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ABSTRACT
In the following paper, the symmetric strong vector quasi-equilibrium problems will be studied
thoroughly. Afterward, the existence conditions of solution sets for these problems has been es-
tablished. The results which are presented in this paper improve and extend the main results men-
tioned in the literature. Our results can be illustrated by some interesting examples.
In 1994, Noor and Oettli introduced the following the symmetric scalar quasi-equilibrium problem.
This problem is one of the generalization of the symmetric scalar quasi-equilibrium problemwhich
is presented by Noor and Oettli. Since then, the symmetric vector quasi-equilibrium problem has
been investigated by a huge number of authors in different ways.
The research works mentioned above are one of our motivation to improve and extend the prob-
lem. So, in this paper, we will introduce the vector quasi-equilibrium problems. Afterward, some
existence conditions of solution sets for these problems will be established. The symmetric vec-
tor quasi-equilibrium problems consist of many optimization - related models namely symmet-
ric vector quasi-variational inequality problems, fixed point problems, coincidence-point problems
and complementarity problems, etc. In recent years, a lot of results for existence of solutions for
symmetric vector quasi-equilibrium problems, vector quasi-equilibrium problems, vector quasi-
variational inequality problems and optimization problems have been established bymany authors
in different ways.
We will present our work in the following steps. In the first section of our paper, we will introduce
the model of symmetric vector quasi-equilibrium problems. In the following section, we recall
definitions, lemmas which can be used for the main results. In the last section, we will establish
some conditions for existence and closedness of the solutions set by applying fixed-point theorem
for symmetric vector quasi-equilibrium problems.
The results presented in this paper improve and extend the main results in the literature. Some
examples are given to illustrate our results. Hence our results, Theorem 3.1 and Theorem 3.6 have
significant improvements.
Key words: Symmetric generalized quasi-equilibrium problems, Kakutani-Fan-Glicksberg fixed-
point theorem, Closedness

INTRODUCTION
In 1994, Noor and Oettli1 presented the follow-
ing the symmetric scalar quasi-equilibrium problem
which consists of finding (x,y) ∈ A×B such that _

x ∈
S(

_
x,

_
y),

_
y ∈ T (

_
x,

_
y)

and
f (x,

_
y)≥ f (

_
x,

_
y) , f or all x ∈ S (

_
x,

_
y) ,

g(
_
x,y)≥ g(

_
x,

_
y) , f or all y ∈ T (

_
x,

_
y) ,

where X, Y are real locally convex Hausdorff topolog-
ical vector spaces and A ⊂ X ,B ⊂ Y are non-empty
sets, S : A×B⇒A, T : A×B⇒B are set-valuedmap-
pings and f ,g : A×B → R are real functions.
In 2003, the symmetric vector quasi-equilibrium
problem (in short, (SVQEP)) has been introduced and
investigated by Fu2. LetX,Y andZ be real locally con-
vexHausdorff topological vector spaces, and letA⊂X,

B⊂Y be non-empty sets and C⊂Z be a closed convex
point cone with int C̸=∅, where int C denotes the in-
terior of C.
Let S : A×B ⇒ A, T : A×B ⇒ B be set-valued map-
pings and f,g:A×B−→Z be vector functions. Find
(x,y)∈ A×B such that x∈S(x,y ),y∈T(x,y) and
f (x,

_
y)− f (

_
x,

_
y) ̸∈ −intC, for all x ∈ S (

_
x,

_
y) ,

g(
_
x,y)−g(

_
x,

_
y) ̸∈ −intC, for all y ∈ T (

_
x,

_
y) .

The problem is one of the generalization of the sym-
metric scalar quasi-equilibrium problem byNoor and
Oettli1. Since then, many authors have studied the
symmetric vector quasi-equilibrium problem in dif-
ferent ways, see3,4 and the references therein.
In this paper, we will introduce the vector quasi-
equilibrium problems. Afterward, we will point out
some existence conditions of solution sets for these
problems. Now, we move on to our problem setting.
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Let X,Y,Z be real locally convex Hausdorff topologi-
cal vector spaces, A⊂X,B⊂Y be non-empty compact
subsets and C⊂Z be a closed convex point cone with
int C ≠ ∅, where int C denotes the interior of C. Let
K : A×B ⇒ A, T : A×B ⇒ B be multi-functions and
f : A×B×A → Z, g : B×A×B → Z
be vector functions. We will study the following sym-
metric vector quasi-equilibrium problems (in short,
(SQVEP).
(SQVEP): Find (

