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ABSTRACT
We consider nonsmooth semi-infinite multiobjective optimization problems under mixed con-
straints, including infinitely many mixed constraints by using Clarke subdifferential. Semi-infinite
programming (SIP) is the minimization of many scalar objective functions subject to a possibly infi-
nite systemof inequality or/and equality constraints. SIPs have been proved to be very important in
optimization and applications. Semi-infinite programming problems arise in various fields of engi-
neering such as control systems design, decision-making under competition, and multi-objective
optimization. There is extensive literature on standard semi-infinite programming problems. The
investigation of optimality conditions for these problems is always one of themost attractive topics
and has been studied extensively in the literature. In our work, we study optimality conditions for
weak efficiency of amulti-objective semi-infinite optimization problemundermixed constraints in-
cluding infinitelymanyof both equality and inequality constraints in termsof Clarke sub-differential.
Our conditions are the form of the Karush-Kuhn-Tucker (KKT) multiplier. To the best of our knowl-
edge, only a few papers are dealingwith optimality conditions for SIPs subject tomixed constraints.
By the Pshenichnyi-Levin-Valadire (PLV) property and the directionalmetric sub-regularity, we intro-
duce a type of Mangasarian-Fromovitz constraint qualification (MFCQ). Then we show that (MFCQ)
is a sufficient condition to guarantee the extended Abadie constraint qualification (ACQ) to satisfy.
In our constraint qualifications, all functions are nonsmooth and the number of constraints is not
necessarily finite. In our paper, we do not need the involved functions: convexity and differentia-
bility. Later, we apply the extended Abadie constraint qualification to get the KKT multipliers for
weak efficient solutions of SIP. Many examples are provided to illustrate some advantages of our
results. The paper is organized as follows. In Section Preliminaries, we present our basic defini-
tions of nonsmooth and convex analysis. Section Main Results prove necessary conditions for the
weakly efficient solution in terms of the Karush-Kuhn-Tucker multiplier rule with the help of some
constraint qualifications.
Keywords: Optimality condition, SIP, constraint qualification, weak efficiency, metric subregularity

INTRODUCTION
Semi-infinite optimization (SIP) is the simultaneous
minimization of finitely many scalar objective func-
tions under an arbitrary set of inequality constraints
or/and equality constraints. (SIPs) arise inmany fields
of applied mathematics such as robotics, control sys-
tem design, etc, see for instance1–3. Investigation of
optimality conditions for SIPs has been considered
extensively in the literature.
With linear semi-infinite systems, Goberna 4 intro-
duced he Farkas-Minkowski property, Puenten and
Vera5 proposed the local Farkas-Minkowski prop-
erty and used it as a constraint qualification to get
Lagrange multipliers. For convexsemi-infinite opti-
mization, many constraint qualifications have been
studied in Lopez and Vercher6. With the help of
the Abadie constraint qualification, optimality con-
ditions for semi-infinite systems of convex and linear

inequalities were developed in Li7. For smooth prob-
lems, Stein8 proposed the Abadie and Mangasarian-
Fromovitz constraint qualifications to conisder opti-
mality conditions. By employing variational analysis,
Mordukhovich and Nghia 9 obtained necessary con-
ditions under the extended perturbed Mangasarian-
Fromovitz and Farkas–-Minkowski constraint qualifi-
cation. For nonsmooth problem with inequality con-
straints, Zheng and Yang10 employed the directional
derivative to obtain Lagrange multiplier rules. Kanzi
and Nobakhtian11,12 introduced several nonsmooth
analogues of the Abadie constraint qualification and
the Pshenichnyi-Levin-Valadire property and applied
them to obtain optimality conditions. Chuong13 pro-
posed the limiting constraint qualification in terms
of the Mordukhovich subdifferential and applied it
to optimality conditions. Kanzi14 investigated nons-
mooth semi-infinite problems withmixed constraints
by the Michel-Penot subdifferential. We observe that
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Engineering and Technology; 3(SI3):SI52-SI57.

