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Optimality conditions and duality with new variants of
generalized derivatives and convexity

Huynh Thi Hong Diem”

ABSTRACT

In this paper, a general vector optimization problem with inequality constraints is considered, this
topic is very popular and important model with a long research history in optimization. The gen-
erality of setting is mainly expressed in the following three factors. The underlying spaces being
linear spaces without topology (except the decision space being additionally equipped with this
structure in some results). The "orderings" in both objective and constraint spaces are defined by
arbitrary nonempty sets (not necessarily convex cones). The problem data are nonsmooth map-
pings, i.e, they are not Fréchet differentiable. For this problem, the optimality conditions and Wolfe
and Mond-Weir duality properties are investigated , which lie at the heart of optimization theory.
These results are established for the three main and typical optimal solutions: (Pareto) minimal,
weak minimal, and strong minimal solutions in both local and global considerations. The research
define a type of Gateaux variation to play the role of a derivative. For optimality conditions, and
introduce the concepts of on-set differentiable quasiconvexity for global solutions and sequential
differentiable quasiconvexity for local ones. Furthermore, each of them is separated into type 1 for
sufficient optimality conditions and type 2 for necessary ones.

After obtaining optimality conditions, applying them to derive weak and strong duality relations for
the above types of solutions following our duality schemes of the Wolfe and Mon-Weir types. Due to
the complexity of the research subject: considerations of duality are different from that of optimality
conditions, we have to design two more appropriate types of generalized quasiconvexity: scalar
quasiconvexity for the weak solution and scalar strict convexity for the Pareto solution.

So all the results are in terms of the aforementioned Gateaux variation and various types of gener-
alized quasiconvexity.

The results are remarkably different from the related known ones with some clear advantages in
particular cases of applications.

Key words: general vector optimization problem, Gateaux variation, sequential differentiable
quasiconvexity, on-set differentiable quasiconvexity, necessary optimality conditions, sufficient
optimality conditions, scalar generalized quasiconvexity, scalar generalized strict convexity, Wolfe
duality, Mond-Weir duality
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INTRODUCTION

This paper is devoted to optimality conditions and du-
ality relations for vector optimization which are two
topics among those in the center of this area. There
have been an enormous number of contributions to
optimality conditions and duality in the literature, the
first seminal work ! and so optimality conditions usu-
ally appear as Kuhn-Tucker optimality conditions or
rules (the name “Karush-Kuhn-Tucker” may be more
frequently used recently after the earlier preliminary
result of Karush becoming known). Note that Fritz
John optimality conditions are another weaker type of
results. Here, we discuss both types: Karush-Kuhn-
Tucker and Fritz John, using new types of the two
following most important tools/objects in optimality
conditions. The first one is a derivative since it is used
to get approximations of the problem data, which is

easier than the original ones in dealing with. From
the 70s of the last century, nonsmooth problems re-
place the classical ones with (Fréchet) differentiable
data since most practical problems in real life are non-
smooth. However, all nonsmooth results are exten-
sions of the classical ones from the time of Fermat and
Lagrange with the central role of derivatives. For gen-
eralized derivatives, the reader is referred to compre-
hensive books”~°. The second important tool/object
is a type of (relaxed) convexity. The first publication
about the role of convexity” and the comprehensive
books®?. Paper '°, concepts of generalized convexity
called quasiconvexity and pseudoconvexity were in-
troduced to prove a new version of the von Neumann
minimax theorem in’. Naturally, generalized con-
vexity involving types of derivatives has a special role
in optimality conditions. Among the types of duality
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research, the Wolfe and Mond-Weir duality schemes
connect most closely to optimality conditions.

