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ABSTRACT
In this paper, a general vector optimization problem with inequality constraints is considered, this
topic is very popular and important model with a long research history in optimization. The gen-
erality of setting is mainly expressed in the following three factors. The underlying spaces being
linear spaces without topology (except the decision space being additionally equipped with this
structure in some results). The "orderings'' in both objective and constraint spaces are defined by
arbitrary nonempty sets (not necessarily convex cones). The problem data are nonsmooth map-
pings, i.e., they are not Fréchet differentiable. For this problem, the optimality conditions andWolfe
and Mond-Weir duality properties are investigated , which lie at the heart of optimization theory.
These results are established for the three main and typical optimal solutions: (Pareto) minimal,
weak minimal, and strong minimal solutions in both local and global considerations. The research
define a type of Gateaux variation to play the role of a derivative. For optimality conditions, and
introduce the concepts of on-set differentiable quasiconvexity for global solutions and sequential
differentiable quasiconvexity for local ones. Furthermore, each of them is separated into type 1 for
sufficient optimality conditions and type 2 for necessary ones.
After obtaining optimality conditions, applying them to deriveweak and strong duality relations for
the above types of solutions followingour duality schemesof theWolfe andMon-Weir types. Due to
the complexity of the research subject: considerations of duality are different from that of optimality
conditions, we have to design two more appropriate types of generalized quasiconvexity: scalar
quasiconvexity for the weak solution and scalar strict convexity for the Pareto solution.
So all the results are in terms of the aforementioned Gateaux variation and various types of gener-
alized quasiconvexity.
The results are remarkably different from the related known ones with some clear advantages in
particular cases of applications.
Key words: general vector optimization problem, Gateaux variation, sequential differentiable
quasiconvexity, on-set differentiable quasiconvexity, necessary optimality conditions, sufficient
optimality conditions, scalar generalized quasiconvexity, scalar generalized strict convexity, Wolfe
duality, Mond-Weir duality

INTRODUCTION
This paper is devoted to optimality conditions and du-
ality relations for vector optimization which are two
topics among those in the center of this area. There
have been an enormous number of contributions to
optimality conditions and duality in the literature, the
first seminal work1 and so optimality conditions usu-
ally appear as Kuhn-Tucker optimality conditions or
rules (the name “Karush-Kuhn-Tucker” may be more
frequently used recently after the earlier preliminary
result of Karush becoming known). Note that Fritz
John optimality conditions are another weaker type of
results. Here, we discuss both types: Karush-Kuhn-
Tucker and Fritz John, using new types of the two
following most important tools/objects in optimality
conditions. The first one is a derivative since it is used
to get approximations of the problem data, which is

easier than the original ones in dealing with. From
the 70s of the last century, nonsmooth problems re-
place the classical ones with (Fréchet) differentiable
data sincemost practical problems in real life are non-
smooth. However, all nonsmooth results are exten-
sions of the classical ones from the time of Fermat and
Lagrange with the central role of derivatives. For gen-
eralized derivatives, the reader is referred to compre-
hensive books2–6. The second important tool/object
is a type of (relaxed) convexity. The first publication
about the role of convexity7 and the comprehensive
books8,9. Paper10, concepts of generalized convexity
called quasiconvexity and pseudoconvexity were in-
troduced to prove a new version of the von Neumann
minimax theorem in7. Naturally, generalized con-
vexity involving types of derivatives has a special role
in optimality conditions. Among the types of duality
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research, the Wolfe and Mond-Weir duality schemes
connect most closely to optimality conditions.
For the study of optimality conditions together with
duality of theWolfe andMond-Weir types, as example
we can list the publications11–18.
Motivated by the above observations, to have contri-
butions to the two aforementioned topics with thou-
sands of existing earlier papers in the literature, we
focus on developing a little more the tools of general-
ized derivatives and convexity. Namely, we extend the
concept of Gateaux variation and differentiable qua-
siconvexity proposed 19 in various ways with atten-
tion tomany other previous contributions. One of the
novelties of our generalized quasiconvexity notions
is the involved sequences replacing line segments in
convexity. We choose the Gateaux variation19 and
relatively far from the known ones. Furthermore, the
limit of 8 pages for a paper in the journal does not al-
low us to try with long developments.
The layout of the paper is simple. After the brief Sec-
tion Preliminaries, we establish sufficient optimality
conditions and necessary ones in Section Optimality
conditionsin vector optimization Sections Wolfe du-
ality and SectionMond-Weir duality are devoted to
weak and strong duality properties for our Wolfe and
Mon-Weir duality schemes. The short Section Con-
clusion includes concluding remarks to end the paper.

