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ABSTRACT
Sub nanometer-defective-graphene, such as graphene with vacancies and graphene oxide, is
promising candidates to overcome the water permeability of membrane materials for reverse os-
mosis technology, which is the leading technology for desalination and water treatment. The ad-
vantage of graphene-based materials in this area is attributed to their ability to adsorb contami-
nants by oxygen-containing functional groups at defects on graphene sheets. In this study, the
interaction mechanism between water molecules and defective graphene, including pyridine de-
fective graphene and pyridine graphene oxide, is described through electronic properties by a
DFT calculation. The calculation was performed using the pseudopotential plane-wave method
by Quantum Espresso with cut-off energy of 40 Rdy and supercell of 4x4 with in-plane periodicity
containing 32 atoms. The orbital hybridization of C atom changed from sp2 to sp3 when it bonded
to the O atom instead of neighboring C atoms in the graphene structure, led to the formation of
a negative charge on the graphene sheet. In particular, hybrid sp2/sp3 orbitals was created on
C atoms, which formed the epoxy group with the adsorption energy of -5.80 eV. In the models
of monovacancy of graphene (defective graphene) and various positions of oxygen on defective
graphene (graphene oxide), charge re-arrangement due to vacancy or presence of oxygen atom
and weak binding energy between graphene and water molecules are responsible for attracting
cations and allowing water molecules to pass through. The negative charge areas were thought to
help increase the spacing of the functionalized defective graphene sheets, creating a path for water
molecules to pass through. In addition, the computational model also showed the (non)-magnetic
moment of the functionalized defective graphene depending on the functional group attached at
the defect position.
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INTRODUCTION
Two-dimensional graphene and its derivative ma-
terials such as graphene oxide, defective graphene,
functionalized defective graphene have received a
lot of interest both scientifically and technologically.
These are promising materials for future technolog-
ical fields including nanoelectronics, hydrogen stor-
age, catalysis, composite devices, and chemical sen-
sors1–9. Functionalized graphene with hydrogen,
oxygen-containing groups, or other elements and
chemical groups is of great interest as a way to engi-
neer different properties 10,11.
Structural defects of graphene are caused by the syn-
thesis on a large scale12. Defects change essen-
tially not only the electronic properties but also the
chemical properties of graphene. By functionalizing
defects, it provides a way to modify the electronic
and crystal structure of graphene, which may be im-
portant for practical applications such as graphene-
based nanoelectronics and membranes13,14. More-
over, defective graphene functionalized with different

functional groups varies the spacing between stacked
sheets imparting highly selected molecular sieving
membranes15–17.
In this work, the electronic structure included
graphene with monovacancy (denoted defective
graphene hereafter) and its functionalization with
oxygen and hydroxyl groups. The oxygen functional-
ized structure created a negative charge on the surface
of the sheet which can prevent aggregation between
sheets. More interestingly, defective graphene and
defective graphene with oxygen and hydroxyl groups
exhibited a finite magnetic moment.

METHODS
The calculations were based on the spin-polarized
density functional theory (DFT)18 using ab initio
pseudopotential plane-wave method in the PWSCF
code of the Quantum ESPRESSO distribution19. The
generalized gradient approximations (GGA) for the
exchange and correlation energies in the form were
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proposed by Perdew et al.20 and the ultrasoft pseu-
dopotentials from the Quantum ESPRESSO version
6.4.1 (2019)21 were used. The valence electronic wave
functions were expanded onto a plane-wave basis set
with a kinetic energy cutoff of 40 Rdy for wave func-
tions and 400 Rdy for charge density. Integration
over the k-points has been carried out with smear-
ing techniques22 using a Gaussian broadening of 0.01
Rdy and a 3 x 3 x 1 Γ-centered Monkhorst-Pack k-
point mesh23. Convergence tests with 7 x 7 x 1 k-
point mesh have been carried out. Graphene sheets
with vacancy or adsorbed molecules were simulated
in hexagonal supercells with 4 x 4 in-plane periodic-
ity containing 32 atoms.

Figure 1: Model of defective graphene and sites of
all carbon atoms surrounding defective site.

Defective graphene sheets were constructed by re-
moving one single carbon atomanddenoted positions
of all carbon atoms around the defective site (Fig-
ure 1). The interacted energies of an oxygen atom and
hydroxyl (OH) group with carbon atoms were calcu-
lated at the position given in Table 1. Formation and
adsorption energies were determined by:
EFormation = EGr−De f – EGr(31−atoms) – EFunct. (1)
EAds. = EGr−De f+Funct. + EGr – EFunct. – EGr−De f (2)
Where

• EFormation is the formation energy of the system
• EGr−De f is the energy of defective graphene
• EGr(31−atoms) is the energy of graphene with 31
atoms

• EFunct. is the energy of functional groups (oxy-
gen or hydroxyl)

• EAds. is the adsorption energy of the system
• EGr−De f+Funct. is the energy of defective
graphene with the functional group