_
x,

_
y) ∈ A × B such that _

x ∈
S(

_
x,

_
y),

_
y ∈ T (

_
x,

_
y) and

f (
_
x,

_
y,x∗) ∈C,∀x∗ ∈ K(

_
x,

_
y),

g(
_
y,

_
x,y∗) ∈C,∀y∗ ∈ T (

_
x,

_
y),

We denote that Ω is the solution set of (SQVEP).
Note that the symmetric vector quasi-equilibrium
problems include many optimization - related mod-
els, for instance, symmetric vector quasi-variational
inequality problems, vector quasi-equilibrium prob-
lems, variational inequality problems, Nash equilib-
ria problems, fixed point problems, coincidence-point
problems and complementarity problems, etc. In re-
cent years, a lot of results for existence of solutions for
symmetric vector quasi-equilibrium problems, vector
quasi-equilibrium problems, vector quasi-variational
inequality problems and optimization problems have
been established by many authors in different ways.
For more details on this topic, we refer the readers
to3–5 and the references therein.
Our paper is presented in the following way. Firstly,
we introduce the model symmetric vector quasi-
equilibrium problems. Secondly, we recall defini-
tions, lemmas which can be used to proof the main
theorem. Lastly, we establish some existence and
closedness theorems by using fixed-point theorem for
symmetric vector quasi-equilibrium problems.

PRELIMINARIES
In this section, we recall some basic definitions and
some of their properties.
Definition 2.16 Let X,Y be two topological vector
spaces, A be a nonempty subset of X and F : A ⇒ Y
be a multi-function.
a) F is said to be lower semi-continuous (lsc) at x0 ∈ A
if F(x0) ∩ U ̸= ∅ for some open set U⊂Y implies the
existence of a neighborhood N of x0 such that F(x) ∩
U ̸=∅, ∀ x ∈ N.
b) F is said to be lower semi-continuous in A if it is
lower semicontinuous at all x0 ∈ A.
c) F is said to be upper semi-continuous (usc) at x0 ∈A
if for each open setU⊃F(x0), there is a neighborhood
N of x0 such that

U ⊃ F(x), ∀x ∈ N

d) F is said to be upper semi-continuous in S if it is
upper semicontinuous at all x0 ∈ A.
e) F is said to be continuous in A if it is both lsc and
usc in A.
f) F is said to be closed if

Graph(F) = {(x,y) : x ∈ A,y ∈ F (x)}

is a closed subset in A×Y.
Lemma 2.17Let X,Y be two topological vector spaces,
A be a nonempty convex subset of X and F : A ⇒ Y be
a multifunction.
a) If F is upper semicontinuous at x0 ∈ A with closed
values, then F is closed at x0 ∈ A.
b) If F is closed at x0 ∈ A and Y is compact, then F is
upper semi-continuous at x0 ∈ A.
c) If F has compact values, then F is usc at x0 ∈A if and
only if, for each net {xα} ⊆ A which converges to x0 ∈
A and for each net {yα} ⊆ F(xα ), there are y0 ∈ F(x0)
and a subnet {yβ } of {yα} such that yβ −→y0.
Definition 2.2 8 LetX andZ be two topological vector
spaces and A⊆X be non-empty convex set, C⊂Z is a
nonempty closed convex cone. Suppose f:A−→Z be a
vector function. f is called properly C-quasi-convex
in A if and only if, for every x1 , x2 ∈ A and each λ ∈
[0,1], we have

either f (λx1 +(1−λ )x2)≤ f (x1) ,

or f (λx1 +(1−λ )x2)≤ f (x2) .

Definition 2.37 Let X and Z be two topological vec-
tor spaces and A⊆X be nonempty convex set, C⊂Z is
a non-empty closed convex cone. Amapping f:A−→Z
is calledC-continuous at x0 ∈A if, for any open neigh-
borhood V of 0 in Z, there exists an open neighbor-
hood U of x0 in A such that

f (x) ∈ f (x0)+V +C,∀x ∈U ∩A,

and C-continuous in A if it is C -continuous at every
point of A.
Lemma 2.29Let A be a nonempty convex compact sub-
set of Hausdorff topological vector space X and M be a
subset of A×A such that
a) for each at x ∈ A,(x,x) ̸∈M;
b) for each at y ∈ A, the set {x ∈ A: (x,x) ∈M} is open
in A;
c) for each at x ∈ A, the set {y ∈ A:(x,x) ∈M} is convex
or empty.
Then, there exists x0 ∈ A such that (x0,y) ̸∈M for all y
∈ A.
Lemma 2.310Let A be a non-empty compact convex
subset of a locally convex Hausdorff vector topological
space X. If F : A ⇒ A is upper semi-continuous and for
any x ∈ A, F(x) is non-empty, convex and closed, then
there exists x∗∈ A such that x∗∈ F(x∗).
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MAIN RESULTS
In this section, we establish some existence theorems
of solution sets for (SQVEP).
Definition 3.1 Let X,Y,Z be topological vector spaces
and C⊂Z be a closed convex point cone with int C
̸= ∅, where int C denotes the interior of C. Suppose
h:X,Y,X−→Z be a vector function. h is said to be
strongly C-quasiconvex (with respect to the first vari-
able) in a set A⊂X, if for each y ∈ Y, z ∈ X and ∀x1,x2

