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ABSTRACT
One of the most important and popular topics in optimization problems is to find its optimal so-
lutions, especially Pareto optimal points, a well-known solution introduced in multi-objective opti-
mization. This topic is one of the oldest challenges in many issues related to science, engineering
and other fields. Many important practical-problems in science and engineering can be expressed
in terms of multi-objective/ set-valued optimization problems in order to achieve the proper re-
sults/ properties. To find the Pareto solutions, a corresponding scalarization problem has been
established and studied. The relationships between the primal problem and its scalarization one
shouldbe investigated for findingoptimal solutions. It canbe shown that, under some suitable con-
ditions, the solutions of the corresponding scalarization problem have uniform spread and have a
close relationship to Pareto optimal solutions for the primal one. Scalarization has played an essen-
tial role in studying not only numerical methods but also duality theory. It can be usefully applied
to get relationships/ important results between other fields, for example optimization, convex anal-
ysis and functional analysis. In scalarization, we ussually use a kind of scalarized-functions. One of
the first and the most popular scalarized-functions used in scalarization method is the Gerstewitz
function. In the paper, we mention some problems in set-valued optimization. Then, we propose
an application of the Gerstewitz function to these problems. In detail, we establish some optimal-
ity conditions for Pareto/ weak solutions of unconstrained/ constrained set-valued optimization
problems by using the Gerstewitz function. The study includes the consideration of problems in
theoretical approach. Some examples are given to illustrate the obtained results.
Key words: Pareto efficient solution, weak efficient solution, set-valued optimization, Gerstewitz
function, optimality condition

INTRODUCTION
Scalarization has an essential role in studying numer-
ical methods and duality theory 1–4. It can be applied
to get relationships between other fields, such as: opti-
mization, convex analysis and functional analysis. So-
lutions of vector optimization problems can be char-
acterized by those of corresponding scalarized opti-
mization problems.
In scalarization, the Gerstewitz function plays an im-
portant role. Its main properties were studied in some
papers5–7.
In the paper, we have proposed optimality conditions
for set-valued optimization problems using the Ger-
aterwitz function. These results have contributed to
applications of the Gerstewitz function in optimiza-
tion.

RELIMINARIES
In the paper, Let X and Y be normed spaces, K be
a pointed, closed, convex cone witn nonempty inte-
rior in Y. For A be a nonempty subset in Y, we denote

int(A), cl(A) and cone(A) for the interior, the closure
of A and the cone generalized by A, respectively.
LetF := X → 2Y be a set-valuedmap fromX toY, the
domain, the image and the graph of F are defined by
dom(F) := {x ∈ X |F(x) ̸=∅}; im(F) :=
{y ∈ Y |y ∈ F(dom(F))}
gr(F) := {(x,y) ∈ X ×Y |y ∈ F(x)}.
Definition 2.1. Let F := X → 2Y and (x0,y0) ∈
gr (F).
(i) A point (x0,y0) is called a Pareto efficient solution
of F on X if (F(X)− y0)∩ (−K\{0}) = ∅. The set
of Pareto efficient solutions of F is denoted by MinK

F(X).
(ii) A point (x0,y0) is called a weak efficient solution
of F on X if (F(X)− y0)∩ (−intK) = ∅. The set of
weak efficient solutions of F is denoted by WMinK

F(X).
Note that MinK F(X) is a subset of WMinK F(X). In
general, the inverse conclusion is not true by the fol-
lowing example.
Example 2.2. Let X = R,Y = R2,k = R2

+,F1,F2 :
X → 2Y be defined by
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F1 (x) :=
{(

y1,y2 ∈ Y |y2 ≥ y2
1
)}

;
F2 (x) :=

{(
y1,y2 ∈ Y |y2 ≥ y2

1,y1 ≤ 0
)}

∪
{(y1,y2) ∈ Y |y2 ≥ 0,y1 ≥ 0}.
With F1, one has MinK F1(X) WminK F1(X)
=
{
(x(y1,y2)) ∈ X ×Y |y2 = y2

1,y1 ≤ 0
}
.

With F2, we get
MinK F2(X) =

{
(x(y1,y2)) ∈ X ×Y |y2 = y2

1,y1 ≤ 0
}
,

WminKF2(X)=
{
(x(y1,y2)) ∈ X ×Y |y2 = y2

1,y1 ≤ 0
}
∪

{(x(y1,y2)) ∈ X ×Y |y2 = 0,y1 ≥ 0}. Therefore,
MinK F2(X) is a subset ofWminK F2(X).
Definition 2.3.6 With e ∈ int(K), the Gerstewitz
function he

K(y) : Y → R is defined by
he

K(y) := in f {t ∈ R|y ∈ te−K} .
If K is a pointed, closed, convex cone with nonempty
interior then he

K is finite and we get
he

K(y) = sup{h(y)|h ∈ K∗,h(e) = 1} , ∀y ∈ Y,
where K∗ := {k∗ ∈ Y ∗ |⟨k∗,k⟩ ≥ 0,∀k ∈ K}. It is a
convex and continuous function on Y. We recall some
properties of the Gerstewitz function as follows.
Proposition 2.4. 6,7With e ∈ int(K), we have
(i) (−∞,0]e−K =

{
y ∈ Y |he

K(y)≤ 0
}
.

