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ABSTRACT
In this paper, the authors propose a novel adaptive multilayer T-S fuzzy controller (AMTFC) with a
optimize soft computing algorithm for a class of robust control uncertain nonlinear SISO systems.
First, a new multilayer T-S fuzzy was created by combined multiple simple T-S fuzzy model with a
sum function in the output. The multi-layer fuzzy model used in nonlinear identification has many
advantages over conventional fuzzy models, but it cannot be created by the writer's experience or
the trial and error method. It can only be created using an optimization algorithm. Then the pa-
rameters of multilayer fuzzy model is optimized by the differential evolution DE algorithm is used
to offline identify the inverse nonlinear system with uncertain parameters. The trained model was
validated by a different dataset from the training dataset for guarantee the convergence of the
training algorithm. Second, for robustly and adaptive purposes, the authors have proposed an ad-
ditional adaptive fuzzy model based on Lyapunov stability theory combined with the optimized
multilayer fuzzy. The adaptive fuzzy based on sliding mode surface is designed to guarantee that
the closed-loop system is asymptotically stable has been proved base on a lyapunov stability the-
ory. Furthermore, simulation tests are perfomed in Matlab/Simulink environment that controling
a water level of coupled tank with uncertain parameters are given to illustrate the effectiveness of
the proposed control scheme. The proposed control algorithm is implemented in simulation with
many different control parameters and it is also compared with the conventional adaptive control
algorithm and inverse controller. The simulation results also shows the superior of proposed con-
troller than an adaptive fuzzy control or inverse controller when using the least mean square error
standard.
Key words: Multilayer T-S Fuzzy, Inverse Controller, Adaptive Control, Differential Evolution,
Lyapunov Theory

INTRODUCTION
Fuzzy logic was first proposed in 1965 by Zadeh1.
There aremany studies developed based on this fuzzy-
based domain, such as Fuzzy type-2, Fuzzy type-n,
neural fuzzy, hierarchical fuzzy to model and con-
trol nonlinear system,2,3. Recently, Takagi–Sugeno
(T–S) fuzzy model can provide a modeling frame for
nonlinear systems. The advantage of T–S fuzzy sys-
tems is that they allow us to use a set of local linear
systemswith correspondingmembership functions to
represent nonlinear systems. The T-S fuzzy model
is widely accepted as a powerful modeling tool and
it’s applications to various kinds of non-linear sys-
tems can be found in 4–9. Based on the T-S fuzzy
model of a plant, papers10–13 introduced a fuzzy con-
trol designmethod for nonlinear systems with a guar-
anteed H2/∞ model reference tracking performance.
However, if the membership functions of the T–S
fuzzy system encounter parametric-uncertainty prob-
lem, the T–S fuzzy system cannot operate efficiently.
Moreover, with a complex system, the more time it

requires for training, the more complex membership
functions that eventual fuzzy rule-table will become.
To achieve a higher precision from the Fuzzy model,
its parameters are required to be optimized and the
fuzzy structure is needed to be changed. Recently,
Type-2 fuzzy sets14–16 have been shown that they
prove better than type-1 ones both on representing
the nonlinear systems and handling the uncertain-
ties. Paper17 presented the problem of fuzzy con-
trol for nonlinear networked control systems with
packet dropouts and parameter uncertainties based
on the interval type-2 fuzzy-model-based approach.
Paper18 introduced an inverse controller based on
a type-2 fuzzy model control. Moreover, many re-
searchers used the optimization algorithms such as
a cuckoo search algorithm (CSA) 19, Particle Swarm
Optimization (PSO)20, genetic algorithm (GA) 21,
differential evolution (DE)22,23 to optimize the pa-
rameters of the fuzzy Type-1 logic controller as to
handle the nonlinear characteristics. Unlike a tradi-
tional Fuzzy set, multilayer Fuzzy model can’t be built
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based on the experience of the designer. It is only
available to be trained with soft computing optimiza-
tion algorithm. Then it can be applied to identify
and control of complex MIMO systems and be easy
to scale for both of large or simple system24. Paper25

