Copen Access Full Text Article

Necessary optimality conditions in nonsmooth semi-infinite multiobjective optimization under metric subregularity

Nguyen Dinh Huy¹, Cao Thanh Tinh², Nguyen Minh Tung^{3,*}, Cao Thi Be Oanh⁴

Use your smartphone to scan this QR code and download this article

¹University of Technology, VNU-HCM, Vietnam

²University of Information Technology, VNU-HCM, Vietnam

³University of Science, VNU-HCM, Vietnam

⁴Can Tho University of Technology, Vietnam

Correspondence

Nguyen Minh Tung, University of Science, VNU-HCM, Vietnam

Email: nmtung@hcmus.edu.vn

History

- Received: 04-12-2019
- Accepted: 28-12-2020

• Published: 31-12-2020

DOI : 10.32508/stdjet.v3iSI3.637

Check for updates

Copyright

© VNU-HCM Press. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

ABSTRACT

We consider nonsmooth semi-infinite multiobjective optimization problems under mixed constraints, including infinitely many mixed constraints by using Clarke subdifferential. Semi-infinite programming (SIP) is the minimization of many scalar objective functions subject to a possibly infinite system of inequality or/and equality constraints. SIPs have been proved to be very important in optimization and applications. Semi-infinite programming problems arise in various fields of engineering such as control systems design, decision-making under competition, and multi-objective optimization. There is extensive literature on standard semi-infinite programming problems. The investigation of optimality conditions for these problems is always one of the most attractive topics and has been studied extensively in the literature. In our work, we study optimality conditions for weak efficiency of a multi-objective semi-infinite optimization problem under mixed constraints including infinitely many of both equality and inequality constraints in terms of Clarke sub-differential. Our conditions are the form of the Karush-Kuhn-Tucker (KKT) multiplier. To the best of our knowledge, only a few papers are dealing with optimality conditions for SIPs subject to mixed constraints. By the Pshenichnyi-Levin-Valadire (PLV) property and the directional metric sub-regularity, we introduce a type of Mangasarian-Fromovitz constraint qualification (MFCQ). Then we show that (MFCQ) is a sufficient condition to guarantee the extended Abadie constraint gualification (ACQ) to satisfy. In our constraint qualifications, all functions are nonsmooth and the number of constraints is not necessarily finite. In our paper, we do not need the involved functions: convexity and differentiability. Later, we apply the extended Abadie constraint qualification to get the KKT multipliers for weak efficient solutions of SIP. Many examples are provided to illustrate some advantages of our results. The paper is organized as follows. In Section Preliminaries, we present our basic definitions of nonsmooth and convex analysis. Section Main Results prove necessary conditions for the weakly efficient solution in terms of the Karush-Kuhn-Tucker multiplier rule with the help of some constraint qualifications.

Key words: Optimality condition, SIP, constraint qualification, weak efficiency, metric subregularity

INTRODUCTION

Semi-infinite optimization (SIP) is the simultaneous minimization of finitely many scalar objective functions under an arbitrary set of inequality constraints or/and equality constraints. (SIPs) arise in many fields of applied mathematics such as robotics, control system design, etc, see for instance ^{1–3}. Investigation of optimality conditions for SIPs has been considered extensively in the literature.

With linear semi-infinite systems, Goberna⁴ introduced he Farkas-Minkowski property, Puenten and Vera⁵ proposed the local Farkas-Minkowski property and used it as a constraint qualification to get Lagrange multipliers. For convexsemi-infinite optimization, many constraint qualifications have been studied in Lopez and Vercher⁶. With the help of the Abadie constraint qualification, optimality conditions for semi-infinite systems of convex and linear

inequalities were developed in Li7. For smooth problems, Stein⁸ proposed the Abadie and Mangasarian-Fromovitz constraint qualifications to conisder optimality conditions. By employing variational analysis, Mordukhovich and Nghia⁹ obtained necessary conditions under the extended perturbed Mangasarian-Fromovitz and Farkas--Minkowski constraint qualification. For nonsmooth problem with inequality constraints, Zheng and Yang¹⁰ employed the directional derivative to obtain Lagrange multiplier rules. Kanzi and Nobakhtian^{11,12} introduced several nonsmooth analogues of the Abadie constraint qualification and the Pshenichnyi-Levin-Valadire property and applied them to obtain optimality conditions. Chuong¹³ proposed the limiting constraint qualification in terms of the Mordukhovich subdifferential and applied it to optimality conditions. Kanzi¹⁴ investigated nonsmooth semi-infinite problems with mixed constraints by the Michel-Penot subdifferential. We observe that

Cite this article : Huy N D, Tinh C T, Tung N M, Oanh C T B. **Necessary optimality conditions in non-smooth semi-infinite multiobjective optimization under metric subregularity**. *Sci. Tech. Dev. J. – Engineering and Technology;* 3(SI3):SI52-SI57.

the constraints in the above mentioned papers contain finitely many equalities. There are very few publications dealing with infinitely many equality constraints.