For the study of optimality conditions together with
duality of the Wolfe and Mond-Weir types, as example
we can list the publications =18,

Motivated by the above observations, to have contri-
butions to the two aforementioned topics with thou-
sands of existing earlier papers in the literature, we
focus on developing a little more the tools of general-
ized derivatives and convexity. Namely, we extend the
concept of Gateaux variation and differentiable qua-
siconvexity proposed ! in various ways with atten-
tion to many other previous contributions. One of the
novelties of our generalized quasiconvexity notions
is the involved sequences replacing line segments in

19 and

convexity. We choose the Gateaux variation
relatively far from the known ones. Furthermore, the
limit of 8 pages for a paper in the journal does not al-
low us to try with long developments.

The layout of the paper is simple. After the brief Sec-
tion Preliminaries, we establish sufficient optimality
conditions and necessary ones in Section Optimality
conditionsin vector optimization Sections Wolfe du-
ality and Section Mond-Weir duality are devoted to
weak and strong duality properties for our Wolfe and
Mon-Weir duality schemes. The short Section Con-
clusion includes concluding remarks to end the paper.

PRELIMINARIES

In this paper, if not otherwise specified, X, Y, Z are lin-
ear spaces (sometimes we assume additionally thatisa
topological linear space). N, R, and R stand for the
set of the natural numbers, the real numbers, and the
nonnegative real numbers, respectively (resp). The al-
gebraic interior of A is

coreA:={acAVxe X,3yp >0
such as a+yx € ANy €[0,%]}.

For a linear space, say Y, Y’ denotes the alge-
braic dual of Y and, for C C Y, C’ stands for
the positive algebraic dual cone of C, ie., C =
{A €Y'|{X,c) >0, VceC}. 1tis clear that C’ is al-
ways a convex cone. (-,-) signifies the canonical pair
between Y and Y’

For an arbitrary set M C X and a convex cone C C
Y, k: M —Y is called -convex-like on M iff k (M) +C
is convex. For f:M —Yandg: M — Z, (f,g):
M — Y x Z denotes the map x — (f (x),g(x)). Our
problem in this paper is defined now. Let X, Y, Z be
linear spaces, So C X be nonempty, Cy C Y and Cz C
Z be nonempty (not necessarily cones), f : So =7,
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and g : So — Z . We will consider the (generalized)
vector optimization problem

(P) ming, f (x) s.t.x € Sp, g(x) € —C7.

The feasible set, i.e., the set of points satisfying the
constraints of (P), is S := {x € Sy|g (x) € —Cz} and
any X € S is called a feasible point for (P).

The concepts of solutions we study in this paper are
provided in the following.

Definition 1. (types of minimizers of a map) Let X
be topological linear space, Y a linear space, M C X
nonempty, Cy C Y nonempty,andk: M — Y.

(i) A point X € M is called a local (Pareto) minimizer
of k on M iff there exists a neighborhood U of X such
that k (x) —k(x) ¢ —C\Cforallxe MNU .

(ii) A point X € M is called a local strong minimizer of
k on M iff there exists a neighborhood U of X such that
k(x)—k(x) ¢Cy forallxe MNU .

(iii) When coreC # &, a point X € M is called a local
weak minimizer of k on M iff there exists a neighbor-
hood U of X such that k (x) — k (X) ¢ —coreC for all
xeMnuU .

When U = X, we delete the word “local” to get the
corresponding global concepts. Furthermore, X may
be a linear space in this case, not necessarily equipped
with a topology.

Of course, a minimizer/solution of (P) is the corre-
sponding minimizer of f on S.

OPTIMALITY CONDITIONS IN
VECTOR OPTIMIZATION

In this section, the goal of our study is optimality con-
ditions for problem (P). Both local and global con-
siderations of the aforementioned three types of so-
lutions are concerned. As mentioned in Section 1, in
the study of optimality conditions, the most impor-
tant factors could be the involved generalized deriva-
tives and relaxed convexity. Hence, we specify these
two objects we employ in our work now. First, we ex-
tend the concept of Gateaux variation '° as follows for
our use.