successfully proposed the concept ofMultilayer Fuzzy
model for identifying uncertain nonlinear MISO sys-
tem.
Furthermore, in order to compensate the uncertain-
ties and guarantee the asymptotic stability, there are
many different adaptive fuzzy control methods based
on the classic advanced control algorithm such as slid-
ing mode control (SMC)26–32, H2/∞ technique10–13,
linearization feedback control33–36, back-stepping
technique37–40. However, these above-mentioned
techniques require knowing in advance the character-
istics of nonlinear uncertain SISO or MIMO system.
Moreover, the adaptive fuzzy controller starts with the
random coefficients which make the initial process
difficult to control. It issues the system response will
be overshoot with long settling time.
To overcome these drawbacks above-mentioned, this
paper proposes the adaptivemultilayer T-S fuzzy con-
trol approach for a class of uncertain nonlinear SISO
systems. First, a new multilayer T-S fuzzy model op-
timized by the DE algorithm is used to offline identify
the inverse nonlinear dynamic system with uncertain
parameters. However, the fact is that the inverse con-
troller is difficult to ensure system asymptotically sta-
ble. It needs an additional demonstration based on
Lyapunov stability principle. Second, based on Lya-
punov stability theory, an adaptive fuzzy control us-
ing a sliding mode surface is designed to guarantee
that the closed-loop system operation is asymptoti-
cally stable. Furthermore, some simulation bench-
mark tests are investigated to illustrate the effective-
ness of the proposed control scheme.
The rest of this paper is organized as follows. Sec-
tion II describes the formulation problem. Section III
presents the proposed adaptive multilayer T-S Fuzzy
controller design. Section IV presents the simulation
results to show the effectiveness and robustness of the
proposed controller and section V concludes the pa-
per.

METHODOLOGY
Problem formulation
General mathematical of SISO n-th order nonlinear
systems is as follows:

x(n) = f (x, t)+g(x, t)u (1)
y = x

with f (x, t) and

g(x, t)

representing unknown nonlinear functions,
0 g(x, t) < +, x = x, x2, ..., x(n−1), as state
vector of the system, u as the control input and y as
the output of system.
The control problem is to design a stable control
law for the state x tracking a desired reference signal
xd . Inverse nonlinear controller represents open-loop
control whose controller denotes an inverse model of
the system. The inverse system is modelled through
the use of a neural network NN or fuzzy logic FL with
delay at its input and output and a feedback loop (see
Figure 1).
The inverse control takes advantage of optimized al-
gorithm. Inverse controller can efficiently control
nonlinear system without knowing exactly the math-
ematical model of system. It only requires an inverse
model identified in advance. In practice, designing
the perfect inverse controller is very difficult. Prac-
tically, inverse control can ensure the nonlinear sys-
tem is stable, but it is pơdifficult to make the system
asymptotically stable.

Multilayer Fuzzy logic
In this paper, Multilayer Fuzzy logic is proposed for
identifying inverse model. We propose Multilayer
Fuzzy model to identify inverse model includes mul-
tiple fuzzy models.
It depends on the concrete complex system and if the
structure of multilayer fuzzy model is scalable with
more or less single T-S Fuzzymodel in the systemwith
a fixed number of inputs.
The proposed Multilayer Fuzzy structure used for
identifying inversemodel is shown in Figure 2. This is
an example of the structure ofmultilayer fuzzymodel.
It composes of 2 Fuzzy models for the first layer. The
output is sum of the two fuzzy model outputs.
Each T-S Fuzzy system consists of two-input with 3
triangular membership functions. That means each
fuzzy system includes 9 rules and 6 variables formem-
bership structure. Consequently, the inverse model
has 30 variables total.
From Figure 2, it is easy to see that there are 2 T-
S Fuzzy models in the inverse model. The first T-S
Fuzzy describes the effect of previous water level (y-
n−1, yn−2,…) to output (un), the other describes effect
of previous voltage control (un−1, un−2,…) to output
(un) and the output is sum of two T-S Fuzzy model
outputs.