In this paper we investigate opyimality conditions for weak efficiency of a multiobjective semi-infinite optimization problem under mixed constraints including infinitely many of both equality and inequality constraints in terms of Clarke subdifferential. By the Pshenichnyi-Levin-Valadire (PLV) property and the directional metric subregularity, we propose Mangasarian-Fromovitz constraint qualification (MFCQ) to guarantee the extend Abadie constraint qualification (ACQ) to satisfy. In our constraint qualifications, all functions are nonsmooth and the number of the equality constraints is not necessary finite. Then, we apply them to get the KKT multipliers. The paper is organized as follows. In Section Prelininaries, we present our basic definitions. Section Main results prove necessary conditions for weak efficiency in terms of Karush-Kuhn-Tucker multiplier under some constraint qualification.

RELIMINARIES

 \mathbb{N}, \mathbb{R}^n and \mathbb{R}^n_+ stand for the set of the natural numbers, a n-dimensional vector space and its nonnegative orthant, respectively (resp). B(x,r) denotes the open ball with centre x and radius r. For $M \subset \mathbb{R}^n$, intM, clM, bdM and coM stand for its interior, closure, boundary, and convex hull of M, resp. The cone hull of M is defined by $coneM := \{\lambda x ???, x \in M\}$. The contingent cone of $M \subset \mathbb{R}^n$ at $\bar{x} \in clM$ is

 $T(M,\bar{x}) := \{ d \in \mathbb{R}^n, t_n \mid 0 \to 0^+, \exists d_n \to d, \\ \bar{x} + t_n d_n \in M, \forall n \in \mathbb{N} \}.$

A map $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz at $x_0 \in \mathbb{R}^n$ if there is a neighborhood U of x_0 and a real number $x_0 \in \mathbb{R}^n$ such that

 $\begin{aligned} ||f(x) - f(y)|| &\leq L ||x - y||, \forall x, y \in U. \\ \text{A set-valued map } F : \mathbb{R}^n \to 2^{\mathbb{R}^m} \text{ is concave if} \\ \forall a, b \in \mathbb{R}^n, \forall \lambda \in [0, 1], \\ \lambda F(a) + (1 - \lambda) F(b) \subseteq F(\lambda a + (1 - \lambda) b). \end{aligned}$ Definition 2.1. (¹⁵)

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0, d \in \mathbb{R}^n$. The Clarke directional derivative of *f* at x_0 in direction *d* is

 $f^0(x_0, d) := \limsup_{x \to x_0, t \to 0^+} \frac{f(x+td) - f(x)}{t}$ and the Clarke subdifferential of f at x_0 is

 $\partial_C f(x_0) :=$

 $\begin{cases} x^* \in \mathbb{R}^n \ ??f^0(x_0, d) \ge \langle x^*, d \rangle, \forall d \in \mathbb{R}^n \end{cases} .$ Recall that the directional of f at x_0 in direction d is $f'(x_0, d) := \limsup_{t \to 0^+} \frac{f(x_0 + td) - f(x_0)}{t}$ $f \text{ is regular at } x_0 \text{ if } f^0(x_0, d) = f'(x_0, d) ..$

The following properties will be useful in the sequel $(^{15})$.

Proposition 2.1

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz at $x_0 \in \mathbb{R}^n$ and $d \in \mathbb{R}^n$.

(i) $d \mapsto f^0(x_0, d)$ is finite, positivel homogeneous and subadditive on \mathbb{R}^n , and $\partial \left(f^0(x_0, \cdot)(0) = \partial_C f(x_0)\right)$, where ∂ denotes the subdifferential in the sense of convex analysis.

(ii) $\partial_C f(x_0)$ is a nonempty, convex and compact subset of \mathbb{R}^n and, for every

 $d \in \mathbb{R}^n, f^0(x_0, d) = max_{x^* \in \partial_C f(x_0)} \langle x^*, d \rangle.$

(iii) $\partial_C (f+g)(x_0) \subseteq \partial_C f(x_0) + \partial_C g(x_0)$. If in addition both *f* and *g* are regular at x_0 , then the equality holds.

(iv) If x_0 is a local minimum of f, then $0 \in \partial_C f(x_0)$. Besides single-valued directional derivatives, we need the following set-valued directional derivatives.