Definition 2. (Gateaux variation) Let X,Y be lin-
ear spaces, M C X and Hy,H, C Y nonempty, xo €
Mand k: M — Y. Amap K (xo) : M —xy =Y
is called a Gateaux variation of k at xo with respect
to (wrt) Hy,H, iff whenever x € M\ {xo} satisfies
k' (x9) (x —xq) € Hp, then there exist 7 > 0 such that
X :=x9+1(x—xp) € Sp and % (k(x1) —k(x0)) € H
foralls € (0;7].

Definition 3. (generalized quasiconvexity) Let X,Y,Z
be linear spaces, M C X, xo € M, H;,H, C Y and
Ki,Ky C Y nonempty, andk: M — Y.
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(i) Assume that k has a Gateaux variation k' (x() at wrt
H,,H, with K; C Hy and K, C H,. k is said to be on-
set differentiably (K, K,)-quasiconvex at xy iff when-
ever x € M\ {xo} satisfies k(x) —k (x) € K, there ex-
ists X € M\ {xo} such that ¥’ (xo) (x —xo) € K2

(ii) Impose the assumption in (i) and additionally that
X is a topological linear space. Then, k is called se-
quentially differentiably (K|, K,)-quasiconvex at xq iff
from x,, € M\ {xo} — xo satisfies k(x,) —k (xo) € K|
for large #, it follows the existence of X € M\ {xp } such
that &’ ()C()) (x—xp) € K>.

In case K| = K =: K and/or H; = H, =: H, we write
K and/or H in the above definition instead of K, K>
and/or Hy,H;.

We are now at a position to begin with our first goal
(of studying optimality conditions). The first result is
the following.
Theorem 1. (sufficient condition for global weak
minimizers) Assume that X is feasible for (P), core
coreCy # &, Cz C Cz + cone (g (X)) and (f,g) has
a Gateaux variation (f’(¥),g’ (%)) at X wrt H with
— (coreCy x Cz) C H. Assume further that

A € (coreCy) \{0}, ueC, (1)

such that for all x € S,
A, f1 (@) (x = %)) + (0,8 (F)(x—%)) > 0 )
(1,8(x)) =0 3)

Then, X is a global weak minimizer of problem
(P) if the mapping (f,g) is on-set differentiably
— [coreCy x (Cz + cone (g (X)))]-quasiconvex at X.
Proof Assume that (f,g) is on-set differentiably
—[coreCy x (Cz + cone (g (X)))]-quasiconvex at X
and relations (1)-(3) are satisfied. We claim that

(f'(%),8' (%) (x—%) &

— [coreCy x (Cz + cone (g (%)))] @

for all x € Sp\ {x}. Indeed, reduction at absurdum,
suppose that we have a point X € Sp\ {X} such that
the left-hand side of (4) belongs to the right-hand
one. Then, there exist 77 € Cz and o > 0 such that
f(®)(x—x) € —coreCy and ¢’ (x)(x—x) = —7 —
o.g (x). Hence, by (1) and (3),

(A, f' (%) (X=3)) — (u,2' + &g (¥)) <0.

This contradicts (2).
ified.
— [coreCy x (Cz + cone (g (X)))]-quasiconvexity,

there does not exist x € Sp\{x} such that
f(x) € f(x) — coreCy,—g(x) € Cz + cone(g(x)).

So, the claim (4) is ver-
By the assumed on-set differentiable

This means that X is a global weak minimizer of f on
S, where

§:={xeSolg(x) € —Cz—cone(g (%))}

Observe that S € § since C; C Cz + con(g(x)).
Hence, X is a global weak minimizer of f on §, i.e., X is
a global weak minimizer of problem (P).

Remark 1.
ness) The complementarity slackness condition (3),

(comment on complementarity slack-

(u,z) = 0, is traditionally included in each Karush-
Kuhn-Tucker optimality condition. Hence, we keep
this equality in the above sufficient condition. In
fact, as we see in the proof, this sufficient condition
is for a problem with feasible set S larger than § if
Cz C Cz+ cone(g(x)) and so it is also for (P). That
is for (P), we can remove the complementarity slack-
ness condition in the above sufficient condition.
Therefore, it is more reasonable not to include slack-
ness conditions in the next statement.