(ii) (−∞,0)e−K =
{

y ∈ Y |he
K(y)< 0

}
.

(iii)−K\((−∞,0)e−K) =
{

y ∈ Y |he
K(y) = 0

}
.

(iv) Y\((−∞,0)e−K) =
{

y ∈ Y |he
K(y)≥ 0

}
.

(v) Y\((−∞,0]e−K) =
{

y ∈ Y |he
K(y)> 0

}
.

(vi) ∀α > 0,he
K (αy) = αhe

K(y).
(vii) he

K(y1 + y2)≤ he
K(y1)+he

K(y2).

For applications of the Garsterwitz function, the read-
ers are reffered to the references6–9.

OPTIMALITY CONDITIONS
Let X, Y, Z be normed spaces, K and D be pointed,
closed, convex cones with nonempty interior in Y và
Z, respectively, F : X → 2Y , G : X → 2Z . We consider
two optimization problems as follows

(P1) =

{
minKF (x) ,
s.t.,x ∈ X ;

(P2) =

{
minKF (x) ,
s.t.,x ∈ X ,G(x)∩ (−D) ≠∅.

Let Si be feasible sets of (Pi), i=1,2, then
S1 = X and S2 = {x ∈ X |G(x)∩ (−D) ≠∅}
A point (x0,y0) ∈ gr (F) is called a Pareto efficient
solution (a weak efficient solution) of (Pi) (i=1,2) if
x0 ∈ Si and
(F (Si)− y0)∩ (−K\{0}) =∅.

(F (Si)− y0)∩ (−intK) =∅.

Theorem 3.1. Let (x0,y0)∈ gr (F)with x0 ∈ S1. Then,
(x0,y0) is a weak efficient solution of (P1) if and only
if there exists int(K) such that ∀y ∈ F (S1) ,

he
K (y− y0)≥ 0. (1)

Proof. “If:” Suppose that there exists e ∈ int(K) such
that he

K (y− y0)≥ 0,∀y ∈ F (S1). Let v ∈ F (S1)− y0,
then y ∈ F (S1) there is with v = y− y0. Because (1)
is fulfilled, i.e., he

K(v) ≥ 0, by Proposition 2.4(iv) we
obtain v ∈ Y\((−∞,0)e−K), thus v ∈ Y\(−intK).
Consequently, one gets
(F (S1)− y0)∩ (−intK) =∅.

Therefore, (x0,y0) a weak efficient solution of (P1).
“Only if:” Let (x0,y0) be a weak efficient solution of
(P1), suppose that (1) does not hold, i.e., there exist
x ∈ S1,y ∈ F (S1)with he

K (y− y0)< 0 By Proposition
2.4(ii), we get y−y0 ∈ (−∞,0)e−K =−intK, which
contradicts to the weak efficiency of (x0,y0). n

Theorem 3.2. Let (x0,y0) ∈ gr (F) with x0 ∈ S1.
(i) If (x0,y0) is a Pareto efficient soluton of (P1) then
there exists e ∈ int(K) such that (1) holds ∀y ∈ F (S1) .

(ii) If there exists e ∈ int(K) such that (1) holds with
strict inequality ∀y ∈ F (S1)\{y0} then (x0,y0) is a
Pareto efficient solution of (P1).
Proof. (i) Since (x0,y0) is a Pareto efficient solution
of (P1), (x0,y0) is a weak efficient solution of (P1). It
follows fromTheorem 3.1 that we are done.
(ii) Suppose that there is e∈ int(K)with he

K (y− y0)>

0,∀y ∈ F (S1)\{y0}. Let v ∈ F (S1)− y0, then there
exists y ∈ F (S1) such that v = y− y0. Since (1) holds
with strict inequality, i.e., he

K(v) > 0 by Proposition
2.4(v), we get v ∈Y\((−∞,0)e−K), so v ∈Y\(−K).
Therefore, we get
(F (S1)− y0)∩ (−K\{0}) =∅.

