustration for Newton-
Rapshson (NR) algorithm.
beginning of the current load step, namely load step

Typically, in the

(t+1), the converged solution of the previous step,
i.e. load step (), is taken as the “starting point” for
iterations (the solid dot in Figure 2). Here, following
Refs.!#!1>, the GMDH network for time-series
forecasting is employed to predict the converged
solution of the current step. That predicted value is
then used as the “starting point” for NR scheme. It is
expected that the predicted value will be closer to the
true converged solution and thus, reduction in the
number of iterations can be achieved.

Assuming that M solutions from load step (t-M) to
load step (¢) have been known. Given the number of
delays (i.e. the number of inputs in each sample), the
data can be arranged into input sets and target sets.
Figure 3 is an illustration of data preparation for M = 8
and delays = 2, where there are 7 samples of data (each
sample has 2 inputs and 1 targeted output). These data
are sent to GMDH to train and predict the solution
of load step (¢+1). A portion of samples are used for
training (training dataset) and the rest are for valida-
tion (validation dataset).

Itis noted that similar to any other deep learning tech-
nique, normalization of data could be necessary. Fur-
thermore, a GMDH network is needed for each un-
known degrees of freedom.

In this paper, the performance of GMDH-assisted NR
scheme for analysis of hyper-elastic behavior is inves-

tigated. Unlike in previous works !41°

, where only ge-
ometrical nonlinearity is considered, both geometri-
cal and material nonlinearities are involved in behav-
ior of hyper-elastic solids. Therefore, the problem is
more complicated.

It is noted that the components of tensor D (see Eq.

(6) and Eq. (20)) at an arbitrary point are dependent

13
o
&
&
Fip /
* Starting
point
F(
0 1 2
W Wy Wy u

Figure 2: lllustration of Newton-Raphson scheme

on the strain values at that point, indicating mate-

1415 where material non-

rial nonlinearity. In Refs.
linearity is not considered, tensor D would be con-
stant. Here, there are two sources of nonlinearities,
meaning that complexity is increased. As a result, it
is more difficult for the neural network to learn and

provide prediction with high accuracy.

RESULTS AND DISCUSSION

The proposed model is applied to study behavior of
a curved beam, as sketched in Figure 4. The beam
is subject to an inclined uniform load (45°) at one
end, while the other end is fixed. The material is
assumed to be neo-Hookean type with bulk modu-
lus k¥ = 120.291 MPa and shear modulus u = 80.194
MPa. The uniform load g = 0.5 N/mm?. The prob-
lem domain is uniformly discretized by 9 x 100 8-node
quadrilateral elements (9 elements along the radial di-
rection and 100 elements along the circumferential
direction). There are 2919 nodes in total.

Figure 4: Sketch of the curved beam problem

The load is gradually increased by 40 steps, i.e. incre-
mental size Aq = 0.0125 N/mm?. The conventional
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Figure 3: lllustration of data preparation for GMDH network

Conventional NR

GMDH-assisted NR

6

Iterations

Iterations
o

Total: 207 iterations

1 Total: 141 iterations

0 10 20 30 40
Load steps
0
0 10 20 30 40
Figure 5: Number of iterations required by Conven- Load steps

tional NR for the curved beam problem
Figure 6: Number of iterations required by GMDH-
assisted NR for the curved beam problem

NR scheme is conducted to solve for the first M = 9
load steps. The rest of load steps are aided by GMDH
to estimate the starting point. By default, identity
function is used as transfer function and number of

delays is 3.
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Comparison between conventional NR and
GMDH-assisted NR

Figure 5 and Figure 6 respectively present the number
of iterations in each load step, for conventional NR
and GMDH-assisted NR using tri-variate, quadratic
polynomials (in short “3-quadratic”) as activation
function. It is observed inFigure 6 that from load step
10 to load step 40, with the aid of GMDH, the num-
ber of iterations in each load step is generally reduced,
resulting a total of 141 iterations, which is much less
than 207 iterations needed by the conventional NR.
The reduction in number of iteration indeed boosts
the computational speed, as elapsed time in GMDH-
assisted NR (The time for running GMDH is already
included) is much less than that in conventional NR,
see Table 1. Roughly 30% of total time can be saved.
In Ref. 1°, even one iteration for each load step can be
achieved, when only large deformation (geometrical
nonlinearity) is considered. The hyper-elastic behav-
ior is more complicated in nature, since the nonlinear-
ities come from both large deformation and the stress-
strain relation.

Figure 7 depicts the curves of vertical reaction force
and vertical displacement at point A (see Figure 4).
The results by GMDH-assisted NR and Conventional
NR is in good agreement. This is as expected, because
the overall procedure of NR is not altered. The role of
GMDH is simply providing a better starting point for
iterations.

Effects of activation function

Next, the effect of activation function is investi-
gated. Four types of polynomials are taken into ac-
count: bi-variate quadratic (2-quadratic), tri-variate
quadratic (3-quadratic), bi-variate cubic (2-cubic)
and tri-variate cubic (3-cubic). Among the four vari-
ations, 3-quadratic is computationally the most effi-
cient, as reported in Table 2. On the other hand, non-
convergence occurs in 2-cubic.

Prediction of incremental displacement

Here, we predict the incremental displacement be-
tween load step (f) and load step (t+1), Au=uy; -
uy, instead of directly predict the displacement at load
step (t+1), ugr;. The same four variations as in sub-
section 4.2 are considered.

The performance of GMDH in Table 3 is in general
better than that in Table 2, in terms of number of iter-
ations. Convergence is achieved by all four variations.
In both Table 2 and Table 3, the tri-variate polynomi-
als are better choice for activation function than the
two-variate polynomials.