PRELIMINARIES
In this paper, if not otherwise specified,X ,Y,Z are lin-
ear spaces (sometimeswe assume additionally that is a
topological linear space). N, R, and R+ stand for the
set of the natural numbers, the real numbers, and the
nonnegative real numbers, respectively (resp). The al-
gebraic interior of A is

coreA := {a ∈ A|∀x ∈ X ,∃γ0 > 0
such as a+ γx ∈ A,∀γ ∈ [0,γ0]}.

For a linear space, say Y, Y ′ denotes the alge-
braic dual of Y and, for C ⊂ Y, C′ stands for
the positive algebraic dual cone of C, i.e., C′ :=
{λ ∈ Y ′|⟨λ ,c⟩ ≥ 0, ∀c ∈C}. It is clear that C’ is al-
ways a convex cone. ⟨·, ·⟩ signifies the canonical pair
between Y and Y’
For an arbitrary set M ⊂ X and a convex cone C ⊂
Y, k : M →Y is called -convex-like onM iff k (M)+C
is convex. For f : M → Y and g : M → Z , ( f ,g) :
M → Y ×Z denotes the map x 7→ ( f (x) ,g(x)). Our
problem in this paper is defined now. Let X, Y, Z be
linear spaces, S0 ⊂ X be nonempty,CY ⊂Y andCZ ⊂
Z be nonempty (not necessarily cones), f : S0 → Y ,

and g : S0 → Z . We will consider the (generalized)
vector optimization problem

(P) minCY f (x) s.t.x ∈ S0, g(x) ∈ −CZ .

The feasible set, i.e., the set of points satisfying the
constraints of (P), is S := {x ∈ S0|g(x) ∈ −CZ} and
any _

x ∈ S is called a feasible point for (P).
The concepts of solutions we study in this paper are
provided in the following.
Definition 1. (types of minimizers of a map) Let X
be topological linear space, Y a linear space, M ⊂ X
nonempty,CY ⊂ Y nonempty, and k : M → Y .
(i) A point _x ∈ M is called a local (Pareto) minimizer
of k onM iff there exists a neighborhood U of _x such
that k (x)− k (

_
x) ̸∈ −C\C for all x ∈ M∩U .

(ii) A point _x ∈ M is called a local strong minimizer of
k onM iff there exists a neighborhoodU of _x such that
k (x)− k (

_
x) ̸∈CY for all x ∈ M∩U .

(iii) When coreC ̸= ∅, a point _x ∈ M is called a local
weak minimizer of k onM iff there exists a neighbor-
hood U of _

x such that k (x)− k (
_
x) ̸∈ −coreC for all

x ∈ M∩U .
When U = X , we delete the word “local” to get the
corresponding global concepts. Furthermore, X may
be a linear space in this case, not necessarily equipped
with a topology.
Of course, a minimizer/solution of (P) is the corre-
sponding minimizer of f on S.

OPTIMALITY CONDITIONS IN
VECTOR OPTIMIZATION
In this section, the goal of our study is optimality con-
ditions for problem (P). Both local and global con-
siderations of the aforementioned three types of so-
lutions are concerned. As mentioned in Section 1, in
the study of optimality conditions, the most impor-
tant factors could be the involved generalized deriva-
tives and relaxed convexity. Hence, we specify these
two objects we employ in our work now. First, we ex-
tend the concept of Gateaux variation19 as follows for
our use.
Definition 2. (Gateaux variation) Let X ,Y be lin-
ear spaces, M ⊂ X and H1,H2 ⊂ Y nonempty, x0 ∈
M and k : M → Y . A map k′ (x0) : M − x0 → Y
is called a Gateaux variation of k at x0 with respect
to (wrt) H1,H2 iff whenever x ∈ M\{x0} satisfies
k′ (x0)(x− x0) ∈ H2, then there exist

_
t > 0 such that

xt := x0 + t (x− x0) ∈ S0 and 1
t (k (xt)− k (x0)) ∈ H1

for all t ∈ (0;
_
t ].