∈A, ∀λ ∈ [0,1], h(x1,y,z)∈C and h(x2,y,z)∈C.Then,
it follows that

h(λx1 +(1−λ )x2,y,z) ∈C.

Theorem 3.1 Suppose that for the problem (SQVEP)
that
i) K and T are continuous in A×B with non-empty
compact convex values;
ii) for all (x,y) ∈ A×B, f(x,y,x) ∈ C and g(x,y,x) ∈ C
iii) the set {(y,x∗)∈ B×A: f(.,y,x∗) ̸∈ C} is convex in A
and the set
{(x,y∗) ∈ A×B: g(.,x,y∗) ̸∈ C} is convex in B;
iv) for all (y,x∗) ∈ B×A, f(.,y,x∗) is strongly C-
quasiconvex in A, and for all (x,y∗)∈ A×B, g(.,x,y∗) is
strongly C-quasi-convex in B;
v) the set
{(x,y,x∗)∈A×B×A: f(x,y,x∗)∈C} is closed, and the set
{(y,x,y∗) ∈ B×A×B: g(y,x,y∗) ∈ C} is closed.
Then, the (SQVEP) has a solution, i.e., there exists (x,y)
∈ A×B such that x ∈ S(x,y ), y∈ T(x,y ) and

f (
_
x,

_
y,x∗) ∈C,∀x∗ ∈ K (

_
x,

_
y) ,

g(
_
y,

_
x,y∗) ∈C,∀y∗ ∈ T (

_
x,

_
y) ,

Moreover, the solution set of the (SQVEP) is closed.
Proof. For all (x,y) ∈ A×B, define mappings: Π1 : A×
B ⇒ A and Π2 : A×B ⇒ B by

Π1 (x,y) =

{
a ∈ K(x,y) : f (a,y,x∗) ∈C,

∀x∗ ∈ K(x,y)

}
,

and

Π2 (x,y) =

{
b ∈ T (x,y) : g(b,y,x∗) ∈C,

∀y∗ ∈ T (x,y)

}
,

Firstly, we will show that Π1 (x,y) and Π2 (x,y) are
non-empty.
Indeed, for all (x,y)∈A×B, K(x,y) is non-empty com-
pact convex set. Setting

M =

{
(a,x∗) ∈ K(x,y)×K(x,y) :

f (a,y,x∗) ̸∈ 0

}
(1) The condition (ii) we have, for any

a ∈ K(x,y),(a,a) ̸∈ M

(2)The condition (iii) implies that for any a ∈ K(x,y),
{x∗ ∈ K(x,y) : (a,x∗) ∈ M} is convex in K(x,y).
3) The condition (v), we have for any a ∈ K(x,y),
{x∗ ∈ K(x,y) : (a,x∗) ∈ M} is open in K(x,y).
By Lemma 2.2, there exists a∈K(x,y) such that (a,x∗)
̸∈M for all x∗ ∈ K(x,y), i.e.,

f (a,y,x∗) ∈C,∀x∗ ∈ K(x,y).

ThusΠ1 (x,y) =∅. Similarly, we also haveΠ2 (x,y)=
∅.
Secondly, we will prove that Π1 (x,y) and Π2 (x,y) are
non-empty convex sets.
Let a1,a2 ∈ Π1 (x,y) and α ∈ [0,1] and let a =

αa1 + (1 − α)a2. Since a1,a2 ∈ K(x,y) and K(x,y)
is a convex set, we have a ∈ K(x,y). Thus, for a1,a2 ∈
Π1 (x,y), it follows that

f (a1,y,x∗) ∈C,∀x∗ ∈ K(x,y),

and

f (a2,y,x∗) ∈C,∀x∗ ∈ K(x,y).