Theorem 2. (the sufficient conditions) Assume that
X is feasible for (P), core coreCy # @,7—Cz C —Cz
(which is satisfied if Cz is a convex coneand 7 € —Cy).
Assume further that (1) and (2) hold with a Gateaux
variation (f’(X),g’ (¥)) at X wrt Hy,Hp, or H as in
Definition 2 but more specified suitably for each as-
sertion below.

(i) x is a local weak minimizer of (P) if (f,g)
[— (coreCy x Cz)]-
quasiconvex at ¥ with (f’ (¥),g’ (¥)) wrt H satisfying
— (coreCy xCz) C H.

(ii) X is a local (global, resp) minimizer of (P)

is sequentially differentiably

if (f,g) is sequentially (on-set, resp) differ-

entiably [(Y\Cy) x (—Cz),— (coreCy x Cz)]-
quasiconvex at X with (f/(x),g (X)) wrt
H|,H, satisfying —(coreCy xCz) C H, and

(*Cy)\CY X (*Cz) C Hl~

(iii) X is a local (global, resp) strong minimizer of (P)
if (f,g) is sequentially (on-set, resp) differentiably
[(Y\Cy) x (—Cz),— (coreCy x Cz)]-quasiconvex

at ¥ with (f'(x),¢ (x)) wrt Hy,H, satisfying
— (COI‘ECY X Cz) C Hy and (Y\Cy) X (*CZ) C H;.
Proof. By reasons of similarity, we only work with
two types of solutions. First, let us verify the asser-
tion on global minimizes in (ii). Under the imposed
assumptions, we check claim (4) for coreCy x Cz in-
stead of coreCy x (Cz+ cone(g(%))) in the preced-
ing theorem. Suppose to the contrary that there exists
x € So\ {x} such that

(f (x),¢ (x)) (x—x) € — (coreCy x Cz)
Then, (1) implies that

(A f (%) +(1,g(3) <0

S122
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contradicting (2). So, the above claim holds. The
assumed on-set differentiable quasiconvexity in turn
implies that there does not exist x € Sp\ {X} such that

f) e f®)+(=Cy)/Cy

and
g(x)eg(x)—CzC —Cz

by assumption, i.e., X is a global minimizer of (P).
Next, we sketch the proof for a local strong minimizer
in (iii). Like above, the claim (4) also holds in this
context. Then, the assumed sequential differentiable
quasiconvexity in this case implies that there does not
existx, € So\ {x} — Xsuch that f (x,) € f () +Y\Cy
and g (x,) € —Cz for all n, i.e., X is alocal strong min-
imizer of (P).

For necessary optimality conditions, we need some
new types of generalized quasiconvexity.

Definition 4. (other types of generalized quasicon-
vexity) Let M C X,

H,, H, K1, K CY be nonempty, xo € M, and k :
M — Y nonempty-valued.

(i) Assume that k has a Gateaux variation &’ (x() at
xo wrt Hy,Hy with K; C H;, i = 1,2.k is called on-
set differentiably (K1, K )-quasiconvex of type 2 at xg if
whenever X € M\ {xp} and ¥’ (xp) (X —xq) € K> then
there exists

x € So\{xo} suchthat k(x) € k(xo) + K.

(ii) Impose the assumptions in (i) and additionally
that X is a topological linear space. k is said to be se-
quentially differentiably (K;,K)-quasiconvex of type
2 at xp if from the existence of ¥ € M\ {xo} with
K (x0) (X—x0) € Ky, it follows that there exists x, €
So\ {xo} — xo such that k(x,) € k(xo) + K for large
n.

In case K| = K> =: K and/or H| = Hp =: H, we apply
the convention in Definition 3.

For necessary optimality conditions, we assume ad-
ditionally that Cy and Cz are convex cones with core
Cz # 0.