Definition 3. (generalized quasiconvexity) LetX ,Y,Z
be linear spaces, M ⊂ X , x0 ∈ M, H1,H2 ⊂ Y and
K1,K2 ⊂ Y nonempty, and k : M → Y .
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(i) Assume that k has a Gateaux variation k′ (x0) at wrt
H1,H2 with K1 ⊂ H1 and K2 ⊂ H2. k is said to be on-
set differentiably (K1,K2)-quasiconvex at x0 iff when-
ever x ∈ M\{x0} satisfies k(x)−k (x0)∈ K1, there ex-
ists x̂ ∈ M\{x0} such that k′ (x0)(x̂− x0) ∈ K2

(ii) Impose the assumption in (i) and additionally that
X is a topological linear space. Then, k is called se-
quentially differentiably (K1,K2)-quasiconvex at x0 iff
from xn ∈ M\{x0} → x0 satisfies k(xn)− k (x0) ∈ K1

for large n, it follows the existence of x̂∈M\{x0} such
that k′ (x0)(x̂− x0) ∈ K2.
In case K1 = K2 =: K and/or H1 = H2 =: H , we write
K and/or H in the above definition instead of K1,K2

and/or H1,H2.
We are now at a position to begin with our first goal
(of studying optimality conditions). The first result is
the following.
Theorem 1. (sufficient condition for global weak
minimizers) Assume that _

x is feasible for (P), core
coreCY ≠ ∅, CZ ⊂ CZ + cone(g(

_
x)) and ( f ,g) has

a Gateaux variation ( f ′ (
_
x) ,g′ (

_
x)) at _

x wrt H with
−(coreCY ×CZ)⊂ H . Assume further that

λ ∈ (coreCY )
′
\{0} , µ ∈C

′
Z (1)

such that for all x ∈ S0,

⟨λ , f ′(x̄)(x− x̄)⟩+ ⟨µ,g′(x̄)(x− x̄)⟩ ≥ 0 (2)

⟨µ,g(x̄)⟩= 0 (3)

Then, _
x is a global weak minimizer of problem

(P) if the mapping ( f ,g) is on-set differentiably
− [coreCY × (CZ + cone(g(

_
x)))]-quasiconvex at _x.

Proof Assume that ( f ,g) is on-set differentiably
− [coreCY × (CZ + cone(g(

_
x)))]-quasiconvex at _

x
and relations (1)-(3) are satisfied. We claim that

( f ′ (
_
x) ,g′ (

_
x))(x− _

x) ̸∈
− [coreCY × (CZ + cone(g(

_
x)))]

(4)

for all x ∈ S0\{
_
x}. Indeed, reduction at absurdum,

suppose that we have a point x̂ ∈ S0\{
_
x} such that

the left-hand side of (4) belongs to the right-hand
one. Then, there exist z′ ∈ CZ and α ≥ 0 such that
f ′ (

_
x)(x̂− _

x) ∈ −coreCY and g′ (
_
x)(x̂− _

x) = −z′ −
αg(

_
x). Hence, by (1) and (3),

⟨λ , f ′ (
_
x)(x̂− _

x)⟩−⟨µ,z′+αg(
_
x)⟩< 0.

This contradicts (2). So, the claim (4) is ver-
ified. By the assumed on-set differentiable
− [coreCY × (CZ + cone(g(

_
x)))]-quasiconvexity,

there does not exist x ∈ S0\{
_
x} such that

f (x) ∈ f (
_
x) − coreCY ,−g(x) ∈ CZ + cone(g(

_
x)).

This means that _x is a global weak minimizer of f on
Ŝ, where

Ŝ := {x ∈ S0|g(x) ∈ −CZ − cone(g(
_
x))}

Observe that S ∈ Ŝ since CZ ⊂ CZ + con(g(
_
x)).

Hence, _x is a global weak minimizer of f on S, i.e., _x is
a global weak minimizer of problem (P).
Remark 1. (comment on complementarity slack-
ness) The complementarity slackness condition (3),
⟨µ,_z⟩ = 0, is traditionally included in each Karush-
Kuhn-Tucker optimality condition. Hence, we keep
this equality in the above sufficient condition. In
fact, as we see in the proof, this sufficient condition
is for a problem with feasible set Ŝ larger than S if
CZ ⊂ CZ + cone(g(

_
x)) and so it is also for (P). That

is for (P), we can remove the complementarity slack-
ness condition in the above sufficient condition.
Therefore, it is more reasonable not to include slack-
ness conditions in the next statement.
Theorem 2. (the sufficient conditions) Assume that
_
x is feasible for (P), core coreCY ≠ ∅, _z−CZ ⊂ −CZ

(which is satisfied ifCZ is a convex cone and _
z∈−CZ).