By (iv), f(.,y,x∗) is strongly C-quasi-convex.

f (ta1 +(1− t)a2,y,x∗) ∈C, for all t ∈ [0,1] ,

i.e. a ∈ Π1 (x,y). Therefore, Π1 (x,y) is convex.
Similarly, we have Π2 (x,y) is convex.
Thirdly, we will proof that Π1 and Π2 are upper semi-
continuous in A×B with non-empty compact values.
Firstly, wewill show thatΠ1 is upper semi-continuous
inA×Bwith nonempty compact values. Indeed, since
A is a compact set, by Lemma 2.1(ii), then we will
show that Π1 is a closed mapping. Indeed, let a net

{(xα ,yα ) : α ∈ I} ⊂ A×B

such that

(xα ,yα )→ (x,y) ∈ A×B

and let aα ∈ Π1 (xα ,yα ) such that aα −→ a0. Now
we need to show that a0 ∈ Π1 (x,y). Since aα ∈
K (xα ,yα ) and K is upper semi-continuous with
non-empty compact values, hence K is closed, thus,
we have a0 ∈ K (x,y). Suppose the contrary a0 ̸∈
Π1 (x,y). Then, there exists x∗0 ∈ K (x,y) such that

f
(
a0,y,x∗0

)
̸∈C. (3.1)

By the lower semi-continuity of K, there is a net {x∗α}
such that x∗α ∈ K (xα ,yα ), x∗α → x∗0. Since aα ∈
Π1 (xα ,yα ), we have

f (aα ,yα ,x∗α ) ∈C. (3.2)
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By the condition (v) and (3.2), we have

f
(
a0,y,x∗0

)
∈C. (3.3)

This is the contradiction between (3.1) and (3.3). Thus
a0 ∈ Π1 (x,y). Hence, Π1 is upper semi-continuous
inA×Bwith nonempty compact values. Similarly, we
also have Π2 is upper semi-continuous in A×B with
non-empty compact values.
Next, we need to prove the solutions set Ω ≠∅.
Define the set-valued mappings
Φ1 : A×B ⇒ A×A and Φ2 : A×B ⇒ B×B by

Φ1(x,y) = (Π1(x,y),K(x,y)),∀(x,y) ∈ A,B

and

Φ2(x,y) = (Π2(x,y),K(x,y)),∀(x,y) ∈ A,B

ThenΦ1, Φ2 are upper semi-continuous and∀(x,y)∈
A×B, Φ1(x,y) and Φ2(x,y) are non-empty compact
convex subsets of A×B.
Define the set-valued mapping

H : (A×B)× (A×B)⇒ (A×A)× (B×B)

by

H((x,y),(x,y)) = (Φ1(x,y),Φ2(x,y))

Then H is also upper semi-continuous and ∀(x,y) ∈
A×B, H((x,y),(x,y)) is a nonempty closed convex
subset of (A×B)×(A×B).
By Lemma 2.3, there exists a point ((x̂, ŷ) ,(x̂, ŷ)) ∈
(A×B)× (A×B)
such that

((x̂, ŷ) ,(x̂, ŷ)) ∈ H ((x̂, ŷ) ,(x̂, ŷ))

that is

((x̂, ŷ) ,(x̂, ŷ)) ∈ Φ1 (x̂, ŷ) , (x̂, ŷ) ∈ Φ2 (x̂, ŷ)

which implies that x̂ ∈ Π1 (x̂, ŷ), ŷ ∈ K (x̂, ŷ) and x̂ ∈
Π2 (x̂, ŷ), ŷ ∈ T (x̂, ŷ). Hence,

x̂ ∈ K (x̂, ŷ) , ŷ ∈ T (x̂, ŷ)

and

f (x̂, ŷ,x∗) ∈C, ∀x∗ ∈ K (x̂, ŷ) ,

and

g(ŷ, x̂,y∗) ∈C, ∀y∗ ∈ T (x̂, ŷ) ,

i.e., (SQVEP) has a solution.
Finally, we prove that Ω is closed. Indeed, let a net
{(xα ,yα ),α ∈ I} ⊂ Ω : (xα ,yα ) −→ (x0,y0). We

need to prove that (x0,y0) ∈ Ω . Indeed, by the lower
semi-continuity of K and T, for any

x0 ∈ K (x0,y0) , y0 ∈ T (x0,y0) ,

there exist xα ∈ K(xα ,yα ), yα ∈ T (xα ,yα ) such that
xα −→ x0, yα −→ y0. Since (xα ,yα ) ∈ Ω, we have
xα ∈ K(xα ,yα ), yα ∈ T (xα ,yα ) such that

f (xα ,yα ,x∗α ) ∈C,∀x∗α ∈ K (xα ,yα ) ,

and

g(yα ,xα ,y∗α ) ∈C,∀y∗α ∈ T (xα ,yα ) .