Theorem 3. (necessary conditions) Consider prob-
lem (P) with the additional assumption given prior to
this theorem. Assume that coreCy # @ and (f, g) has
a Gateaux variation (f’ (x),g’ (X)) at x wrt Hy,H; as
in Definition 2 and more specified for each assertion
below.

(i) (for weak minimizers) Assume that X is a local
(global, resp) weak minimizer of (P). Assume further
that (f,g) is sequentially (on-set, resp) differentiably
[— (coreCy x Cz)]-quasiconvex of type 2 at X with
(f' (x),8 (x)) wrt H satisfying — (coreCy x Cz) C H.
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Then, for all x € Sy, there exist A € C} and u € C/Z not
all zero such that (2) and (3) are satisfied.

If in addition, (' (%), g’ (X)) is [coreCy x Cz] -convex
like on Sy — X, then the above (A, ) can be chosen
common for all x € Sy. Furthermore, if the constraint
qualification (CQ): g’ (X) (So — X) = Z holds, then A #
0.

(ii) (for minimizers) The assertions for min-
imizers are the ones in (i) (for weak mini-
mizers) with sequential (or on-set) differen-
tiable [(—Cy)\Cy x (—Cz),—(coreCy x Cz)]-
quasiconvexity
resp)

replacing sequential (or on-
differentiable  [— (coreCy x Cz)]-
quasiconvexity and with (f'(X),¢ ()
Hy,H, satisfying —(coreCy xCz) C H,
(=Cy)\Cy x (—Cz) C H;.

(iii) (for strong minimizers) The assertions for strong

set,
wrt
and

minimizers are the ones in (i) with sequential (or on-
set) differentiable [Y\Cy x (=Cz),— (coreCy x Cz)]-
quasiconvexity replacing sequential (or on-set, resp)
differentiable [— (coreCy x Cz)]-quasiconvexity
and with (f/(x),¢ (X)) wrt Hy,Hp satisfying
—(coreCy x Cz) C Hy and (Y\Cy) x (—Cz) C Hj.
Proof. By reasons of similarity, we only prove the case
of a local weak minimizer in (i).

Consider first the claim (4) (with coreCy x Cz in-
stead of coreCy x (Cz —cone(g(x))) by contradic-
tion. Suppose the existence of X € Sy such that
f(x) € —coreCy and g (x) € —Cz. Then, (4, f (X)) +
(1, () < 0.

By the sequential differentiable [— (coreCy x Cz)]-
quasiconvexity of type 2, there exists x,, € Sp\ {x} — %
such that f (x,) € f(X) — coreCy core and g (x,) €
—Cyz for large n, contradicting the local weak mini-
mality of X. So, the claim holds.

Since the convex set — (coreCy x Cz) has nonempty
algebraic interior, applying the separation theorem
paper?’, we can separate this set and the point
(f' (x),¢ (x)) (x —X) to obtain multipliers A € Y’ and
U € Z' not all zero satisfying (2). As Cy and Cy are
convex cones, we see that A € C;, and u € CIZ with
(1, g (x)) =0 as (3) required.

Under the additional convex-likeness, we apply the
aforementioned separation theorem to separate two
convex sets (f/(x),g’ (X)) (So—X) + coreCy x Cz
and — (coreCy x Cz) to get the common multipli-
ers (A,u) as required. Suppose that A = 0. Then,
for all x € Sy, (1, (X) (x—X)) > 0. Take arbitrary
z € Z . In view of (CQ), there exists X € Sy such that
7=g'(¥)(x—%) and (u,z) > 0. By the arbitrariness
of 7€ Z, u must be zero, which is impossible as A is
supposed to be zero.
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WOLFE DUALITY

A duality scheme!!, called later the Wolfe duality,
quite different from the earlier well-known important
Lagrange duality model, was introduced. This con-
cept has been developed also until now alongside with
the Lagrange and the Mond-Weir '* schemes and also
others such as the one induced from the dual pair of
Stampacchia and Minty variational inequalities, etc.
Here, together with (P), we investigate the following
Wolfe-type dual problem, for a fixed e € coreCy,