Assume further that (1) and (2) hold with a Gateaux
variation ( f ′ (

_
x) ,g′ (

_
x)) at _

x wrt H1,H2, or H as in
Definition 2 but more specified suitably for each as-
sertion below.
(i) _

x is a local weak minimizer of (P) if ( f ,g)
is sequentially differentiably [−(coreCY ×CZ)]-
quasiconvex at _x with ( f ′ (

_
x) ,g′ (

_
x)) wrt H satisfying

−(coreCY ×CZ)⊂ H .
(ii) _

x is a local (global, resp) minimizer of (P)
if ( f ,g) is sequentially (on-set, resp) differ-
entiably [(Y\CY )× (−CZ) ,−(coreCY ×CZ)]-
quasiconvex at _

x with ( f ′ (
_
x) ,g′ (

_
x)) wrt

H1,H2 satisfying −(coreCY ×CZ) ⊂ H2 and
(−CY )\CY × (−CZ)⊂ H1.
(iii) _

x is a local (global, resp) strong minimizer of (P)
if ( f ,g) is sequentially (on-set, resp) differentiably
[(Y\CY )× (−CZ) ,−(coreCY ×CZ)]-quasiconvex
at _

x with ( f ′ (
_
x) ,g′ (

_
x)) wrt H1,H2 satisfying

−(coreCY ×CZ)⊂ H2 and (Y\CY )× (−CZ)⊂ H1.
Proof. By reasons of similarity, we only work with
two types of solutions. First, let us verify the asser-
tion on global minimizes in (ii). Under the imposed
assumptions, we check claim (4) for coreCY ×CZ in-
stead of coreCY × (CZ + cone(g(

_
x))) in the preced-

ing theorem. Suppose to the contrary that there exists
x̂ ∈ S0\{

_
x} such that(

f ′ (
_
x) ,g′ (

_
x)
)
(x̂− _

x) ∈ −(coreCY ×CZ)

Then, (1) implies that

⟨λ , f (x̂)⟩+ ⟨µ,g(x̂)⟩< 0

SI22



Science & Technology Development Journal – Engineering and Technology, 4(SI2):SI20-SI27

contradicting (2). So, the above claim holds. The
assumed on-set differentiable quasiconvexity in turn
implies that there does not exist x ∈ S0\{

_
x} such that

f (x) ∈ f (
_
x)+(−CY )/CY

and

g(x) ∈ g(
_
x)−CZ ⊂−CZ

by assumption, i.e., _x is a global minimizer of (P).
Next, we sketch the proof for a local strongminimizer
in (iii). Like above, the claim (4) also holds in this
context. Then, the assumed sequential differentiable
quasiconvexity in this case implies that there does not
exist xn ∈ S0\{

_
x}→ _

x such that f (xn)∈ f (
_
x)+Y\CY

and g(xn) ∈−CZ for all n, i.e., _x is a local strong min-
imizer of (P).
For necessary optimality conditions, we need some
new types of generalized quasiconvexity.
Definition 4. (other types of generalized quasicon-
vexity) Let M ⊂ X ,

H1, H2, K1, K2 ⊂ Y be nonempty, x0 ∈ M, and k :
M → Y nonempty-valued.
(i) Assume that k has a Gateaux variation k′ (x0) at
x0 wrt H1,H2 with Ki ⊂ Hi, i = 1,2.k is called on-
set differentiably (K1,K2)-quasiconvex of type 2 at x0 if
whenever x̂ ∈ M\{x0} and k′ (x0)(x̂− x0) ∈ K2 then
there exists

x ∈ S0\{x0} such that k (x) ∈ k (x0)+K1.

(ii) Impose the assumptions in (i) and additionally
that X is a topological linear space. k is said to be se-
quentially differentiably (K1,K2)-quasiconvex of type
2 at x0 if from the existence of x̂ ∈ M\{x0} with
k′ (x0)(x̂− x0) ∈ K2, it follows that there exists xn ∈
S0\{x0}→ x0 such that k (xn) ∈ k (x0)+K1 for large
n.
In case K1 = K2 =: K and/or H1 = H2 =: H , we apply
the convention in Definition 3.
For necessary optimality conditions, we assume ad-
ditionally that CY and CZ are convex cones with core
CZ ≠∅.
Theorem 3. (necessary conditions) Consider prob-
lem (P) with the additional assumption given prior to
this theorem. Assume that coreCY ̸=∅ and ( f ,g) has
a Gateaux variation ( f ′ (

_
x) ,g′ (

_
x)) at _

x wrt H1,H2 as
in Definition 2 and more specified for each assertion
below.
(i) (for weak minimizers) Assume that _

x is a local
(global, resp) weak minimizer of (P). Assume further
that ( f ,g) is sequentially (on-set, resp) differentiably
[−(coreCY ×CZ)]-quasiconvex of type 2 at _

x with
( f ′ (

_
x) ,g′ (

_
x))wrtH satisfying−(coreCY ×CZ)⊂ H .