Definition 2.2

The Hadamard set-valued directional derivative of f: $\mathbb{R}^n \to \mathbb{R}$ at $x_0 \in \mathbb{R}^n$ in direction $d_0 \in \mathbb{R}^n$ is

$$Df(x_0, d) := \{ y \in \mathbb{R}^m ? : t_n \to 0^+, \exists d_n \to d_n \}$$

$$y = \lim_{n \to \infty} t_n^{-1} (f(x_0 + t_n d_n) - f(x_0)) \}$$
Definition 2.3 (¹⁶)

 $f : \mathbb{R}^n \to \mathbb{R}, x_0 \in \mathbb{R}^n$, and $y_0 = f(x_0)$, f is said to bedirectionally metrically subregular at x_0 in direction dif there are a neighborhood U of $x_0, a \ge 0$, and r > 0, for $t \in (0, r)$ and $v \in B_X(d, r)$, $d(x_0 + tv, f^{-1}(y_0)) \le$ $ad(y_0, f(x_0 + tv))$.

Proposition 2.2

 $f : \mathbb{R}^n \to \mathbb{R}, x_0 \in \mathbb{R}^n$, and $y_0 = f(x_0)$. If $0 \notin Df(x_0)(d)$ then f is directionally metrically subregular at x_0 in direction d.

Proof. Suppose there are $t_n \rightarrow 0$ and $d_n \rightarrow d$ such that, for all n,

 $\begin{aligned} d\left(x_{0}+t_{n}d_{n},f^{-1}\left(y_{0}\right)\right) &> nd(y_{0},f\left(x_{0}+t_{n}d_{n}\right)). \text{ Then,} \\ \text{there exists } y_{n} &= f\left(x_{0}+t_{n}d_{n}\right) \text{ such that} \\ ||y_{n}-y_{0}|| &< n^{-1} ||(x_{0}+t_{n}d_{n})-x_{0}||, \\ t_{n}^{-1} ||y_{n}-y_{0}|| &< n^{-1} ||d_{n}||. \end{aligned}$

By setting $v_n = t_n^{-1}(y_n - y_0)$, one has $v_n \to 0$ and $y_0 + t_n v_n = f(x_0 + t_n d_n)$, i.e., $0 \in Df(x_0)(d)$, which contradicts the assumption. \Box

The following example present that the sufficient condition given in Proposition 2.2 is not necessary.

Example 2.1 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

 $f(x_1, x_2) = |x_1 - x_2|$ and $d_1 = (1, 0)$. We can check that $0 \notin Df(0)(d_1) = \{1\}$, hence the assumption of Proposition 2.2 is fulfilled. By calculations, we have that

$$d(tv, f^{-1}(0)) = 2^{-1/2}t |v_1 - v_2|,$$

$$d(0, f(tv)) = t |v_1 - v_2|$$

for $v = (v_1, v_2) \in \mathbb{R}^2$ and $t \in \mathbb{R}_+$ with $tv \notin f^{-1}(0)$. Then, for r > 0, $t \in (0, r)$, and $v \in B(d_1, r)$, $\frac{t}{\sqrt{2}} |v_1 - v_2| \le t |v_1 - v_2|$, *i.e.*, $d(tv, f^{-1}(0)) \le d(0, f(tv))$.

Hence, *f* is directionally metrically subregular at 0 in direction d_1 in Proposition 2.2. Now we replace d_1 by $d_2 = (1, 1)$. Similarly, we check that the above inequality holds for r > 0, $t \in (0, r)$, and $v \in B(d_2, r)$. However, $0 \in Df(0,0)(d_2) = \{0\}$..

MAIN RESULTS

We investigate the fmultiobjective semi-infinite optimization problem under mixed constraints:

(P) $\min_{\pm}^{\mathbb{R}^m_+}$ s.t. $\begin{cases} g_i(x) \le 0, \ i \in I \\ h_j(x) \le 0, \ j \in J \end{cases}$

where $f := (f_1, ..., f_m) : \mathbb{R}^n \to \mathbb{R}^m$, $g_i : \mathbb{R}^n \to \mathbb{R}$ for $i \in I$, and $h_j : \mathbb{R}^n \to \mathbb{R}$ for $j \in J$, are locally Lipschitz. The index sets *I* and *J* are arbitrary. The feasible set of problem (P) is

$$\Omega := \left\{ x \in \mathbb{R}^n \right\} \left\{ \begin{array}{l} g_i(x) \leq 0, \ i \in I \\ h_j(x) \leq 0, \ j \in J \end{array} \right\}.$$

Definition 3.1 For the problem (P) and $x_0 \in \Omega$. x_0 is called a local weak efficient solution of (P), written as $x_0 \in LW(P)$, if there is a neighborhood *U* of x_0 such that

 $(f(U \cap \Omega) - f(x)) \cap (-\operatorname{int} \mathbb{R}^m_+) = \varnothing.$ We denote $I(x_0) := \{i \in I?g_i(x_0) = 0\}$ and

$$\left\{ d \in X? \left\{ \begin{aligned} g_i^0(x_0, d) &\leq 0, \forall i \in I(x_0) \\ h_i^0(x_0, d) &= 0, \forall j \in J(x_0) \end{aligned} \right\} \right\},$$

 $G(x) := \sup_{i \in I} g_i(x), \qquad H(x)$ $\sup_{j \in J} \max \left\{ h_j(x), -h_j(x) \right\}.$

Definition 3.2 (⁵) The Pshenichnyi-Levin-Valadire (PLV) property holds at $x_0 \in \Omega$ with respect to (wrt) *G* iff *G* is locally Lipschitz around x_0 and $\partial_C G(x_0) \subset conv \bigcup_{i \in I(x_0)} \partial_C g_i(x)$.