• EGr is the energy of pristine graphene

RESULTS ANDDISCUSSION
Pristine graphene and defective graphene
The calculations were verified through the density of
state (DOS), the partial density of state (PDOS) for
the relative contribution of carbon orbitals, and the
lattice parameter of pristine graphene. The calculated
lattice parameter of graphene was 2.47 Å, which was
in well agreement with the experimental value of 2.45
Å. DOS of pristine graphene has no spin polariza-
tion and is semi-metallic with Dirac cone at the Fermi
level, corresponding to E = 0 eV in the DOS.The con-
tribution to DOS closed Fermi level was mainly due
to the π-orbital of carbon. Such results were in agree-
ment with some previous publications24,25.
The defective graphene was constructed with mono-
vacancy by removing one carbon atom on pristine
graphene and performed geometry optimization (Fig-
ure 1). Due to the breaking bonds of C-C, carbon
atoms around the defective position form dangling
bond sp2 26,27. Furthermore, the distance between
carbon atoms at the defective position was contracted
for C4-C5, C5-C6, C9-C10 and expanded for C1-C2,
C8-C9.
The structural stability of defective graphenewas eval-
uated by calculated formation energy. According to
Eq. (1), formation energy was the energy difference
of the system of 31 carbon atoms and one defect com-
pared to the system of 32 carbon atoms. Such energy
difference close to zero was said to be attributed to
a stable structure. The calculated formation energy
was 7.82 eV, which was in well agreement with ex-
perimental results26,28,29. A similar value was yielded
from the larger supercell (8 x 8) of 127 carbon atoms.
DOS of defective graphene had many differences
compared to pristine graphene, especially at around
the Fermi level. The DOS of Fermi level for a spin up
and spin down at the Fermiwere unequal, where spin-
up has more DOS than spin down (Figure 2). The
contribution to the DOS of the spin-up was from the
π-orbital and the py of carbon atoms at the defective
site. This DOS difference led to the interesting prop-
erty of defective graphene’s magnetism. The calcu-
latedmagnetic moment was about 1.45 µB.Thismag-
netism was generated from the breaking of the D3h

symmetry down to the C2v symmetry of graphene in-
duced by the Jahn-Teller strain 26,30.

Functionalized defective graphene with
oxygen
From the constructed 31-carbon defective graphene
model in Figure 1, an oxygen atom was placed in the
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Table 1: Models of calculation for oxygen and hydroxyl at carbon atoms around the defective position on the
graphene sheet.

Oxygen Top(a) C1 C2 C3 C4 C5

Bridge(b) C1-C2 C2-C3 C3-C4 C4-C5

In-plane(c) C1-C5-C9

Hydroxyl Top(a) C1 C2 C3 C4 C5

In-plane(c) C1-C5-C9

(a) ‘top’ is denoted as top of each carbon atom
(b) ‘bridge’ is denoted connection between carbon atoms,
(c) ‘in-plane’ is at the defective site.

Figure 2: The density of state (DOS) of pristine graphene and defective graphene.

defect position. The oxygen adsorption sites and en-
ergy levels from the optimized structure were shown
in Table 2. In the optimal structure, oxygen atom
bonded to graphene sheet through two types of bond-
ing: in-plane (Figure 3) and epoxy bridge (Figure 4).
Calculated results showed that oxygen immediately
replaced defective position (in-plane 159) with for-
mation and adsorption energy of 0.40 eV and -5.80
eV, respectively. The oxygen at bridge 2-3 had simi-
lar formation and adsorption energy values to at in-
plane 159. Such results confirmed the most formable
and stable structures were in-plane and bridge, which
were proposed previously31. The DOS of adsorption
at the bridge cases was different from the in-plane case

shown in Figure 4 andFigure 5. While the DOS of the
in-plane 159 case showed a finite band-gap, the DOS
around the Fermi level was contributed from the pz

orbital of the carbon and oxygen atoms (from PDOS
below). The calculated magnetic moment gives zero
value.
Adsorbed oxygen at bridge 2-3 has no bandgap (Fig-
ure 4). The PDOS graph showed that the pz orbital
of carbon and oxygen atoms changed and contributed
to the finite state of DOS at the Fermi level. The to-
tal DOS of spin-up was different compared to spin
down, resulting in a finite magnetic moment of 1.68
µB (Table 2). When the C-O bond formed on epox-
idized graphene, the orbital hybridization of the car-
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Table 2: The energy level andmagnetic moment of oxygen adsorption side in the optimized structure of
graphene.