CONCLUSIONS

The GMDH-assisted NR has been successfully further
extended for analysis of hyper-elastic behavior of two-
dimensional solids. The prediction by GMDH pro-
vides a better starting point for NR iterative scheme,
such that the number of iterations can be reduced.
As a result, a large amount of computational time is
saved.

The efficiency of the proposed scheme comes from the
quick process of GMDH. This is important, because
the training is online, i.e. it is conducted when the
problem is solved. There is no pre-training. Further-
more, several GMDH networks are needed every load
steps. The number of GMDH networks is equal to
that of unknown degrees of freedom. Therefore, the
necessary to have fast computation in each individual
network is more pronounced.

It is aware that the accuracy of prediction by GMDH
is crucial. The choice of transfer function and acti-
vation function would have influence on the accu-
racy. A comparative study on activation function,
while identity function is selected as transfer function,
has shown that tri-variate polynomials would result
in better performance than two-variate polynomials.
Currently, only polynomials are considered for activa-
tion function. The possibility of other types of activa-
tion function should also be studied in future works.
Even the GMDH could be replaced by any other time-
series forecasting network. From practical point of
view, an accelerated NR scheme is only beneficial if it
is faster than conventional NR scheme. Therefore, any
attempts to improve accuracy of prediction should al-
ways pay attention to the elapsed time. Furthermore,
it is found that prediction for incremental displace-
ment could be possibly more robust than direct pre-
diction for the converged value of displacement.

Last but not least, by a good estimation of starting
point, GMDH could help to reduce the number of it-
erations, but it does not have any role in the computa-
tional time of each iteration. On the other hand, the
reduced basis approach ® is efficient to accelerate each
iteration but cannot reduce the number of iterations.
Therefore, combination of two techniques is promis-
ing for future works.

LIST OF ABBREVIATIONS

GMDH: Group method of data handling
NR: Newton-Raphson
MSE: mean squared error
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Table 1: Comparison of elapsed time between Conventional NR and GMDH-assisted NR

Iterations Time
Conventional NR 207 ~701s
GMDH-assisted NR 141 ~485s

Table 2: Comparison of elapsed time variations of GMDH-assisted NR

Iterations Time
2-quadratic 174 ~595s
2-cubic N/A N/A
3-quadratic 141 ~485s
3-cubic 179 ~6l4s

035 9 x 100 elements

Z —Conventional N-R
L = GMDH-assisted NR

0.00 4.00 8.00 12.00 16.00

u [mm]

Figure 7: The curve of vertical reaction force and vertical displacement at point A

Table 3: Comparison of elapsed time variations of GMDH-assisted NR, in which the incremental displacements
are predicted

Iterations Time
2-quadratic 154 ~556s
2-cubic 149 ~544s
3-quadratic 143 ~525s

3-cubic 140 ~516s
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Bai bao nay trinh bay gidi thuat 1ap dugc tang téc cho bai todn phi tuyén. Thong thudng, viéc phan
tich (ng xtr phi tuyén dugc thuc hién bang phuong phap Newton-Raphson (NR). Bac diém cua
phuong phap la sé lugng budc lap phu thudc vao muic do sai khac gitta *du doan ban dau' va loi
gidi hoi tu. Do dé, qua trinh gidi c6 thé gap kho khan, hodc khéng hoi tu. Trong thuc té, 16i gidi hoi
tu clia budc tai trudc sé duoc chon la " du doan ban dau'”, trong khi l6i gidi hoi tu clia budc tai hién
tai hién nhién la khéng dugc biét trude. Gan day, viéc strdung hé than kinh nhén tao dugc dé xuat
dé du doan 11 gidi clia budc tai hién tai. K&t qua du doan nay sé dugc dung lam “du doan ban
dau" cho qua trinh 1dp NR. Biéu ky vong la 161 giai hoi tu thuc té (ctia budc tai hién tai) sé gan vai du
dodn clia hé than kinh nhan tao, hon la vai [6i gidi hoi tu clia budc tai trude. Hé qua la qua trinh lap
sé nhanh hon, do can it budc 1dp hon. Rd rang, bat ¢t ky thuat nao dung cho du doan theo dién
tién thai gian déu c6 thé ap dung. O day, phuong phap Group Method of Data Handling (GMDH)
dugc dé xuat. Co thé noi rang, GMDH la mot hé than kinh nhan tac khéng c6 qua trinh lan truyén
nguagc. Trén quan diém thuc té, viéc két hap GMDH vao giai thuat NR phai mang lai thai gian tinh
toan nhanh hon NR théng thuong. Lgi thé ctia GMDH la tinh todn nhanh, nhung dé chinh xac kém
hon so véi hé cé lan truyén ngugc. Do d6, can can nhac can than trong thiét 1ap hé GMDH. Trong
nghién ctu hién tai, hiéu qua cla thuat toan NR két hop GMDH sé dugc khao sat khi phan tich ng
xU siéu dan hoi, trong dé bao goém ca yéu té phi tuyén hinh hoc va yéu té phi tuyén vat liéu. Mot
khao sat vé anh hudng clia ham kich hoat dén dé chinh xac clia du doan bdi GMDH dugc trinh
bay. Thém vao dé, nghién ciu hién tai cing cho théy, du doan vé s gia chuyén vi cé thé dan dén
hé hoat dong tét hon so véi dy doan tryc tiép gid tri chuyén vi clia budc tai hién tai.

Tu khoa: Du doan dién tién thai gian, mang GMDH, Thuat toan Newton-Raphson, Tang téc phan
tich phi tuyén

Trich dan bai bdo nay: Minh N N. Tang téc phan tich phi tuyén ting xi siéu dan héi bang giai thuat
Newton-Raphson két hgp GMDH. Sci. Tech. Dev. J. - Eng. Tech. 2023, 6(3):1946-1954.
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