(Dw)  maxc, (f (u) + (1, g(u))e)u € So, 5)
A e Cy\{0},1n € Cy e e coreCy (A, e) =1

</'L,f/(u) (u/ —u)>+ ©)

<u,g’(u) (ul —u)> >0, forallu' €S

Here (f' (u),g' (u)) : So —u — Y x Z is a Gateaux
variation of (f,g) (following Definition 2) with de-
tails specified in each consideration context below.
Maximizing over Cy can mean finding maximal solu-
tions in both local and global considerations. A point
(u,A, ) satisfying relations (5) and (6) is called a fea-
sible point for problem (D).

For our duality study, we need the following general-
ized quasiconvexity.

Definition 5. (types of scalar generalized convexity)
Let So CX,u€Sp, k:So —YXZ, kK (u):So—u—
Y X Z a Gateaux variation of k at u wrt any H,H,
(following Definition 2, but in this case H;,H, C Y X
Z).

(i) (scalar generalized quasiconvexity) k is called
scalar generalized quasiconvex at u if from x € Sy,
(,2) =k (x), (nw) =k(u), A € Cy\ {0}, and p € C,
satisfying (5), it follows that there exist A’ € C;,\ {0}
and ' € Sy such that, for (V',w') =k (u) (' —u),

<)L/7y7v>+<;uvsz> > <Avvl>+<uvwl>'

(ii) (scalar generalized strict convexity) k is called
scalar generalized strictly convex at u if for all x € Sy
with (y,2) = k(x), (vyw) = k(u), A € C;,\{O}, and
L € Cy, there exist A’ € Cy\ {0} and p’ € Sy such
that, for (V',w') = k (u) (' — u),

Ay =v)+{z=w) > (AV) + (u,w').

Theorem 4. (Wolfe weak duality) Assume that
coreCy # &, x and (u,A,u) are feasible for (P)
and (Dw), resp, and (f,g) has a Gateaux variation
(f' (u),g’ (u)) at u specified suitably in each assertion
below.

(i) If (f,g) is scalar generalized quasiconvex
at u with (f' (u),g (u)) wrt Hy,H, satisfying

—(coreCy x Cz) C Hy and — (coreCy x Cz) C Hj,
then

) &fu)+

(i) If (f,g) is scalar generalized strictly con-
vex at u with (f'(u),g’ (u)) wrt Hy,H, satisfying
— (coreCy x Cz) C Hp and (—Cy) /Cy C Hj, then

JFx) & fu)+

Proof. (i) Suppose to the contrary that

(1,8 (u))e —coreCy.

(;g (w)we+ (=Cy)\Cy.

J () = f () = (u,g (u))e € —coreCy.

In virtue of the assumed scalar generalized quasicon-
vexity of (f,g), there exist A’ € C;,\{O} and u € S
with (W, w) = (f' (1), &' (v)) (& — u) such that

(A f () = f () +(u,8(z) — g (u))
> (A, 0) + (u, w).

As (1,8 (x)) <O0by (5), from the above contradiction
assumption, it follows that

> A f () = (M f () = (1,8 (w)
(A, f () + (8 () = (A f () = (1, g (w))
(A f () = f () + (.8 (x) — g (w)).

This is a contradiction to (6).
(ii) Suppose that

fx)ef)+

Then, in view of the assumed scalar generalized
strict convexity of (f,g), as (1,8 (x)) < 0 there ex-
ist A € Cy\ {0} and @ € Sy such that, for (v,w) =
(f (u) g () (it —u),

0> A, f (%) = f (w) + (8 (x) —g (u)
> (A, 9) + (1, w),
which also contradicts (6).
Theorem 5. (Wolfe strong duality) Impose the as-

0
>

(u,g(u))e+(=Cr)\Cy-

sumptions of Theorem 3, including the ones in asser-
tions (i)-(iii).