:=

If I is finite and g_i are locally Lipschitz around x_0 for $i \in I$, obviously the problem (P) has the Pshenichnyi-Levin-Valadire (PLV) property at $x_0 \in \Omega$ wrt G. Sufficient conditions for G to be locally Lipschitz were considered ¹⁷.

Definition 3.3 For (P) and $x_0 \in \Omega$.

(i) The extended Abadie constraint qualification (ACQ) satisfies at x_0 if $L(\Omega, x_0) = T(\Omega, x_0)$.

(ii) The extend Mangasarian-Fromovitz constraint qualification (MFCQ) satisfies at x_0 if there exists \bar{d} such that

(a) $g_i^0(x_0, \bar{d}) < 0$ for all $i \in I(x_0)$;

(b) *H* is directionally metrically subregular at x_0 , $DH(x_0, \cdot)$ is concave on X, h_j is regular for all $j \in J$, and $0 \in DH(x_0, \overline{d})$.

Theorem 3.1 If (P) has the (PLV) property at $x_0 \in \Omega$ wrt G and the (MFCQ) satisfies at x_0 , then the (ACQ) satisfies at x_0 .

Proof. By the (MFCQ), there is \overline{d} such that $g_i^o(x_0,\overline{d}) < 0$ for all $i \in I(x_0)$. This implies that $\langle x^*,\overline{d} \rangle < 0, \forall x^* \in \bigcup_{i \in I(x_0)} \partial_C g_i(x),$

 $\langle x^*, \bar{d} \rangle < 0, \forall x^* \in conv(\bigcup_{i \in I(x_0)} \partial_C g_i(x)).$

By (PLV), one has $\langle x^*, \overline{d} \rangle < 0$ for all $x^* \in \partial_C G(x_0)$ and so $G_0\left(x_0, \overline{d}\right) < 0$. Then, $\limsup_{t \to 0^+} \frac{G^0(x_0 + t\overline{d}) - G(x_0)}{t} \leq G^0\left(x_0, \overline{d}\right) < 0$,

which implies there are eta and arepsilon such that

(1) $G\left(x_0+t\overline{d}\right) - G(x_0) < -t\beta, \forall t \in (0,\varepsilon)$. Besides, as $0 \in DH\left(x_0,\overline{d}\right)$, there exist $t_n \to 0^+, d_n \to \overline{d}$, and $z_n \to 0$ such that $t_n z_n \in H(x_0+t_n d_n)$. The metric subregularity of H gives $a \ge 0$ such that, for large n,

$$d(x_0 + t_n d_n, H^{-1}(0)) \leq ad(0, H(x_0 + t_n u_n)) \\\leq at_n ||z_n||.$$

Hence, there exist \overline{d}_n and ε with $t_n^{-1}\varepsilon_n \to 0^+$ such that $x_0 + t_n \overline{d} \in H^{-1}(0)$ and $||(x_0 + t_n u_n) - (x_0 + t_n \overline{u}_n)|| \le at_n ||z_n|| + \varepsilon_n$.

Then, $\overline{d}_n \to d$. Since $x_0 + t_n \overline{d}_n \in H^{-1}(0)$, one has, $max \left\{ h_j \left(x_0 + t_n \overline{d}_n \right), -h_j \left(x_0 + t_n \overline{d}_n \right) \right\} \leq 0$, Hence, for large n, (2) $h_j (x_0 + t_n \overline{d}_n) = 0, \forall j \in J$. From (1), one has , for large n, $G \left(x_0 + t_n \overline{d}_n \right) - G(x_0) < -t_n \beta$. Since G is locally Lipschitz at x_0 , there is L > 0 such

that, for large *n*, $G\left(x_{0} + t\overline{d}\right) = G\left(x_{0} + t\overline{d}\right) \leq It ||\overline{d} = \overline{d}||$

$$G\left(x_{0}+t\bar{d}_{n}\right)-G\left(x_{0}+t_{n}\bar{d}_{n}\right)\leq Lt_{n}\left|\left|\bar{d}_{n}-\bar{d}\right|\right|,$$

$$G\left(x_{0}+t\bar{d}_{n}\right)\leq G\left(x_{0}+t\bar{d}_{n}\right)+Lt_{n}\left|\left|\bar{d}_{n}-\bar{d}\right|\right|$$

$$< G\left(x_{0}\right)+t_{n}\left(-\beta+L\left|\left|\bar{d}_{n}-\bar{d}\right|\right|\right)\leq 0.$$

This implies that $g_i(x_0 + t\bar{d}_n) \leq 0$ for all $i \in I$. By combining this and (2), one has $x_0 + t\bar{d}_n \in \Omega$. Hence, $\bar{d} \in T(\Omega, x_0)$.