Differential evolution algorithm
Nowadays, Differential evolution (DE) algorithm 10 is
a popular optimization algorithm.
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Figure 1: Generalized Inverse model

Figure 2: Proposed Multilayer Fuzzy system
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In this paper, it is used for learning Multilayer Fuzzy
membership structures and rules by minimizing the
cost function that denotes the error between actual
output and multilayer Fuzzy predicted output.
The cost function follows the mean squared error
(MSE) standard and is defined as:
J = 1

N ∑e2 (2)
In which : e = y− ŷ
N represents number of samples, ŷ denotes output of
Fuzzy models and y represents output of real data col-
lected from experiment.
The principal steps of DE algorithm are described as
follows:
Initialization
The initial vector is randomly chosen with NP D-
dimension and should cover the entire parameter
Xi,G =

[
x1,i,G,x1,i,G, ...,xD,i,G

]
(3)

In which, G represents the number of generations:
G = 0,1, ...,Gmax, and i = 1,2, ...,NP
Mutation
DE generates new parameter vectors by adding the
weight difference between two population vectors to
a third vector. This operation is called mutation. For
each target vector , amutant vector is generated as fol-
lows,
vi,G+1 = xr1,G +F(xr2,G − xr3,G) (4)
with r1,r2,r3 ∈ 1, 2, ..., NP represent random in-
dexes.
The randomly chosen values r1,r2,r3 are selected
from the running index i. F represents the real and
constant coefficient F ∈ [0,2]
Crossover
After generating the resulting vector through muta-
tion, the crossover step is carried out to enhance the
diversity of the population pool. The donor vector ex-
changes its components with the target vector−→X i,G to
form the trial vector−→U i,G = [u1,i,g, u2,i,g, ..., uD,i,g].
The DE algorithm often uses the binomial crossover
method. The binomial crossover scheme may be out-
lined as

u j,i,G =

{
v j,i,G I f (rand j,i[0,1]<C)

x j,i,G otherwise
(5)

Selection
This phase is used to decide whether it should be-
come a member of generation (G+1). The target vec-
tor−→X i,G is compared to the trial vector−→U i,G, and the
one with a lower function value survives to the next
generation. The selection operation is described as:

xi,G+1 =

{
ui,G I f f (ui,G)< f (xi,G)

xi,G otherwise
(6)

Termination
This is a condition to stop the loop process of DE algo-
rithm. The algorithm stops when one of the followed
conditions is satisfied:

• When maximum generation is reached
• When the best fitness is lower than desired fit-
ness

• When the best fitness cannot increase for a long
time

The flow chart of DE algorithm is shown in Figure 3.
This is the process of DE algorithm. By the end of the
process, the termination is satisfied with the predicted
output will be nearly the same with actual output.

Adaptive InverseMultilayer Fuzzy controller
Adaptive Inverse Multilayer Fuzzy controller with
structure presented in Figure 4 is combined between
the Inverse Multilayer Fuzzy and the Adaptive Fuzzy
model.
The parameters of Inverse Multilayer Fuzzy model
will be optimally trained by DE algorithm. Since In-
verse controller is difficult in practice to ensure sys-
tem asymptotically stable, it needs an additional proof
based on Lyapunov stability principle.
The system control law consists of 2 components, in-
cluding Inverse control law and Adaptive control law.

û = u∗i f m +qT
u x(x) (7)

with u∗i f m represents the output of optimized inverse
fuzzy model of which parameters are optimized with
DE algorithm. In detail u∗i f m is described as

u∗i f m = argui f m ÎWu
min(sup

∣∣ure f −ui f m
∣∣ |) (8)

whereWu represents constraint sets for ui f m

qT
u x(x) is the output of Adaptive Fuzzy model.
The inverse control had to guarantee the stability of
close-loop system. There may be some steady-state
error with inverted controller. The Adaptive law is
designed to guarantee that the closed-loop system is
asymptotically stable.
Let define u* which represents optimized control law.

u∗ = u∗i f m +q∗T
u x(x) (9)

From (7) to (9),

û−u∗ =
0/0
q

T

u x(x) (10)

where
q0/0

u = qu −q∗u
Furthermore, the control signal is determined as:
u = û+usw (11)

e& +he =−g(x).
0/0

qT
u x(x)−g(x).usw (12)

Lyapunov function is selected as,

V = 1
2g(x) e2 + 1

2

0/0

qT
u a

0/0
qu (13)
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Figure 3: Flow chart of DE algorithm
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Figure 4: Block diagram of proposed fuzzy controller scheme

V & = ee&
don′t unders tand

The equation (*) proves that system satisfy asymptot-
ically stable condition. Based on (*), adaptive law is
then selected as,

q&
u = a−1ex(x) (14)

usw = Ksign(e) (15)
with K represents positive constant.