(i) Assume that X is a local or global weak minimizer
of (P) and (f, g) is scalar generalized quasiconvex at ¥
with (f/ (x),g’ (X)) as in Theorem 4(i) (with X replac-
ing u). Then, there exists (;1, /J) S C/YC’Z such that

(E, i,ﬂ) is a global weak maximizer of (Dy).

(ii) Assume that X is a local or global minimizer of (P)
and (f, g) is scalar generalized strictly convex at X with
(f' (x),¢ (x))asin Theorem 4(ii) (with X replacing u).
Then, there exists 71/1) € C}C,Z such that (2, 17/1)

(Dw).

Proof. (i) Assume that ¥ is a local or global weak min-
imizer of (P). By Theorem 3(i), there exist le C;, and

is a global maximizer o

Si24
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ne C/Z not all zero such that (2) and (3) hold for all
x € Sy. Hence, (5) and (6) are satisfied with (X, 1,/1)

in the place of (u,A, ), i.e., ()‘c,i,ﬁ) is feasible for
(Dw).

By the assumed scalar generalized quasiconvexity, one
has the weak duality given in Theorem 4(i). Suppose
that <)‘c, A, /1) is not a global weak maximizer of (Dy),
i.e., there exists a feasible point (u,A, ) of (Dy ) such
that

£+ (wgl)e € &+ ([B.g@)e + coreCy
Since (fi,g (X)) = 0 by (3), this means that f(x) €
f(u)+ (u,g(u))e — coreCy and contradicts the
weak duality in Theorem 4(i). The proof of (ii) is sim-
ilar, using assertion (ii) in Theorem 4.

MOND-WEIR DUALITY

The Mond-Weir duality scheme '* was proposed and
also intensively developed like the Wolfe one. Let X, Y,
7,80, Cy, Cz, f, g,and f’, g’ be as in problem (Dy).
Assume additionally that 0 € —Cz. Here, we define
the Mond-Weir dual problem of (P) as follows.

maxc, f(u), u €Sp,A €Cy\{0},ueC, (7)

(s () (4 =u))+
</.L,g(u/) (u/—u>> >0 forall u € So ®
(b,g(u)) =0 ©)

Here (f’ (u),g (1)) : So—u — Y x Z is a mapping
associated with (f,g) and specified in the study sit-
uations for (Dpw). Maximizing wrt Cy may signify
looking for maximal points on the feasible set de-
fined by (7)-(9) in both local and global consider-
ations, depending on the consideration context. A
point (u, A, 1) satisfying relations (7)-(9) is said to be
a feasible point for (Dyw ).

Theorem 6. (Mond-Weir weak duality) Assume that
core Cy # &, x and (u,A,U) are feasible for (P)
and (Dyw), resp, and (f,g) has a Gateaux variation
(' ()8

low.

" (u)) specified suitably in each assertion be-

(i) Under the assumption of (i) in Theorem 4, one has

fx) & f(u) = coreCy

(ii) The same assumption in Theorem 4 (ii) implies
that

) & f(u)—

Proof. (i) Suppose that f(x) € f(u) — coreCy. By
the assumed scalar generalized quasiconvexity, there

(—=Cy)\Cy.

SI25

exist A’ € Cy\ {0} and i’ € Sy such that, for (v, w') =
(f/ (M) 78/ (u)) (u/ - M) »

(A f (x) = f (w)) + (1,0 — g (u))
> (V) + (u,w).
But0 > (A, f(x)— f(u)) + (1,0—g(u)). Hence,

0> (4,v) +(u,
(ii) Suppose to the contrary that f(x)
(—=Cy)\Cy. Then, by the assumed scalar general-
ized strict convexity of (f,g), as (¢t,g(x)) < 0 and
(1, () > 0, there exist 1’ € Cy\ {0} and @ € Sy
such that, for (v,w) = (f' (1), &' (u)) (& —u),

0> (A", f (x) = f () + (1, g (x) — g (u))
> (A,9) + (1, w),

which also contradicts (8).

w'), contradicting (8).