Then, for all x ∈ S0, there exist λ ∈C
′
Y and µ ∈C

′
Z not

all zero such that (2) and (3) are satisfied.
If in addition, ( f ′ (

_
x) ,g′ (

_
x)) is [coreCY ×CZ ] -convex

like on S0 −
_
x, then the above (λ ,µ) can be chosen

common for all x ∈ S0. Furthermore, if the constraint
qualification (CQ): g′ (_x)(S0 −

_
x)= Z holds, thenλ ̸=

0.
(ii) (for minimizers) The assertions for min-
imizers are the ones in (i) (for weak mini-
mizers) with sequential (or on-set) differen-
tiable [(−CY )\CY × (−CZ) ,−(coreCY ×CZ)]-
quasiconvexity replacing sequential (or on-
set, resp) differentiable [−(coreCY ×CZ)]-
quasiconvexity and with ( f ′ (

_
x) ,g′ (

_
x)) wrt

H1,H2 satisfying −(coreCY ×CZ) ⊂ H2 and
(−CY )\CY × (−CZ)⊂ H1.
(iii) (for strong minimizers) The assertions for strong
minimizers are the ones in (i) with sequential (or on-
set) differentiable [Y\CY ×(−CZ) ,−(coreCY ×CZ)]-
quasiconvexity replacing sequential (or on-set, resp)
differentiable [−(coreCY ×CZ)]-quasiconvexity
and with ( f ′ (

_
x) ,g′ (

_
x)) wrt H1,H2 satisfying

−(coreCY ×CZ)⊂ H2 and (Y\CY )× (−CZ)⊂ H1.
Proof. By reasons of similarity, we only prove the case
of a local weak minimizer in (i).
Consider first the claim (4) (with coreCY ×CZ in-
stead of coreCY × (CZ − cone(g(

_
x))) by contradic-

tion. Suppose the existence of x̂ ∈ S0 such that
f (x̂) ∈ −coreCY and g(x̂) ∈ −CZ .Then, ⟨λ , f (x̂)⟩+
⟨µ,g(x̂)⟩< 0.
By the sequential differentiable [−(coreCY ×CZ)]-
quasiconvexity of type 2, there exists xn ∈ S0\{

_
x}→ _

x
such that f (xn) ∈ f (

_
x)− coreCY core and g(xn) ∈

−CZ for large n, contradicting the local weak mini-
mality of _x. So, the claim holds.
Since the convex set −(coreCY ×CZ) has nonempty
algebraic interior, applying the separation theorem
paper 20, we can separate this set and the point
( f ′ (

_
x) ,g′ (

_
x))(x− _

x) to obtainmultipliers λ ∈Y ′ and
µ ∈ Z′ not all zero satisfying (2). As CY and CZ are
convex cones, we see that λ ∈ C

′
Y and µ ∈ C

′
Z with

⟨µ,g(x̂)⟩= 0 as (3) required.
Under the additional convex-likeness, we apply the
aforementioned separation theorem to separate two
convex sets ( f ′ (

_
x) ,g′ (

_
x))(S0 −

_
x) + coreCY × CZ

and −(coreCY ×CZ) to get the common multipli-
ers (λ ,µ) as required. Suppose that λ = 0. Then,
for all x ∈ S0, ⟨µ,g(

_
x)(x− _

x)⟩ ≥ 0. Take arbitrary
ẑ ∈ Z . In view of (CQ), there exists x̂ ∈ S0 such that
ẑ = g′ (

_
x)(x̂− _

x) and ⟨µ, ẑ⟩ ≥ 0. By the arbitrariness
of ẑ ∈ Z , µ must be zero, which is impossible as λ is
supposed to be zero.
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WOLFE DUALITY
A duality scheme11, called later the Wolfe duality,
quite different from the earlier well-known important
Lagrange duality model, was introduced. This con-
cept has been developed also until now alongside with
the Lagrange and theMond-Weir13 schemes and also
others such as the one induced from the dual pair of
Stampacchia and Minty variational inequalities, etc.
Here, together with (P), we investigate the following
Wolfe-type dual problem, for a fixed e ∈ coreCY ,

(DW ) maxCY ( f (u)+ ⟨µ,g(u)⟩e)u ∈ S0,

λ ∈C′
Y \{0},µ ∈C′

Z ,e ∈ coreCY ⟨λ ,e⟩= 1
(5)⟨

λ , f
′
(u)

(
u
′ −u

)⟩
+⟨

µ,g′
(u)

(
u
′ −u

)⟩
≥ 0, f or all u′ ∈ S0

(6)