Hence, (x0,y0) is a Pareto efficient solution of (P1). n

With the problem (P2), we can obtain optimality con-
ditions simiar to those inTheorem 3.1 and 3.2 replac-
ing S1 by S2. However, since (P2) is a constrained op-
timization problem, we propose other results for this
problem.
Let O(Z,Y) be a set of continuous maps from Z to Y,
and
Π := {T ∈ O(Z,Y ) |T (D)⊆ K}
We define the map L : X × Π → 2Y by L(x,T ) :=
F(x)+T (G(x)).
Theorem 3.3. Let (x0,y0) ∈ gr (F) with x0 ∈ S2 and
z0 ∈ G(x)∩ (−D). Then,(x0,y0) is a weak efficient so-
lution of (P2) if and only if there exist e∈ int(K), T ∈Π
such that ∀x ∈ X ,y ∈ L(x,T ),

he
K (y− y0)≥ 0. (2)

Proof. “If:” Since (2) holds, by Proposition 2.4(iv), one
gets L(x,T )−y0 ⊆Y\((−∞,0)e−K) =Y\(−intK),
or

F (x)+T (G(x))− y0 ⊆ Y\(−intK) (3)
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Suppose that (x0,y0) is not a weak efficient solution
of (P2), there exist x ∈ X̃ ,z ∈ G̃(x)∩

(
−D̃

)
,y ∈ F̃(x)

such that y− y0 ∈ −intK. Therefore,
y+ T̃ (z)− y0 ∈ −intK −K =−intK,

which contradicts to (3). Hence, (x0,y0) is a weak ef-
ficient solution of (P2).
“Only if:” Suppose that (2) does not hold, i.e., for
all e ∈ int(K), T ∈ Π one has x ∈ X such that
he

K (L(x,T )− y0) < 0. By Proposition 2.4(ii), we ob-
tain
L(x,T )− y0 ⊆ (−∞,0)e−K ⊆−intK
It means that F (x)+ T (G(x))− y0 ⊆ −intK. For x
with G̃(x)∩(−D) ≠∅, there is z∈ G̃(x)∩

(
−D̃

)
,y∈

F̃(x) such that y− y0 ∈ −intK, which is a contradic-
tion. Hence, (2) is fulfilled. n

Theorem 3.4. Let (x0,y0) ∈ gr (F)with x0 ∈ S2 and
z0 ∈ G(x0)∩ (−D).
(i) If (x0,y0) is a Pareto efficient solution of (P2) then
there exist e ∈ int(K), such that (2) holds ∀x ∈ X ,y ∈
L(x,T ).
(ii) If there exist e ∈ int(K), T ∈ Π such that (2) holds
with strict inequality ∀x ∈ X ,y ∈ L(x,T )\{y0} then
(x0,y0) is a Pareto efficient solution of (P2).
Proof. (i) Since (x0,y0) is a Pareto efficient solution of
(P2), (x0,y0) is a weak efficient solution of (P2). By
Theorem 3.3, we are done.
(ii) Since (2) holds with strict inequality, by Proposi-
tion 2.4(v), one gets L(x,T )− y0 ⊆ ((−∞,0]e−K) =

Y\(−K),, or (4).

F (x)+T (G(x))− y0 ⊆ Y\(−K) . (4)

Suppose that (x0,y0) is not a Pareto efficient solution
of (P2), there exist x ∈ X̃ ,z ∈ G̃(x)∩

(
−D̃

)
,y ∈ F̃(x)

such that y− y0 ∈ −K\{0}. Therefore,
y+ T̃ (z)− y0 ∈ −K\{0}−K ⊆−K,

which contradicts to (4). Hence, (x0,y0) is a Pareto
efficient solution of (P2). n

To illustrate Theorem 3.3, we consider the following
example.
Example 3.5. Let X = Y = Z = R,K = D = R+,F :
X → 2Y ,G : X → 2Z be defined by
F (x) :=

{
y ∈ Y |0 ≤ y ≤ x2} ; G(x) :=

{z ∈ Z|0 ≤ z ≤ |x|} .
With (P2), one has {x ∈ X |G(x)∩ (−D) ≠∅} = R.
It is easy to see that (x0,y0) = (0,0) is a weak effi-
cient solution of (P2). We now check that condition
(2) holds. In fact, with e=1, T(x) = x is a linear opera-
tor satisfying T(D) K, then
L(x,T ) := F (x) + T (G(x)) =

[
0,x2] + [0, |x|] =[

0,x2 + |x|
]
.

For all y ∈ L(x,T ),x ∈ X , one gets
he

K(y− y0) := in f {t ∈ R|y ∈ te−K}
= in f

{
t ∈ R|[0,x2 + |x|] ∈ t −K

}
= x2 + |x| ≥ 0.

CONCLUSIONS
In the paper, we first recall the Gerstewitz scalar func-
tion and its basic properties. Via this function, op-
timality conditions for some kinds of optimization
problems are established concerning Pareto efficient/
weak efficient solutions.
In set-valued optimization, we have several kinds
of solutions, such as: Geoffrion efficient solution10,
Borwein efficent solution11, Benson efficient solu-
tion12 ... They have been studied in some recent re-
sults13,14. Thus, for the possible development, we
think that giving optimality conditions for the above-
mentioned solutions may be a promising approach.
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