€ f(u) +

By arguments similar to the proof of Theorem 5,
we obtain the following corresponding strong duality
statement.

Theorem 7. (Mond-Weir strong duality) The strong
duality relations in Theorem 5 for (Dy) are valid also
for (Dyw).

CONCLUSIONS

In this paper, optimality conditions together with
Wolfe and Mond-Weir duality properties are stud-
ied for a general vector optimization problem. The
main characteristic features here are the following.
The problem setting is general with linear underlying
spaces for most cases. The “orderings” in the objective
and constraint spaces in a part of the results are de-
fined by arbitrary nonempty sets, not necessarily con-
vex cones. Generalized derivatives and convexity, the
two main factors in any optimality conditions and du-
ality results, are proposed for the use in the paper and
remarkably different from almost all the correspond-
ing concepts employed in the earlier contributions we
know. The novelties and advantages of our results are
clear enough.

For possible perspectives, we think that the results
here can be developed for some recent models at-
tracting attention from many researchers such as set-
valued problems, vector problems with variable pref-
erences, and set optimization, etc.
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Diéu kién t6i uu va ddi ngau véi bién phan méi ciia dao ham suy
réng va tinh 10i

Huynh Thi Hong Diém”

TOM TAT

Bai toan t&i uu vector téng quét véi cac rang budc bat dang thiic dugc xem xét, chti dé nay la mo
hinh rat phd bién va quan trong trong linh vuc t6i uu héa. Tinh téng quét clia clia viéc thiét lap
ch yéu dugc thé hién & ba yéu t6 sau. Cac khdng gian dugc xét la khéng gian tuyén tinh khong
can topo (ngoai trlr khong gian quyét dinh dugc trang bi thém vai cdu trdc nay cho mot sé két
qud). "Thu ty" trong cd khong gian muc tiéu va khong gian khéng gian clia cac rang budc dugc
xac dinh bdi cac tap tuy y khac réng (khéng nhat thiét [a ndn 16i). DU liéu bai toan la anh xa khong
tron, tuc la ching khong kha vi Fréchet. Trong bai nay diéu kién t6i uu va déi ngdu ctia Wolfe va
Mond-Weird dugc xem xét day la van dé trong tam cia ly thuyét téi uu. Cac két qud nay dugc thiét
lap cho ba loai nghiém: nghiém Pareto, nghiém yéu va nghiém manh véi nghiém dia phuong va
toan cuc. Trong ndi dung vé diéu kién téi uu, gidi thiéu vé tua |6i kha vi trén tap cho nghiém toan
cuc va tua 16i kha vi theo day cho trudng hop dia phuong. Hon thé niia, méi khai niém gom loai 1
va 2, diéu xét diéu kién can va du dugc xét cho loai 1 va loai 2 néu trén. Sau khi dat ducc diéu kién
t6i uu, 4p dung diéu kién téi uu dé dugce déi ngdu manh va déi ngau yéu cho cac loai nghiém vao
mo hinh cta hai loai d6i ngdu Wolfe va Mon-Weir. Do tinh phtc tap ctia cht dé: xét déi ngau la
khac nhau tir nhiing diéu kién toi uu, chiing toi da xét nhiéu hon 2 loai tua l6i suy réng: tua 16i vo
huéng cho nghiém yéu va 161 vé hudng chat cho nghiém Pareto. Vi vay tat ca cac két qua dugc dé
cap V& bién phan Gateaux va nhiing dang tua l6i suy rong khac. Cac két qua la ndi bat véi nhiing
két qua da biét véi nhiing phat trién trong nhiing trudng hop tng dung dac biét.

Tu khoa: Bai todn t6i uu vector tng quat, Bién phan Gateaux, Tua I16i kha vi theo day, Tua 16i kha
vi trén tap, Diéu kién can, Diéu kién da, Tua 16i suy rong vo hudng, Loi chat suy rong vo hudng, Do
ngau Wolfe, Doi ngau Mond-Weir
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