Let $d \in L(\Omega, x_0)$, we prove $d \in T(\Omega, x_0)$. Set $d_n = n^{-1}\overline{d} + (1 - n^{-1})d$ for $n \ge 2$. By Proposition 2.1, for all $i \in I(x_0)$ one has (3) $g_i^0(x_0, d_n) \le n^{-1}g_i^0(x_0, \overline{d}_n)$

 $(1-n^{-1})g_i^0(x_0,\bar{d}_n) < 0. \text{ Since } h_j \text{ is regular}$ at x_0 and $d \in L(\Omega, x_0)$, one gets for all $j \in J$, $h'_j(x_0,d) = h_j^0(x_0,d) = 0$ and

$$\lim_{t \to 0^+} \frac{h_j(x_0 + td) - h_j(x_0)}{t} = \lim_{t \to 0^+} \frac{h_j(x_0 + td)}{t} = 0.$$

there exists $t_n \rightarrow 0^+$ Then. such $\lim_{n \to \infty} \frac{\max\{h_j(x_0 + t_n d), -h_j(x_0 + t_n d)\}}{n} = 0.$ Hence, $0 \in DH(x_0, d).$ Because $DH(x_0, \cdot)$ is concave, $n^{-1}DH(x_0,\bar{d}) + (1-n^{-1})DH(x_0,d)$ $\in DH\left(x_0, n^{-1}\overline{d} + (1 - n^{-1})d\right).$ Hence, (4) $0 \in DH(x_0, d_n)$

that

From (3) and (4), similar to the above arguments, one has $d_n \in T(\Omega, x_0)$. As $d_n \to d$ and is a closed cone, $d \in T(\Omega, x_0).$

The proof is complete. \Box

Remark 3.1

Nonsmooth SIPs involving mixed constraints^{9,14}, the (MFCQ) was used to consider a number of equality constraints. In these paper, the functions were continuously differentiable with the linearly independent gradients such that $\langle \nabla f_j(x_0), \overline{d} \rangle = 0$ for $j \in J$. The inequality constraints were continuously differentiable and the equalities werestrictly differentiable. By employing directional metric subregularity, out (MFCQ) can be used to nonsmooth infinite mixed constraint systems and the condition $0 \in DH(x_0, \overline{d})$ can be applied in many cases ...

The next example provides a case where Theorem 3.1 can be employed, while many Mangasarian-Fromovitz-type constraint qualifications cannot. **Example 3.1** Let $g_i, h_i : \mathbb{R}^2 \to \mathbb{R}$ be defined by for $i \in$

$$\begin{aligned} & f_{N} \\ & g_{1}\left(x_{1}, x_{2}\right) = x_{1}, g_{2i+1}\left(x_{1}, x_{2}\right) = x_{1} - i^{-1}, \\ & g_{2}\left(x_{1}, x_{2}\right) = x_{2}, g_{2i+2}\left(x_{1}, x_{2}\right) = \\ & x_{2} - (1+i)^{-1}, h_{j}\left(x_{1}, x_{2}\right) = j\left(x_{1} - x_{2}\right), \ j \in (0, 1) \end{aligned}$$

Hence, $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 = x_2 \le 0\}.$ For $x_0 = (0,0)$, $I(x_0) = \{1,2\}$. We see that $G(x_1, x_2) = sup \{x_1, x_2\}, H(x_1, x_2) = |x_1 - x_2|$ are locally Lipschitz at x_0 and $\partial_C G(x_0) \subseteq$ $conv \bigcup_{i \in I(x_0)} \partial_C g_i(x)$. Thus, (P) has the (PLV) property at x_0 wrt G. Now, we check that the (MFCQ) is fulfilled at x_0 with $\overline{d} = (1, -1)$. For $i \in I(x_0), \ j \in J, \ g_i^0(x_0, \bar{d}) = -1 < 0, h_j$ is regular, $H(x_1, x_2) = |x_1 - x_2|$ and so H is directionally

metrically subregular at x_0 (by Example 2.1), $DH(x_0, (d_1, d_2)) = conv\{(d_1, -d_2); (-d_1, d_2)\}$ for all $(d_1, d_2) \in X$ and so $DH(x_0, \cdot)$ is concave, and $0 \in DH(x_0, \overline{d})$. Therefore, the (MFCQ) holds at x_0 . By Theorem 3.1, the (ACQ) holds at x_0 . (We can check the (ACQ) by direct calculations as follows. As $g_1^0(x_0,d) = d_1, g_2^0(x_0,d) = d_2$, and $h_i^0(x_0,d) =$ $j(d_1 - d_2)$, we have

 $L(\Omega, x_0) = T(\Omega, x_0) = \{ (d_1, d_2) \in \mathbb{R}^2 : d_1 = d_2 \le 0 \}$ and so (ACQ) holds. Because J infinite, the $(MFCQ)^{9,14}$ cannot be employed.

