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ABSTRACT

Nowadays unmanned vehicles are compulsorily required to contain a reliable collision avoidance
system as to reach closer toward the target of the autonomous vehicle (AV). Up to now lots of
obstacle avoidance techniques have been introduced and successfully applied in practice. Unfor-
tunately, in almost of these obstacle avoidance algorithms, the uncertainty of the input that in-
cludes obstacle tracking measurements, have not been satisfactorily investigated. This uncertainty
happened from measurement approaches along with obstacles' nonlinear locomotion. Several re-
searches have tried to overcome this problem via detecting obstacles directly or indirectly based on
global/local communication and/or the third party like the Automatic identification system (AIS).
Inspired with these achievements, this paper aims to deal with uncertain information of obstacles
resulting in from practical obstacle-avoiding techniques for autonomous vehicles. In fact, this prob-
lem isignored in many researches by assumptions that measurements are perfect or the vehicle can
fully observe the state of obstacles. A probability model is proposed to evaluate the possibility of
collision quantitatively based on the current position of the vehicle and the probability distribution
of obstacles' position. This probability model is then applied to design a new repulsive function.
Hence, the resulting artificial potential field can avoid uncertain obstacles by maneuvering the ve-
hicle in the direction of decreasing collision risk. Numerical simulations are carried out to verify the
proposed collision avoidance model, and the simulation results show that the proposed method
can help autonomous vehicles to efficiently pass obstacles safely with uncertain information. As
a consequent, the proposed algorithm can guide the autonomous vehicle (AV) to effectively and
safely pass static and dynamic obstacles with respect to uncertain information. Further research
can focus on dynamic obstacles which will be investigated via integrating the speed variable into
the considered probability model.

Key words: autonomous vehicle (AV), obstacle avoidance, collision avoidance, uncertain obstacle,
probability-based artificial potential field method

INTRODUCTION

Apart from an intelligent path planner, unmanned ve-
hicles need to have a reliable collision avoidance sys-
tem to step closer toward the goal of the autonomous
vehicle. In recent decades, many obstacle avoid-
ance approaches have been studied, however, can
be classified into two major groups: Discretization-
based methods (including Regulation-based, Solu-
tions Discretization, Graph Searching methods) and
Continuous-based methods (including Virtual field,
Regulation-based
methods create a set of predefined collision situations

Trajectory Planning methods).

and a set of respective guidance laws based on the ex-
perience of experts and the international regulations
as COLREGs. The effectiveness of these methods de-
pends heavily on the generality of situations and the
detail of commands. Intelligent algorithms such as
Neural networks !, Fuzzy logic ? are also utilized in the
decision-making systems to enhance the generality of

the situation set. Unfortunately, because the situation
set is hard to cover all scenarios, there is no collision
avoidance command to USVs in the unknown cases.
In Discretization Solutions methods, the commands
are discretized in a set of commands assumed to be
unchanged in a specific time step>*. Then each com-
mand is evaluated by collision checking and optimiza-
tion algorithms to find out the best solutions>°. The
most advantages of these methods are low computa-
tion cost and ease to put it into use.

Amongst the Continuous-based methods,” the po-
tential Artificial Potential Field (APF) algorithm rep-
resents virtual force fields coming out from obstacles
and virtual force fields converging to a target point.
USV can reach the target point and stay away from ob-
stacles due to these virtual force fields. According to 8
the motion of USV and obstacles are considered in the
new potential field, and the local minima problem in
the previous studies is tackled. The Velocity Obsta-
cle (VO) concept proposed by® directly considers the
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collision avoidance trajectory planned in the obsta-
cle’s frame where the vehicle moves relatively toward a
static obstacle. As a result, all the relative velocity vec-
tors causing collisions are determined by a cone space.
Nonetheless, this cone space is only valid with the as-
sumption that the velocity of the vehicle and obstacle
is constant. This VO drawback was improved partly
by Non-linear VO ', where the relaxed assumption
allows the obstacle’s velocity to change but is known
in advance. Authors in Kuwata ef al. (2014)'! has
implicitly treated the nonlinear motion of the obsta-
cle as a source of bounded uncertainty; hence, the VO
is expanded to the worst-case VO. Authors in Song et
al. (2018) 12 has developed a two-level collision avoid-
ance scheme for dynamic obstacles represents a veloc-
ity obstacle method for negotiation situations and a
compound potential field method for emergencies.
However, the uncertainty of the input (including ob-
stacle tracking measurements) has not been consid-
ered in most obstacle avoidance algorithms. This un-
certainty might arise from measurement methods and
obstacles’ nonlinear motion. Some studies tried to
overtake this hindrance by observing obstacles di-
rectly or indirectly through local communication '* or
the third party like the Automatic identification sys-
tem (AIS) 4.