SIMULATION & RESULTS

Researchmethodology
This paper uses simulation method to verify theoret-
ical results on matlab/simulink environment.

Simulation Experimental setup
We perform the experiment controlling the fluid level
of single tank system in simulation (see Figure 5).
The coupled tank system possesses the state equation
as,

x&
1 = Ku

A1
− b1C

A1

√
2gx1

x&
2 = b1C

A2

√
2gx1 − b2C

A2

√
2gx2 (16)

y = x2
with parameters of coupled tank system described in
Table 1.

Training Inverse Fuzzymodel
Inverse model used in inverse Multilayer Fuzzy con-
troller needs to be trained at first. In the simulation
platform, training data was collected by step time of

1 second. Data for training and validating are shown
in Figure 6. Input data are random values from 3V to
13V, and experiment collected data is updated every
100 seconds. The data for training is from 0 to 10000
samples, the other is data for validating.
For training inverse fuzzy model, proposed Multi-
layer Fuzzy model is used with 2 inputs (y[n], y[n-
1) and one output (u[n]). All parameters of the pro-
posed Multilayer Fuzzy model were trained by DE al-
gorithm. Results was validating of predictionmethod.
In this paper, one step prediction is applied. Figure 7
shows the validating results based on another data set
with the same resulting fuzzy structure from previous
training phase. The results show that predicted output
seems nearly equal to the actual system output.

Control results
In simulation platform, three tests are realized. The
first test is for the proposed Adaptive Inverse Multi-
layer Fuzzy controller (AIMFC or IFC+AF), the sec-
ond is for the inverse Multilayer Fuzzy controller
without adaptive fuzzy (IFC), and the last test is for
only Adaptive Fuzzy controller (AFC). All tests run
with the same reference signal.
The unique input of Adaptive Fuzzy control com-
poses of 5 Gaussian membership functions with and
itsmean values of [0, 7.5, 15, 22.5, 30].
Adaptive Fuzzy parameter starts with random value.
The random number in simulation gives [8.573,
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Figure 5: Coupled tank model

Table 1: PHYSICALMEANING ANDNUMERICAL VALUE USED IN THE
SIMULATION

Notation Physical Meaning Value (unit)

A1 Cross sectional area of Tank 1 16.619 (cm2)

A2 Cross sectional area of Tank 2 16.619 (cm2)

b1 Cross sectional area of outlet of Tank 1 0.4 (cm2)

b2 Cross sectional area of outlet of Tank 2 0.5 (cm2)

C The discharge coefficient of the outlet 0.8

g Gravity 981 (cm/s2)

Gc Gain of the pump 6.94 (cm3/(s.V))

SI15
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Figure 6: Training and evaluating dataset

0.1714, 4.537, 0.0326, 6.109].
Figures 8, 9 and 10 and Table 2 show that the pro-
posed Adaptive Inverse Multilayer Fuzzy controller
(IFC+AF) obtains the best performance compared
to the Inverse Fuzzy controller (IFC) and Adaptive
Fuzzy controller (AFC).
Table 2 tabulates the comparative performance of
three controllers through standard LMSE errors com-
puted as follows,

LMSE = 1
T

‘
O
T

e2 (17)

DISCUSSION
The proposed method starts with identifying the in-
verse control model. The identification results in Fig-
ures 6 and 7 show that the identified inverse model
can be easily controlled the system. Figures 8, 9 and 10
show the control results after applying the additional
adaptive algorithm. At the end of process, AFC and
IFC+AF show the same performance because both of
them utilize the same adaptive law. The difference be-
tween AF and IFC+AF is related to the start-up fea-
ture. Meanwhile the IFC+AF starts up based on iden-
tified multilayer Fuzzy inverse model, and the AFC
starts up with random parameter. The IFC controller

has poor performance but it shows that proposed con-
troller can handle it. With poor performance IFC, the
proposed controller has better performance than AF
controller. With better IFC controller, the proposed
controller can be even better.
Table 2 also shows the control quality through the
least mean squares error standard. The results also
show that the proposed algorithm for control qual-
ity is superior to inverse fuzzy control methods and
adaptive fuzzy control.