Here ( f ′ (u) ,g′ (u)) : S0 − u → Y × Z is a Gateaux
variation of ( f ,g) (following Definition 2) with de-
tails specified in each consideration context below.
Maximizing overCY can mean finding maximal solu-
tions in both local and global considerations. A point
(u,λ ,µ) satisfying relations (5) and (6) is called a fea-
sible point for problem (DW ).
For our duality study, we need the following general-
ized quasiconvexity.
Definition 5. (types of scalar generalized convexity)
Let S0 ⊂ X , u ∈ S0, k : S0 → Y ×Z , k′ (u) : S0 −u →
Y × Z a Gateaux variation of k at u wrt any H1,H2

(following Definition 2, but in this case H1,H2 ⊂Y ×
Z ).
(i) (scalar generalized quasiconvexity) k is called
scalar generalized quasiconvex at u if from x ∈ S0,
(y,z) = k (x), (v,w) = k (u), λ ∈C

′
Y \{0}, and µ ∈C

′
Z

satisfying (5), it follows that there exist λ ′ ∈ C
′
Y \{0}

and u′ ∈ S0 such that, for (v′,w′) = k′ (u)(u′−u),

⟨λ ′,y− v⟩+ ⟨µ,z−w⟩ ≥ ⟨λ ,v′⟩+ ⟨µ,w′⟩.

(ii) (scalar generalized strict convexity) k is called
scalar generalized strictly convex at u if for all x ∈ S0

with (y,z) = k(x), (v,w) = k (u), λ ∈ C
′
Y \{0}, and

µ ∈ C
′
Z , there exist λ ′ ∈ C

′
Y \{0} and µ ′ ∈ S0 such

that, for (v′,w′) = k (u)(u′−u),

⟨λ ′,y− v⟩+ ⟨µ,z−w⟩> ⟨λ ,v′⟩+ ⟨µ,w′⟩.

Theorem 4. (Wolfe weak duality) Assume that
coreCY ≠ ∅, x and (u,λ ,µ) are feasible for (P)
and (DW ), resp, and ( f ,g) has a Gateaux variation
( f ′ (u) ,g′ (u)) at u specified suitably in each assertion
below.
(i) If ( f ,g) is scalar generalized quasiconvex
at u with ( f ′ (u) ,g′ (u)) wrt H1,H2 satisfying

−(coreCY ×CZ) ⊂ H2 and −(coreCY ×CZ) ⊂ H1,
then

f (x) ̸∈ f (u)+ ⟨µ,g(u)⟩e− coreCY .

(ii) If ( f ,g) is scalar generalized strictly con-
vex at u with ( f ′ (u) ,g′ (u)) wrt H1,H2 satisfying
−(coreCY ×CZ)⊂ H2 and (−CY )/CY ⊂ H1, then

f (x) ̸∈ f (u)+ ⟨µ,g(u)w⟩e+(−CY )\CY .

Proof. (i) Suppose to the contrary that

f (x)− f (u)−⟨µ,g(u)⟩e ∈ −coreCY .

In virtue of the assumed scalar generalized quasicon-
vexity of ( f ,g), there exist λ ′ ∈ C

′
Y \{0} and û ∈ S0

with (v̂, ŵ) = ( f ′ (u) ,g′ (u))(û−u) such that

⟨λ ′, f (x)− f (u)⟩+ ⟨µ,g(z)−g(u)⟩
≥ ⟨λ , v̂⟩+ ⟨µ, ŵ⟩.

As ⟨µ,g(x)⟩ ≤ 0 by (5), from the above contradiction
assumption, it follows that

0 > ⟨λ ′, f (x)⟩−⟨λ ′, f (u)⟩−⟨µ,g(u)⟩
≥ ⟨λ ′, f (x)⟩+ ⟨µ,g(x)⟩−⟨λ , f (u)⟩−⟨µ,g(u)⟩
= ⟨λ ′, f (x)− f (u)⟩+ ⟨µ,g(x)−g(u)⟩.

This is a contradiction to (6).
(ii) Suppose that

f (x) ∈ f (u)+ ⟨µ,g(u)⟩e+(−CY )\CY .