Motivated by the results above-mentioned, this study
proposes an obstacle avoidance strategy that can deal
with the uncertainty of obstacle tracking methods.
The main contributions of this paper can be summa-
rized as follow:

« An innovative probability-based model is pro-
posed to calculate the risk of collision between
the vehicle and the obstacles where the uncer-
tainty of measurements is necessarily taken into
account.

« Anewartificial potential field designed based on
the probability model is proposed to efficiently
plan the collision-free path.

The rest of this study is organized as follows. Sec-
tion 2 presents the preliminaries. Section 3 presents
the problem formulation and discussion of this re-
search. Section 4 introduces the methodology. Sec-
tion 5 presents the comprehensive numerical simula-
tions and results, and the final section concerns the

conclusions.

PRELIMINARIES

Multivariable Normal Distribution

A normally distributed vector X € RV (N is an inte-
ger) can be expressed by XCIN (u,¥), where u € RV

1877

is an expectation, and ¥ € RV*N s a covariance ma-
trix. The probability distribution function f : RV — R
is presented as follow:

fX)=
1 1 T o1
T\/mexp (—5 X—u)'X (X—u))

Let S C RV is a subset of and we have the following
probability:

oy

p(X €5) = [sfXdX )

Artificial Potential Field

The Artificial Potential Field (APF) model firstly pro-
posed in” contains two main components, including
repulsive potential function and attractive potential
function. The first component (3) is located at obsta-
cles to encourage the vehicle to move far away from
obstacles. The second (4) is located at the goal to en-
courage the vehicle to move closer toward the goal.

The repulsive potential function:

! <11>2,.f <
211 P Po P =pPo (3)

0 otherwise

Urep =

where 7 is a positive scalar, p is the Euclidean dis-
tance between the vehicle and the obstacle, py is the
influence range.

The attractive potential function:

Uatt = Epgz (4)

where is a positive scalar, p, is the Euclidean distance
between the vehicle and the goal.

PROBLEM FORMULATION AND
DISCUSSION

Let O € RZ*M denotes a set of stationary obstacles
O; (i =1:N) in the vehicle’s workspace.
The

(Xo,i»¥0,i) in the Cartesian coordinate,

Assumption: obstacle
0i, o =
can be obtained by a set of measurements M, and
(xo,hYO,i) UN (“a,iv Zo,i)-

There are many studies of obstacle tracking ap-

position of the

proaches providing (xp, yp) at the output. For in-
stances, Ushani et al. (2015)'° used SLAM and Li-
DAR for estimating the trajectory and the shape of the
obstacles; Odelga et al. (2016) '° used RGB-D camera
and Bin-Occupancy filter to track the obstacles’ veloc-
ity. Therefore, this assumption is reasonable.
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Vehicle model

The holonomic model'” is utilized for applying the
proposed algorithm in this study.

x(k+1)=x(k)+ucos(x)T
y(k+1)

. 5
— y(0) +usin (1) T ®
where pCl(x,y)” is the vehicle’s position, i and x are

respectively the vehicle’s speed and orientation, T is
the sampled time.

Collision avoidance problem
Let C C R? denotes a dangerous zone around the ve-
hicle, and C is defined as follow:

CO{(xc,ye) |d (xe,ye) < Rs} (6)

where d (-) indicates the distance from a point to the
vehicle, R; is safety radius.
An obstacle O; is supposed to collide with the vehi-
cle when o; € C. The main objective of this paper is
to determine the orientation command for the vehicle
such that the possibility of collision is minimal or to
find the solution for the following problem:

X = argmmp <U 10i € C) (7)

where x* is the desired orientation the vehicle should
follow for obstacle avoidance.

METHODOLOGY
Probability of Collision

Let define a randomly vector as follow:

&0 (8:i,8,) =o0i—p (8)
Thus:
SON (us,Zs,) 9)
where ts, = Hoi — p, L, = Lo,
We have:
ploieC)= ¢ py. \/\271
(=4 (o= 10i) 2} (01 fuo,,)) g o,
= Je WWCP X (—% (0i = p— (Mo, —P)T
X2, ! (0i—p— (Mo — P)))dXoiYo.i
=Jc #mexp X (10)
(—% (6 — Ms,-)T E;il (6 — Ha,-)) dxoiYo,i
From (6) and (8), it yields:
Cs = {(8x,8y) |6 = rcos#, ()
Oy =rsin®, r € [0,R], 6 € [0,27]}
Substitute (11) into (10), we obtain'
piOp(0i €C) = [ 7™ \2 ‘

X exp (—%(Si_usi)T 5 (Si—ysi)>rdrd9

(12)

Proposed Probability-based Artificial Po-
tential Field

Once the probability of collision, p;, is determined as
in (12), a new repulsive potential function can be de-
veloped by exploiting this value as follow:

Upi:—npln(l—p,-) (13)

The repulsive potential field illustration is fully pre-
sented in Figure 1.