CONCLUSIONS
In this paper, we propose an adaptive inverse multi-
layer fuzzy control coupled tanks system fluid level
regulation. The adaptive inverse multilayer fuzzy
logic controller is created from themultiple T-S Fuzzy
models and adaptive fuzzy model. The simulation
results show that proposed adaptive multilayer fuzzy
logic controller can be efficiently applied for con-
trol nonlinear system. The proposed controller pos-
sesses better control quality and proves strongly ro-
bust due to satisfy Lyapunov stability principle. It
is available for applying a scalable multilayer fuzzy
model to amore complex nonlinear uncertain system.
Thus, these results also ensure that proposed multi-
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Figure 7: Validation result

Figure 8: Comparison results of algorithms with alpha=10, K=5

SI17



Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21

Figure 9: Comparison results of algorithms with alpha=2, K=5

Figure 10: Comparative results of algorithms with alpha=0.3, K=5

Table 2: COMPARATIVE PERFORMANCE OF THREE CONTROLLERS

Method LMSE

Inverse Fuzzy Control (IFC) 6.322 6.322

Adaptive Fuzzy Control (AFC) 4.229 4.675

Proposed Inverse Fuzzy Control with Adaptive Fuzzy (IFC+AFC) 2.648 2.8
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layer fuzzy controller can be used to successfully con-
trol of uncertain nonlinear complex system in near fu-
ture study.

ABBREVIATION
SISO: Single Input – Single Output
MISO: Multi Input – Single Output
MIMO: Multi Input – Multi Output
DE: Differential Evolution
GA: Genetic Algorithm
PSO: Particle Swarm Optimization
T-S Fuzzy: Takagi-Sugeno Fuzzy
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TÓM TẮT
Bài báo đề xuất giải thuật điều khiển mờ nhiều lớp thích nghi (AMTFC) kết hợp giải thuật tính toán
mềm tối ưu áp dụng cho điều khiển hệ phi tuyến SISO có các tham số không chắc chắn. Đầu tiên,
mô hình mờ nhiều lớp được tạo ra bằng cách ghép nhiều mô hình mờ đơn giản với ngõ ra là một
hàm tổng. Mô hình fuzzy nhiều lớp dùng trong nhận dạng hệ phi tuyến có nhiều đặc điểm vượt
trội hơn so với mô hình mờ thông thường, tuy nhiên nó không thể tạo ra bằng kinh nghiệm của
người viết hay phương pháp thử sai nên chỉ có thể kết hợp với một giải thuật tối ưu. Các tham số
của mô hình mờ nhiều lớp ngược sau đó được nhận dạng với giải thuật tiến hóa vi sai (DE) nâng
cao để nhận dạngmô hình ngược của hệ phi tuyến với các tham số không chắc chắn. Kết quả mô
hình ngược được đánh giá trênmột tập dữ liệu khác so với tập dữ liệu huấn luyện để đảm bảo tính
hội tụ của mô hình nhận dạng. Tiếp theo, để tăng tính ổn định và sự thích nghi của giải thuật điều
khiển, tác giả đã có những đề xuất thêm vàomộtmô hìnhmờ thích nghi được xây dựng dựa vào lý
thuyết ổn định Lyapunov kết hợp với mô hình điều khiển ngược trước đó. Mô hình mờ thích nghi
dựa vào mặt trượt được thiết kế để đảm bảo hệ kín ổn định tiệm cận đã được các tác giả chứng
minh thành công theo lý thuyết ổn định Lyapunov. Thêm nữa, kết quả mô phỏng điều khiển mực
nướcmô hình bồn nước đôi với nhiều tham số điều khiển khác nhau và chất lượng điều khiển theo
tiêu chuẩn tổng bình phương sai số đã chứng minh sự hiệu quả của giải thuật đề xuất so với các
giải thuật điều khiển thích nghi truyền thống hoặc giải thuật điều khiển ngược.
Từ khoá: Mô hình mờ nhiều lớp, điều khiển ngược, điều khiển thích nghi, giải thuật tiến hóa vi
sai, ổn định Lyapunov
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