The following example shows the essentialness of the directional metric subregularity of H.

Example 3.2 Let g_i be the same as in Example 3.1 and $h_j(x_1, x_2) = j(x_1^2 - x_2^2), j \in (0, 1).$

Hence, $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 ? : \tau_1 = \tau_2 \leq 0\}$ and $I(x_0) = \{1, 2\}$ for $x_0 = (0, 0)$. Similar to Example 3.1, (P) has the (PLV) property at x_0 wrt G. We check that the (MFCQ) holds at x_0 for $\overline{d} = (1, -1)$. We have $g_i^0(x_0, \bar{d}) = -1 < 0$ for all $i \in I(x_0)$.

 h_j is regular, $j \in J$, $H(x_1, x_2) =$ $|x_1^2 - x_2^2|, DH(x_0, (d_1, d_2)) = \{0\}$ for $(d_1, d_2) \in X$ and so $DH(x_0, \cdot)$ is concave, and $0 \in DH(x_0, \overline{d})$. On the other hand, as $g_1^0(x_0, d) = 0$, $g_2^0(x_0, d) = d_2$, and $h_{i}^{0}(x_{0},d) = 0$, we have

$$L(\Omega, x_0) = \{ (d_1, d_2) \in \mathbb{R}^2 ? d_1 \le 0, d_2 \le 0 \}, T(\Omega, x_0) = \{ (d_1, d_2) \in \mathbb{R}^2 ? d_1 = 0, d_2 = 0 \}, L(\Omega, x_0) \neq T(\Omega, x_0).$$

The cause is that H is not directionally metrically subregular at x_0 . We have

 $d(tv, H^{-1}(0)) = 1/\sqrt{2}\min\{|v_1 + v_2|, |v_1 - v_2|\}$ and $d(0, H(tv)) = t^2 |v_1^2 - v_2^2|$ for $v = (v_1, v_2) \in \mathbb{R}^2$ and $t \in \mathbb{R}_+$ with $tv \notin H^{-1}(0)$. Then, the subregularity means that for any $a, r > 0, t \in (0, r)$, and $v \in B_x(\bar{d},r)$,

$$\frac{t}{\sqrt{2}}\min\{|v_1+v_2|, |v_1-v_2|\} \le at^2 |v_1^2-v_2^2|.$$

But, this does not hold.

Now, by employ the extend ACQ, we present a necessary optimality condition for weak efficiency of problem (P), as follows.

Theorem 3.2 Let x_0 be a local weak efficiency of (P). If the (ACQ) holds at x_0 , \triangle is closed, and f_k is regular and Lipschitz around x_0 , for k = 1, ...m, then there exist $(\alpha_1,...,\alpha_m) \in \mathbb{R}^m_+ \setminus \{0\}, \beta_i \geq 0$ for $i \in I(x_0)$, and $\gamma_i \geq 0$ 0 for $j \in J$ such that

 $0 \in \sum_{k=1}^{m} \alpha_k \partial_C f_k(x_0) + \sum_{i \in I(x_0)} \beta_i \partial_C g_i(x_0)$ $+\sum_{j\in J}\gamma_{j}\left(\partial_{C}h_{j}\left(x_{0}\right)\cup\partial_{C}\left(-h_{j}\right)\left(x_{0}\right)\right).$ Proof. Step 1. We claim that the system

$$\begin{cases} f_1^0(x_0, d) < 0, ..., f_m^0 < 0 \\ d \in T(\Omega, x_0) \end{cases}$$

has no solution. Suppose that there is $d \in T(\Omega, x_0)$ satisfying $f_t^0(x_0,d) \leq 0$ for all t = 1,2,...,m. By setting $y = (f_1^0(x_0, d), ..., f_m^0(x_0, d))$, one has $y \in$ $-int \mathbb{R}^{m}_{+}$. As $d \in T(\Omega, x_{0})$, there exist $t_{n} \to 0^{+}$ and $d_n \rightarrow d$ such that $x_0 + t_n d_n \in \Omega$ for all $n \in \mathbb{N}$. Since f_k is regular and locally Lipschitz at x_0 , one has $f_k(x_0+t_nd) - f_k(x_0)$

$$\lim_{n \to \infty} \frac{f_k(x_0 + t_n d_n) - f_k(x_0 + t_n d_n)}{t_n} = f_k^v(x_0, d),$$

$$\lim_{n \to \infty} \frac{f_k(x_0 + t_n d_n) - f_k(x_0 + t_n d)}{t_n} = 0,$$

$$\lim_{n \to \infty} \frac{f_k(x_0 + t_n d) - f_k(x_0)}{t_n} = \frac{f_k(x_0 + t_n d) - f_k(x_0 + t_n d_n)}{t_n}.$$