SI52



Science & Technology Development Journal – Engineering and Technology, 3(SI3):SI52-SI57

the constraints in the above mentioned papers con-
tain finitely many equalities. There are very few pub-
lications dealing with infinitely many equality con-
straints.
In this paper we investigate opyimality conditions
for weak efficiency of a multiobjective semi-infinite
optimization problem under mixed constraints in-
cluding infinitely many of both equality and in-
equality constraints in terms of Clarke subdifferen-
tial. By the Pshenichnyi-Levin-Valadire (PLV) prop-
erty and the directional metric subregularity, we pro-
pose Mangasarian-Fromovitz constraint qualification
(MFCQ) to guarantee the extend Abadie constraint
qualification (ACQ) to satisfy. In our constraint qual-
ifications, all functions are nonsmooth and the num-
ber of the equality constraints is not necessary finite.
Then, we apply them to get the KKT multipliers. The
paper is organized as follows. In Section Prelininar-
ies, we present our basic definitions. SectionMain re-
sults prove necessary conditions for weak efficiency in
terms of Karush-Kuhn-Tucker multiplier under some
constraint qualification.

RELIMINARIES
N,Rn and Rn

+ stand for the set of the natural num-
bers, a n-dimensional vector space and its nonneg-
ative orthant, respectively (resp). B(x,r) denotes
the open ball with centre x and radius r. For
M ⊂ Rn, intM, clM, bdM and coM stand for its
interior, closure, boundary, and convex hull of M,
resp. The cone hull of M is defined by coneM :=
{λx???, x ∈ M}. The contingent cone of M ⊂
Rn at

_
x ∈ clM is

T (M,
_
x) := {d ∈ Rn, tn 0 → 0+,∃dn → d,

_
x+ tndn ∈ M,∀n ∈ N}.

A map f : Rn → R is locally Lipschitz at x0 ∈ Rn if
there is a neighborhood U of x0 and a real number
x0 ∈ Rn such that
|| f (x)− f (y)|| ≤ L ||x− y|| ,∀x,y ∈U.

A set-valued map F : Rn → 2R
m is concave if

∀a,b ∈ Rn, ∀λ ∈ [0,1] ,
λF (a)+(1−λ )F (b) ⊆ F (λa+(1−λ )b) .
Definition 2.1. (15 )
Let f :Rn →R and x0,d ∈Rn. TheClarke directional
derivative of f at x0 in direction d is
f 0 (x0,d) := limsupx→x0,t→0+

f (x+td)− f (x)
t

and the Clarke subdifferential of f at x0 is
∂C f (x0) :={

x∗ ∈ Rn ?? f 0 (x0,d)≥ ⟨x∗,d⟩,∀d ∈ Rn} .
Recall that the directional of f at x0 in direction d is
f
′
(x0,d) := limsupt→0+

f (x0+td)− f (x0)
t

f is regular at x0 if f 0 (x0,d) = f ′ (x0,d) ..

The following properties will be useful in the sequel
(15).
Proposition 2.1
Let f ,g : Rn → R be locally Lipschitz at x0 ∈ Rn and
d ∈ Rn.
(i) d 7→ f 0 (x0,d) is finite, positivel homogeneous and
subadditive on Rn, and ∂

(
f 0(x0, ·

)
(0) = ∂C f (x0) ,

where ∂ denotes the subdifferential in the sense of
convex analysis.
(ii) ∂C f (x0) is a nonempty, convex and compact sub-
set of Rn and, for every
d ∈ Rn, f 0 (x0,d) = maxx∗∈∂C f (x0)⟨x

∗,d⟩.
(iii) ∂C ( f +g)(x0)⊆ ∂C f (x0)+∂Cg(x0). If in addi-
tion both f and g are regular at x0, then the equality
holds.
(iv) If x0 is a local minimum of f, then 0 ∈ ∂C f (x0) .

Besides single-valued directional derivatives, we need
the following set-valued directional derivatives.
Definition 2.2
TheHadamard set-valued directional derivative of f :
Rn → R at x0 ∈ Rn in direction d0 ∈ Rn is

D f (x0,d) := {y ∈ Rm??tn → 0+,∃dn → d,
y = limn→∞ t−1

n ( f (x0 + tndn)− f (x0))}
Definition 2.3 (16)
f : Rn → R, x0 ∈ Rn, and y0 = f (x0) .f is said to be-
directionally metrically subregular at x0 in direction d
if there are a neighborhood U of x0, a ≥ 0, and r > 0,
for t ∈ (0,r) and v ∈ BX (d,r) ,d

(
x0 + tv, f−1(y0)