Then, in view of the assumed scalar generalized
strict convexity of ( f ,g), as ⟨µ,g(x)⟩ ≤ 0 there ex-
ist λ ′ ∈ C

′
Y \{0} and û ∈ S0 such that, for (v̂, ŵ) =

( f ′ (u) ,g′ (u))(û−u),

0 ≥ ⟨λ ′, f (x)− f (u)⟩+ ⟨µ,g(x)−g(u)⟩
≥ ⟨λ , v̂⟩+ ⟨µ, ŵ⟩,

which also contradicts (6).
Theorem 5. (Wolfe strong duality) Impose the as-
sumptions of Theorem 3, including the ones in asser-
tions (i)-(iii).
(i) Assume that _x is a local or global weak minimizer
of (P) and ( f ,g) is scalar generalized quasiconvex at _x
with ( f ′ (

_
x) ,g′ (

_
x)) as in Theorem 4(i) (with _

x replac-
ing u). Then, there exists

( _
λ ,

_
µ
)
∈ C

′
YC

′
Z such that(_

x,
_
λ ,

_
µ
)
is a global weak maximizer of (DW ).

(ii) Assume that _x is a local or global minimizer of (P)
and ( f ,g) is scalar generalized strictly convex at _xwith
( f ′ (

_
x) ,g′ (

_
x)) as inTheorem4(ii) (with _

x replacing u).
Then, there exists

( _
λ ,

_
µ
)
∈C

′
YC

′
Z such that

(_
x,

_
λ ,

_
µ
)

is a global maximizer of (DW ).
Proof. (i) Assume that _x is a local or global weakmin-
imizer of (P). ByTheorem 3(i), there exist

_
λ ∈C

′
Y and
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_
µ ∈ C

′
Z not all zero such that (2) and (3) hold for all

x ∈ S0. Hence, (5) and (6) are satisfied with
(_

x,
_
λ ,

_
µ
)

in the place of (u,λ ,µ), i.e.,
(_

x,
_
λ ,

_
µ
)
is feasible for

(DW ).
By the assumed scalar generalized quasiconvexity, one
has the weak duality given in Theorem 4(i). Suppose
that

(_
x,

_
λ ,

_
µ
)
is not a global weakmaximizer of (DW ),

i.e., there exists a feasible point (u,λ ,µ) of (DW ) such
that
f (u)+ ⟨µ,g(u)⟩e ∈ f (

_
x)+ ⟨

_
µ,g(_x)⟩e + coreCY

Since ⟨
_
µ,g(_x)⟩ = 0 by (3), this means that f (

_
x) ∈

f (u) + ⟨µ,g(u)⟩e − coreCY and contradicts the
weak duality inTheorem 4(i). The proof of (ii) is sim-
ilar, using assertion (ii) in Theorem 4.

MOND-WEIR DUALITY
The Mond-Weir duality scheme13 was proposed and
also intensively developed like theWolfe one. LetX, Y,
Z,S0, CY , CZ , f , g, and f ′, g′ be as in problem (DW ).
Assume additionally that 0 ∈ −CZ . Here, we define
the Mond-Weir dual problem of (P) as follows.

maxCY f (u), u ∈ S0,λ ∈C′
Y \{0},µ ∈C′

Z (7)⟨
λ , f

(
u
′
)(

u
′ −u

)⟩
+⟨

µ,g
(

u
′
)(

u
′ −u

)⟩
≥ 0 f or all u

′ ∈ S0
(8)

⟨µ,g(u)⟩ ≥ 0 (9)

Here ( f ′ (u) ,g′ (u)) : S0 − u → Y × Z is a mapping
associated with ( f ,g) and specified in the study sit-
uations for (DMW ). Maximizing wrt CY may signify
looking for maximal points on the feasible set de-
fined by (7)-(9) in both local and global consider-
ations, depending on the consideration context. A
point (u,λ ,µ) satisfying relations (7)-(9) is said to be
a feasible point for (DMW ).
Theorem 6. (Mond-Weir weak duality) Assume that
core CY ̸= ∅, x and (u,λ ,µ) are feasible for (P)
and (DMW ), resp, and ( f ,g) has a Gateaux variation
( f ′ (u) ,g′ (u)) specified suitably in each assertion be-
low.
(i) Under the assumption of (i) inTheorem 4, one has

f (x) ̸∈ f (u)− coreCY

(ii) The same assumption in Theorem 4 (ii) implies
that

f (x) ̸∈ f (u)− (−CY )\CY .

Proof. (i) Suppose that f (x) ∈ f (u)− coreCY . By
the assumed scalar generalized quasiconvexity, there

exist λ ′ ∈C
′
Y \{0} and u′ ∈ S0 such that, for (v′,w′) =

( f ′ (u) ,g′ (u))(u′−u) ,,

⟨λ ′, f (x)− f (u)⟩+ ⟨µ,0−g(u)⟩
≥ ⟨λ ,v′⟩+ ⟨µ,w′⟩.