Model Position EFormation, eV EBinding, eV Magnetic Mo-
ment, µB

Oxygen on top 1 In-plane 159 0.40 -5.80 0.25

Oxygen on top 2 Bridge 2-3 0.40 -5.80 0.00

Oxygen on top 3 Bridge 2-3 0.38 -0.27 1.68

Oxygen in-plane In-plane 159 0.40 -5.80 0.00

Oxygen on bridge 1-2 Bridge 1-2 3.98 -1.48 0.08

Oxygen on bridge 2-3 Bridge 2-3 5.90 0.44 1.28

Oxygen on bridge 3-4 Bridge 3-4 6.04 0.68 2.52

Oxygen on bridge 4-5 Bridge 4-5 4.00 -1.49 0.08

Figure 3: DOS of defective graphene with oxygen in-plane; illustration of the optimal structure.
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Figure 4: DOS of defective graphene with oxygen on top C3 ; illustration of the optimal structure.

bon atom changed from sp2 to sp3 32. Functionalized
graphene with oxygen-containing groups will gener-
ate a negative charge on the graphene sheet to prevent
aggregation. This result was valuable filtration appli-
cations, where functionalized graphene with different
groups can create a different type of voids towards
a specific application. Another study demonstrated
that hybrid sp2/sp3 orbitals produce nonlinear opti-
cal materials33,34.

Functionalized defective graphene with a
hydroxyl group
Figure 5 showed the calculated structures of hydroxyl
defected, including the one-sidedOHgroupwith only
oxygen atom bonded to two undercoordinated car-
bon atoms (Figure 5b) and dissociatedOHgroupwith
oxygen and hydrogen atoms bonded to separated un-
coordinated carbon atoms (Figure 5c). Dissociated
process of hydroxyl had two steps: (i) breaking of
the O-H bonding, which allows hydrogen atom to
form C-H with undercoordinated carbon while oxy-
gen atom forms a carbonyl group; (ii) forming the
bonding between oxygen atomwith two undercoordi-
nated carbon atoms for an ether (C-O-C) group. This

configuration has a total magnetization of 1.45 µB,
mainly attributed to an unpaired π electron.

CONCLUSIONS
Density functional study showed its superiority
for computing the electronic properties of pristine
graphene, defective graphene, and functionalized de-
fective graphene with oxygen and hydroxyl groups.
Depending on the adsorption sites of oxygen, hy-
droxyl groups, the materials exhibit (non)-magnetic
moment. Epoxy defective graphene created hybrid
sp2/sp3 orbitals of carbon atoms and form a nega-
tive charge on the surface which prevents aggregation
between graphene sheets. These results were impor-
tant in the design of graphene-based molecular sieve
membranes.
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Figure 5: (a) DOS of defective graphene with hydroxyl group in-plane C1-C5-C9 . (b), (c) illustration of adsorption
hydroxyl on top and in-plane C1-C5-C9 on defective graphene.
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Tính chất điện của graphene khuyết tật được chức năng hóa với
oxy và nhóm hydroxyl ứng dụng cho rây phân tử
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TÓM TẮT
Thẩm thấu ngược – công nghệ hàng đầu trong lĩnh vực xử lý nước và khửmặn – đangmở ra phạm
vi ứng dụng tiềm năng cho các loại vật liệu mang khuyết tật có kích thước dưới nanomet như
graphen có khuyết tật lỗ trống và graphen oxit (GO). Trong lĩnh vực này, ưu điểm của nhóm vật liệu
graphene và dẫn xuất từ graphene là khả năng hấp phụ các tạp chất hoặc ion trong nước nhờ vào
các nhóm chức chứa oxy được hình thành tại vị trí khuyết tật trên bề mặt graphen. Trong nghiên
cứu này, các dạng khuyết tật pyridine trên bề mặt graphen và GO được nghiên cứu bằng lý thuyết
phiếm hàm mật độ (DFT) nhằm tính toán cơ chế tương tác giữa các phân tử nước với các dạng
khuyết tật này. Mô hình tính toán được thiết lập từ công cụ Quantum Espresso với năng lượng cắt
40 Rdy và trên cơ sở một supercell 4x4 gồm 32 nguyên tử đồng phẳng. Các mô hình graphen đơn
khuyết (monovacancy) và mô hình GO với nguyên tử O ở các vị trí khác nhau đều cho thấy sự tái
phân bố điện tích do vị trí của khuyết tật hoặc hiện diện của nguyên tử O. Khi các nguyên tử C
trên mặt phẳng thay đổi từ liên kết C-C sang C-O, dạng lai hóa orbitan thay đổi từ sp2 thành sp3

là nguyên nhân hình thành điện tích âm trên bề mặt graphene. Đặc biệt, dạng lai hóa hỗn hợp
sp2/sp3 được hình thành tại nhóm epoxy với năng lượng hấp phụ -5.80 eV. Các vùng điện tích âm
phân bố trên bề mặt graphen tạo ra lực hút với các cation. Đồng thời, liên kết yếu giữa graphen
và các phân tử nước cho phép cho phép chúng dẽ dàng đi qua các lổ trống trên cấu trúc vật liệu.
Các vùng điện tích âm giúp tăng khoảng cách giữa các tấm graphen khuyết tật được chức hóa, tạo
thành đường dẫn cho các phân từ nước đi qua.Mô hình tính toán cũng cho thấy graphen khuyết
tật được chức hóa có momen từ phụ thuộc vào nhóm chức gắn vào vị trí khuyết tật.
Từkhoá: khửmặn, thẩm thấu, graphen khuyết tật, graphenoxit, lý thuyết phiếmhàmmật độ (DFT)
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