Hence,
$$\lim_{n \to \infty} \frac{f(x_0 + t_n d_n) - f(x_0)}{t_n} = y.$$

As $y \in -int \mathbb{R}^m_+$, for large *n*, one has $f(x_0 + t_n d_n) - t_n d_n$ $f(x_0) \in -int \mathbb{R}^m_+$, which is a contradiction. Therefore, the mentioned system has no solution. Step 2. From Step 1, by Theorem 3.13 in ¹⁸, we have $(\alpha_1, .., \alpha_m) \in \mathbb{R}^m_+$, such that $\sum_{k=1}^{m} \alpha_k f_k^0(x_0, d) \ge 0, \, \forall d \in T(\Omega, x_0).$ Because (ACQ) holds, one has (5) $\sum_{k=1}^{m} \alpha_k f_k^0(x_0, d) \ge 0, \forall d \in L(\Omega, x_0).$ Step 3. Denote $A = cone(conv(\triangle))$ and the indicator function of A^0 by δ_{A^0} . Then, (5) implies that $\sum_{k=1}^{m} \alpha_k f_k^0(x_0, d) \ge 0, \forall d \in \mathbf{A}^0.$ Because $0 \in A^0$ and $\sum_{k=1}^m \alpha_k f_k^0(x_0, 0) = 0$, $0 \in \operatorname{argmin}_{d \in X} \left\{ \sum_{k=1}^{m} \alpha_k f_k^0(x_0, d) + \delta_{A^0}(d) \right\}.$ By Proposition 2.1, $f_k^0(x_0, \cdot)$ is continuous and convex and A^0 is convex. Therefore (¹⁹), $0 \in \partial \left(\sum_{k=1}^{m} \alpha_k f_k^0(x_0, \cdot) + \delta_{A^0}(\cdot) \right) (0).$ By the sum rule of subdifferentials, one has (6) $0 \in \partial \left(\sum_{k=1}^{m} \alpha_k f_k^0(x_0, \cdot) \right)(0) + \partial \delta_{A^0}(\cdot)(0)$ Since $\partial f_k^0(x_0, \cdot)(0) = \partial_C f_k^0(x_0)$, one gets $\partial \left(\sum_{k=1}^{m} \alpha_k f_k^0(x_0, \cdot) \right)(0) = \sum_{k=1}^{m} \alpha_k \partial_k f_k(x_0).$ As \triangle is closed, by the bipolar theorem, one has $\partial \delta_{A^0}(0) = (A^0)^0 = A$. Hence, from (6), there exist $(\alpha_1, ..., \alpha_m) \in \mathbb{R}^m_+ \setminus \{0\}, \beta_i \ge 0$ for $i \in I(x_0)$, and $\gamma_i \geq 0$ for $j \in J$ such that $0 \in \sum_{k=1}^{m} \alpha_k \partial_k f_k(x_0) + \sum_{i \in I(x_0)} \beta_i \partial_C g_i(x_0) +$ $\sum_{j\in J} \gamma_j \left(\partial_C h_j \left(x_0 \right) \cup \partial_C \left(-h_j \right) \left(x_0 \right) \right).$ The proof is complete. \Box Example 3.3 Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f = (f_1, f_2)$ and $g_i, h_i : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f_1(x_1, x_2) = \begin{cases} x_1 + x_2 \text{ if } x_1 \ge 0, \\ x_1^2 + x_2 \text{ if } x_1 < 0, \end{cases} \quad f_2(x_1, x_2) = x_2,$ $g_1(x_1,x_2) = x_2, g_i(x_1,x_2) = x_1^2 x_2 - \frac{1}{i}, i \in \mathbb{N} \setminus \{1\},\$ $h_j(x_1, x_2) = jx_1^3 - x_1x_2, \ j \in (0, 1).$ Let $x_0 = (0,0)$. $I(x_0) = \{1\}$. By direct computations, one has $\Omega = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0 \},\$ $T(\Omega, x_0) = \{ (d_1, d_2) \in \mathbb{R}^2 : d_1 = 0, d_2 \le 0 \},\$

 $T (\Omega, x_0) = \{ (d_1, d_2) \in \mathbb{R}^{2?} d_1 = 0, d_2 \le 0 \}, \\ \partial_C f_1 (x_0) = \{ (y, 1), y \in [0, 1] \}, \partial_C f_2 (x_0) = \{ (0, 1) \}, \\ \partial_C g_1 (x_0) = \{ (0, 1) \}, \partial_C g_i (x_0) = (0, 0) \}, i \in \mathbb{N} \setminus \{ 1 \}, \\ \partial_C h_1 (x_0) = \{ (0, 0) \}, j \in (0, 1).$