Since K,T are upper semi-continuous in A×B with
nonempty compact values. There exist x∗0 ∈ K(x0,y0)

and y∗0 ∈ T (x0,y0) such that x∗α −→ x∗0, y∗α −→ y∗0
(taking subnets if necessary). By the condition (v) and

(xα ,yα ,x∗α ,y
∗
α )→ (x0,y0,x∗0,y

∗
0) ,

we have

f (x0,y0,x∗0) ∈C,∀x∗0 ∈ K (x0,y0) ,

and

g(y0,x0,y∗0) ∈C,∀y∗0 ∈ T (x0,y0) .

This means that (x0,y0) ∈ Ω. Thus Ω is a closed set.
Remark 3.2 If K(x,y) = K(x), T (x,y) =

T (x), g(y,x,y∗) = f (x,y,x∗) with x ∈ A,
y ∈ A, x∗ ∈ A, y∗ ∈ B. Then, (SQVEP) will be
the strong vector quasi-equilibrium problem which
was studied in 11. Hou et al.11 also obtained an
existence result for strong vector quasi-equilibrium
problem. However, the assumptions and proof
methods of Theorem 3.1 in11 are new and different
from that in Theorem 3.1.
By the following example, we show that in the spe-
cial case as Remark 3.2, all the assumptions of Theo-
rem 3.1 are satisfied. But, Theorem 3.1 in 11 we can-
not apply these conditions. It is because f is not (-C)-
continuous.
Example 3.3 Let X =Y = Z = R, A = B = [0,2] ,C =

R+

and let

K : A×B ⇒ A, T : A×B ⇒ B

and

f : A×B×A → Z, g : B×A×B → Z

be defined by

K (x,y) = T (x,y) = [0,2] ,

SI61



Science & Technology Development Journal – Engineering and Technology, 3(SI3):SI58-SI62

f (x,y,x0) = g(y,x,y0)

=

{
[0,2] , if x0 = y0 =

3
2 ,

[3,4] otherwise.

Weshow that all assumptions ofTheorem3.1 are satis-
fied. However, f is not (−C)-continuous at x0 = y0 =
3
2 .

Thus, it gives case where Theorem 3.1 can be applied
but Theorem 3.1 in 11 does not work.
Remark 3.4 If we let

f (x,y,x∗) = f (x∗,y)− f (x,y) ,
g(y,x,y∗) = g(x,y∗)−g(x,y)

with x ∈ A, y ∈ A, x∗ ∈ A, y∗ ∈ B and replace C by
Z-int C. Then, (SQVEP) will be changed to symmet-
ric vector quasi-equilibriumproblemwhich is studied
in2. In2 Fu obtained an existence result for symmet-
ric vector quasi-equilibrium problem. However, the
assumptions and proof methods of Theorem in2 are
also new and different from that in Theorem 3.1.
In the following example, we show that in the special
case as Remark 3.4, all the assumptions of Theorem
3.1 are satisfied. But, Theorem 3.1 in 11 and Theorem
in2 can not be applied.
Example 3.5 Let X =Y = Z = R, A = B = [0,3] ,C =

R+

and let

K : A×B ⇒ A, T : A×B ⇒ B

and

f : A×B×A → Z, g : B×A×B → Z

be defined by

K(x,y) = T (x,y) = [0,3] ,

f (x,y,x0) = g(y,x,y0)

=

{
[0,2] , if x0 = y0 =

1
4 ,[

0, 1
3
]

otherwise.

Weshow that all assumptions ofTheorem3.1 are satis-
fied. However, f is neither C-continuous nor properly
C-quasi-convex at x0 = y0 = 1/4. Therefore,Theorem
3.1 can be applied butTheorem 3.1 in11 andTheorem
in2 do not work.
Theorem 3.6 Suppose that for the problem (SQVEP)
assumptions (i), (ii), (iii) and (iv) as in Theorem 3.1
and the condition (v) can be replaced by the following
condition:
(v’) f and g are continuous.
Then, the (SQVEP) has a solution, i.e., there exists (x,y)
∈ A×B such that

_
x ∈ K(

_
x,

_
y),

_
y ∈ T (

_
x,

_
y)

and
f (

_
x,

_
y,x∗) ∈C,∀x∗ ∈ K(

_
x,

_
y),

g(
_
y,

_
x,x∗) ∈C,∀y∗ ∈ T (

_
x,

_
y).

Moreover, the solution set of the (SQVEP) is closed.
Proof. Weomit the proof since the technique is similar
as that for Theorem 3.1 with suitable modifications.

CONCLUSION
The results presented in this paper improve and ex-
tend the main results in the literature. Some exam-
ples are given to illustrate our results. Hence our re-
sults, Theorem 3.1 and Theorem 3.6 have significant
improvements.
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