Remark:

It is necessary to note that the vehicle velocity will af-
fect the performance when implementing on the dy-
namic models and/or on the real vehicles. The fact
is that the vehicle’s manoeuvrability will be restricted
when the velocity increases, i.e. the maximum turn-
ing angle will be decrease. Up to a certain threshold
of velocity, the vehicle is unable to track the obsta-
cle avoidance trajectory, because the trajectory is too
sharp in comparison with the vehicle’s manoeuvra-
bility. The solution here is to make the vehicle react
earlier by enlarging detection range of sensor as well
as increasing the scalar coefficient 17, used in equa-
tion (13). Here, the vehicle velocity does not affect
the simulation result since it is implemented based on
vehicle’s kinematic model. The velocity was by 1 m/s
in the simulation tests.

It can be from (13) that when there is no risk of colli-
sion (i.e. p; = 0), Up, is equal to zero, i.e. the repul-
sive field has no influence on the vehicle’s movement.
Otherwise, the repulsion force derived from (13) can
be obtained as below:

1
Frep_i = 7VUP,‘ = np?pl (7th) (14)

From (12), we have:

1 _
Vri=piV| -5 (51'—#5[)T25,.1 (&-Ha,))
1 _
= —Epi(<V (& —#5,-)T> 5 (85— us)
+25! (8~ 1) =5 (V (8- 15)))
= —pi¥ (5 ”5)

Substitute (15) in (14), it yields:
x5! (6

Besides, we also have the attraction force derived from

(4):

rept “3) (16)

—npl

Far = 6pgﬁvg (17)

where ﬁvg represents a unit vector pointing from the
vehicle to the goal.
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Figure 1: Repulsive potential field with g = (5,7)7, £ =[21;14], Ry = 10m.

Finally, the resultant force of the potential field model
is presented as follow:

Fotal = Ziv:U| Frep,i + Fart (18)

The course command for manoeuvring the vehicle to
avoid obstacles can be determined from F;,; as the
following equation:

Xemd = atan?2 (Eotal,ya Ftatal,x) (19)

NUMERICAL SIMULATION AND
RESULTS

In this section, numerical simulations are carried out
to verify the capability of avoiding uncertain obsta-
cles of the proposed algorithm. As an above pre-
sentation, the proposed obstacle avoidance algorithm
makes the decision based on the probability distribu-
tion. To clarify the influence of this approach for han-
dling uncertain obstacles, APF, a sample-based ap-
proach, is also simulated for comparison. Parameters
of the proposed algorithm and APF are chosen as fol-
lows: €=0.2, Np=20, Rs= 5 m, T=0.1s, n=600, p0=15
m. The inputs are the estimations of the position and
the covariance matrix of the static obstacles given as
follows:

1879

01 =(w =12,9",%,;=[3.612;1.22.4]

0y = (11 =12,15)  Z,, = 3.6 —1.2; —1.22.4]
03 = (13 =20,28)" , £,3=[3.6 — 1.2; —22.4]
Two benchmark tests will be investigated which in-
cludes the case-1 regarding to single obstacle and the
case-2 for multiple obstacles.

Case 1: Single obstacle

It can be seen from Figure 2 and Figure 3 that the pro-
posed method smoothly avoided an uncertain obsta-
cle O} and safely approached the goal. Meanwhile, the
trajectory of APF was very sensitive to uncertainty,
fluctuated and could not converge to the goal. Fur-
thermore, APF put the vehicle at a high risk of colli-
sion that was higher than 0.25 and even got the peak
of 0.4.

Case 2: Multiple obstacles

In Case 2, two additional obstacles were O, and O3
interrupting the direction of approaching the goal.
Therefore, the proposed method performed evasive
actions to avoid these two obstacles that can be ob-
served from Figure 4b and Figure 4c at the timestamp
t=12s and t=20s, respectively. However, the existence
of multiple uncertain obstacles made the performance
of APF worse when Figure 5 witnessed the higher
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Figure 2: Performance of the probability-based artificial potential field for a single obstacle. The dashed blue
ellipse and the solid blue ellipse represent the distribution of O; with @=0.95 and a=0.683, respectively. The

black arrow depicts the velocity command.

peak (0.55) of the probability of collision. In sum-
mary, the proposed method convincingly improves
the performance of APF in avoiding uncertain obsta-
cles.