We can check that f_1, f_2 are regular at x_0 and $L(\Omega, x_0) = \{(d_1, d_2) \in \mathbb{R}^2 \ d_1 = 0, d_2 \le 0\} = T(\Omega, x_0)$. Thus the (ACQ) holds. Now we apply Theorem 3.2. If x_0 is a local weak efficiency then there are $\alpha_1, \alpha_2 \in \mathbb{R}^2_+ \setminus \{(0,0)\}, \ \beta_i > 0$ for $i \in I(x_0) = 1$, and $\gamma_i \ge 0$ for $j \in J$ such that

$$0 \in \sum_{l=1,2}^{m} \alpha_k \partial_k f_k(x_0) + \sum_{i \in I(x_0)} \beta_i \partial_C g_i(x_0) + \sum_{j \in J} \gamma_j \left(\partial_C h_j(x_0) \cup \partial_C \left(-h_j \right)(x_0) \right).$$

$$\alpha_1(y, 1) + \alpha_2(0, 1) + \beta_1(0, 1) = (0, 0)$$

Consequently $\alpha_1 + \alpha_2 + \beta_1 = 0$, a contradiction. According to Theorem 3.2, (0,0) is not a local weak efficiency of (P).

LIST OF ABBREVIATION

ACQ: Abadie constraint qualification KKT: Karush-Kuhn-Tucker MFCQ: Mangasarian-Fromovitz constraint qualification PLV: Pshenichnyi-Levin-Valadire SIP: Semi-infinite multiobjective optimization

CONFLICT OF INTEREST

We declare that there is no conflict of whatsoever involved in publishing this research.

AUTHOR S' CONTRIBUTIONS

All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENT

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM), grant no. C2020-18-03. We are very grateful to the anonymous referees for their valuable remarks and suggestions.

REFERENCES

- Gorberna MA, López MA. Linear Semi-infinite Optimization. Wiley, Chichester. 1998;.
- Hettich R, Kortanek O. Semi-infinite programming: Theory, methods, and applications. SIAM Rev. 1993;(35):380–429. Available from: https://doi.org/10.1137/1035089.
- Reemtsen R, Ruckmann JJ. Semi-Infinite Programming. Nonconvex Optimization and its Applications. Kluwer Academic. Boston . 1998;Available from: https://doi.org/10.1007/978-1-4757-2868-2.
- Gorberna MA, López MA, Pastor J. Farkas-Minkowski system in semi-infinite programming. Appl. Math. Optim. 1981;(7):295– 308. Available from: https://doi.org/10.1007/BF01442122.
- Puente R, VeraDe VN. Locally farkas minkowski linear inequality systems. TOP. 1999;(7):103–121. Available from: https: //doi.org/10.1007/BF02564714.
- López MA, Vercher E. Optimality conditions for nondifferentiable convex semi-infinite programming. Math. Program. 1983;(27):307–319. Available from: https://doi.org/10.1007/ BF02591906.
- Li W, Nahak C, Singer I. Constraint qualifications in semi-infinite systems of convex inequalities. SIAM J. Optim. 2000;(11):31–52. Available from: https://doi.org/10.1137/ S1052623499355247.
- Stein O. On constraint qualifications in nonsmooth optimization. J. Optim. Theory. Apll. 2004;(121):647–671. Available from: https://doi.org/10.1023/B:JOTA.0000037607.48762.45.
- Mordukhovich BS, Nghia TTA. Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs. Math. Program. 2013;(139):271–300. Available from: https://doi.org/10.1007/s10107-013-0672-x.
- Zheng XY, Yang X. Lagrange multipliers in nonsmooth semiinfinite optimization problems. Math. Oper. Res;32:168–181. Available from: https://doi.org/10.1287/moor.1060.0234.

- Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 2014;(8):1517–1528. Available from: https://doi.org/10. 1007/s11590-013-0683-9.
- Kanzi N. Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Global Optim. 2011;(49):713–725. Available from: https://doi.org/10.1007/s10898-010-9561-5.
- Chuong TD, Kim DS. Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 2014;(160):748–762. Available from: https://doi.org/10.1007/ s10957-013-0314-8.
- Kanzi N. Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J. Optim. 2014;(24):559–572. Avail-

able from: https://doi.org/10.1137/130910002.

- 15. Clarke FH. Optimization and Nonsmooth Analysis. Wiley, Interscience. 1983;.
- Gfrerer H. On directional metric subregularity and secondorder optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 2013;(23):632–665. Available from: https://doi.org/10.1137/120891216.
- Rockafellar RT, Wets JB. Variational Analysis. Springer-Verlag, Berlin. 1998;Available from: https://doi.org/10.1007/ 978-3-642-02431-3.
- Jiménez B, Novo V. Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective programs. J Convex Anal. 2002;(9):97–116.
- Rockafellar RT. Convex Analysis. Princeton University Press, Princeton, NJ. 1970;.