But 0 > ⟨λ ′, f (x)− f (u)⟩ + ⟨µ,0−g(u)⟩. Hence,
0 > ⟨λ ,v′⟩+ ⟨µ,w′⟩, contradicting (8).
(ii) Suppose to the contrary that f (x) ∈ f (u) +
(−CY )\CY . Then, by the assumed scalar general-
ized strict convexity of ( f ,g), as ⟨µ,g(x)⟩ ≤ 0 and
⟨µ,g(u)⟩ ≥ 0, there exist λ ′ ∈ C

′
Y \{0} and û ∈ S0

such that, for (v̂, ŵ) = ( f ′ (u) ,g′ (u))(û−u),

0 ≥ ⟨λ ′, f (x)− f (u)⟩+ ⟨µ,g(x)−g(u)⟩
> ⟨λ , v̂⟩+ ⟨µ, ŵ⟩,

which also contradicts (8).
By arguments similar to the proof of Theorem 5,
we obtain the following corresponding strong duality
statement.
Theorem 7. (Mond-Weir strong duality) The strong
duality relations inTheorem 5 for (DW ) are valid also
for (DMW ).

CONCLUSIONS
In this paper, optimality conditions together with
Wolfe and Mond-Weir duality properties are stud-
ied for a general vector optimization problem. The
main characteristic features here are the following.
The problem setting is general with linear underlying
spaces formost cases. The “orderings” in the objective
and constraint spaces in a part of the results are de-
fined by arbitrary nonempty sets, not necessarily con-
vex cones. Generalized derivatives and convexity, the
twomain factors in any optimality conditions and du-
ality results, are proposed for the use in the paper and
remarkably different from almost all the correspond-
ing concepts employed in the earlier contributions we
know. The novelties and advantages of our results are
clear enough.
For possible perspectives, we think that the results
here can be developed for some recent models at-
tracting attention from many researchers such as set-
valued problems, vector problems with variable pref-
erences, and set optimization, etc.
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TÓM TẮT
Bài toán tối ưu vector tổng quát với các ràng buộc bất đẳng thức được xem xét, chủ đề này là mô
hình rất phổ biến và quan trọng trong lĩnh vực tối ưu hóa. Tính tổng quát của của việc thiết lập
chủ yếu được thể hiện ở ba yếu tố sau. Các không gian được xét là không gian tuyến tính không
cần topo (ngoại trừ không gian quyết định được trang bị thêm với cấu trúc này cho một số kết
quả). "Thứ tự" trong cả không gian mục tiêu và không gian không gian của các ràng buộc được
xác định bởi các tập tùy ý khác rỗng (không nhất thiết là nón lồi). Dữ liệu bài toán là ánh xạ không
trơn, tức là chúng không khả vi Fréchet. Trong bài này điều kiện tối ưu và đối ngẫu của Wolfe và
Mond-Weird được xem xét đây là vấn đề trọng tâm của lý thuyết tối ưu. Các kết quả này được thiết
lập cho ba loại nghiệm: nghiệm Pareto, nghiệm yếu và nghiệm mạnh với nghiệm địa phương và
toàn cục. Trong nội dung về điều kiện tối ưu, giới thiệu về tựa lồi khả vi trên tập cho nghiệm toàn
cục và tựa lồi khả vi theo dãy cho trường hợp địa phương. Hơn thế nữa, mỗi khái niệm gồm loại 1
và 2, điều xét điều kiện cần và đủ được xét cho loại 1 và loại 2 nêu trên. Sau khi đạt được điều kiện
tối ưu, áp dụng điều kiện tối ưu để được đối ngẫu mạnh và đối ngẫu yếu cho các loại nghiệm vào
mô hình của hai loại đối ngẫu Wolfe và Mon-Weir. Do tính phức tạp của chủ đề: xét đối ngẫu là
khác nhau từ những điều kiện tối ưu, chúng tôi đã xét nhiều hơn 2 loại tựa lồi suy rộng: tựa lồi vô
hướng cho nghiệm yếu và lồi vô hướng chặt cho nghiệm Pareto. Vì vậy tất cả các kết quả được đề
cập về biến phân Gateaux và những dạng tựa lồi suy rộng khác. Các kết quả là nổi bật với những
kết quả đã biết với những phát triển trong những trường hợp ứng dụng đặc biệt.
Từ khoá: Bài toán tối ưu vector tổng quát, Biến phân Gateaux, Tựa lồi khả vi theo dãy, Tựa lồi khả
vi trên tập, Điều kiện cần, Điều kiên đủ, Tựa lồi suy rộng vô hướng, Lồi chặt suy rộng vô hướng, Đối
ngẫu Wolfe, Đối ngẫu Mond-Weir
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