CONCLUSIONS

In this paper, a probability model was proposed to
calculate the possibility of collision between the au-
tonomous vehicles with uncertain obstacles. Then a
new probability-based artificial potential field was in-
troduced to exploit this probability model to help the
vehicle navigating safely in environments of uncer-
tain obstacles. Numerical simulations are carried out
to verify the proposed collision avoidance model, and
the results show that the proposed method can keep
the autonomous vehicles to efficiently and safely pass
obstacles regarding to uncertain information.

For further work, this study can be extended for the
dynamic model by modifying the repulsive function
such that the velocity command is admissible for the
dynamic constraints. Dynamic obstacles are also con-
sidered by integrating the velocity into the probability

model.
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Figure 3: Probability of collision of the proposed method and APF in Case 1
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Figure 4: Performance of the probability-based artificial potential field for a single obstacle. The dashed blue
ellipse and the solid blue ellipse represent the distribution of O; with «=0.95 and @=0.683, respectively. The solid
red line and dotted red line respectively depict the paths generated by the proposed method and APF.
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Figure 5: Probability of collision of the proposed method and APF in Case 2
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TOM TAT

Hién nay cac xe khdng ngudi 1ai déu bat budc yéu cau phai trang bj hé théng tranh vat can tin cay
nham tién gan hon dén tiéu chudn xe tu hanh (autonomous vehicle - AV). Cho dén nay da cé nhiéu
thuat toan tranh vat can da dugc gidi thiéu va ting dung thanh cong trong thuc tién. Dang tiéc la,
trong hau hét cac thuat toan tranh vat can nay, tinh bat dinh clia s6 liéu do dac khodng cach gilra
xe dén vat can, van chua dugc quan tam khao sat day dd. Yéu té bat dinh phat sinh tir ban chat
cac phuong phéap do cting vdi tinh phi tuyén ctia thong so vi tri vat can. Mét s6 nghién clu da cd
gang gidi quyét phan nao doé bai toan trén, bao gém hudng truc tiép hodc gian tiép phat hién vat
can dya trén nén tang truyén thong toan cuc / cuc bd hodc nha vao déi tac thirba la cac hé thong
nhan dang tu déng (AIS). Bugc thic ddy tir cac két qua vira néu, bai bao dé xudt hudng xur ly dua
vao théng tin bat dinh vi tri vat can cé dugc tir cac ky thuat tranh vat can thuc té danh cho xe tu
hanh. Cu thé, bai todn nay thudng dugc udc luge bd qua trong nhiéu nghién clu bang céch gia
thiét rang s6 liéu do dugc xem nhu hoan hao hodc xe tu hanh bao dam quan sat day du trang thai
clia vat can. O day ta sé xay dung mét mé hinh xac xuat gidip danh gid dinh luong kha nang va
cham vat can dua theo vi tri hién thai clia xe phéi hop véi xac xuat phan bé cla vi tri vat can. Tu dé
ma hinh xac xudt nay sé dugc dung dé thiét ké mot ham dép ing mai. Nha do, trudng thé nhan
tao (artificial potential field — APF) sé dugc dung hiéu qua gitip trdnh cac vat can bat dinh bang cach
van hanh xe vé huéng giam nhe rdi ro va cham. Cac thi nghiém mé phong sé dugc tién hanh
gitp kiém tra m6 hinh tranh vat can dugc dé xuat. Két qua mé phong cho thay phuong phap dé
xudt gilp cac xe tu hanh vugt qua cac vat can hiéu qua va an toan du chi dua vao cac thong tin do
dac bat dinh. Hé qua la, thuat toan dé xuat cho phép hudng dan cac xe tu hanh (AV) vuct qua cac
vat can tinh va dong mot cach hiéu qua va an toan du chi dua vao cac két qua do luong bat dinh.
Hudng nghién clu tiép theo sé tap trung vao cac doi tugng vat can dong thong qua kha nang tich
hop cac dir liéu téc d6 vao md hinh xac xuat dugc thiét ké.

Tu khoa: xe tu hanh (AV), giai thuat tranh vat can, giai thuat tranh va cham, vat can bét dinh,
phuong phap trudng thé nhan tao tua xac xudt

‘—

VNU-HCM Press

Trich dan bai bdo nay: Tam P M, Anh H P H. Thuat toan trudng thé nhan tao (APF) tua xac xuit danh
cho xe tu hanh gitp tranh vat can khong xac dinh. Sci. Tech. Dev. J. - Eng. Tech.; 2023, 6(2):1876-1883.
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