)
≤

ad (y0, f (x0 + tv)) .
Proposition 2.2
f : Rn → R, x0 ∈ Rn, and y0 = f (x0) . If 0 ̸∈
D f (x0)(d) then f is directionally metrically subreg-
ular at x0 in direction d.
Proof. Suppose there are tn → 0 and dn → d such that,
for all n,
d
(
x0 + tndn, f−1 (y0)

)
> nd(y0, f (x0 + tndn)). Then,

there exists yn = f (x0 + tndn) such that
||yn − y0||< n−1 ||(x0 + tndn)− x0|| ,
t−1
n ||yn − y0||< n−1 ||dn|| .
By setting vn = t−1

n (yn − y0),, one has vn → 0 and
y0 + tnvn = f (x0 + tndn) , i.e., 0 ∈ D f (x0)(d), which
contradicts the assumption. □
The following example present that the sufficient con-
dition given in Proposition 2.2 is not necessary.
Example 2.1 Let f : R2 → R be defined by
f (x1,x2) = |x1 − x2| and d1 = (1,0). We can check
that 0 ̸∈ D f (0)(d1) = {1}, hence the assumption of
Proposition 2.2 is fulfilled. By calculations, we have
that
d
(
tv, f−1 (0)

)
= 2−1/2t |v1 − v2| ,

d (0, f (tv)) = t |v1 − v2|
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for v = (v1,v2) ∈ R2 and t ∈ R+ with tv ̸∈ f−1(0).
Then, for r > 0, t ∈ (0,r), and v ∈ B(d1,r),

t√
2
|v1 − v2| ≤ t |v1 − v2| ,

i.e., d
(
tv, f−1(0)

)
≤ d (0, f (tv)) .

Hence, f is directionally metrically subregular at 0 in
direction d1 in Proposition 2.2. Now we replace d1

by d2 = (1,1). Similarly, we check that the above in-
equality holds for r > 0, t ∈ (0,r), and v ∈ B(d2,r).
However, 0 ∈ D f (0,0)(d2) = {0} ..

MAIN RESULTS
We investigate the fmultiobjective semi-infinite opti-
mization problem under mixed constraints:

(P) minR
m
+ s.t.

{
gi(x)≤ 0, i ∈ I
h j(x)≤ 0, j ∈ J

where f := ( f1, ..., fm) : Rn → Rm, gi : Rn → R for
i ∈ I , and h j : Rn →R for j ∈ J, are locally Lipschitz.
The index sets I and J are arbitrary. The feasible set of
problem (P) is

Ω := {x ∈ Rn?

{
gi(x)≤ 0, i ∈ I
h j(x)≤ 0, j ∈ J

}
.

Definition 3.1 For the problem (P) and x0 ∈ Ω. x0 is
called a local weak efficient solution of (P), written as
x0 ∈ LW (P), if there is a neighborhood U of x0 such
that
( f (U ∩Ω)− f (x))∩

(
−intRm

+

)
=∅.

We denote I(x0) := {i ∈ I?gi (x0) = 0} and

L(Ω,x0) :={
d ∈ X?

{
g0

i (x0,d)≤ 0,∀i ∈ I(x0)

h0
i (x0,d) = 0,∀ j ∈ J(x0)

}}
,

△ :=
∪

i∈I(x0) ∂Cgi (x0)∪∪
j∈J

(
∂Ch j (x0)∪∂C

(
−h j

)
(x0)

)
,

G(x) := supi∈Igi(x), H (x) :=
sup j∈Jmax

{
h j(x),−h j (x)

}
.

Definition 3.2 (5) The Pshenichnyi-Levin-Valadire
(PLV) property holds at x0 ∈ Ω with respect to (wrt)
G iff G is locally Lipschitz around x0 and ∂CG(x0) ⊂
conv

∪
i∈I(x0) ∂Cgi(x).

If I is finite and gi are locally Lipschitz around x0 for
i ∈ I , obviously the problem (P) has the Pshenichnyi-
Levin-Valadire (PLV) property at x0 ∈ Ω wrt G. Suffi-
cient conditions forG to be locally Lipschitz were con-
sidered17.
Definition 3.3 For (P) and x0 ∈ Ω.
(i) The extended Abadie constraint qualification
(ACQ) satisfies at x0 if L(Ω,x0) = T (Ω,x0) .

(ii) The extend Mangasarian-Fromovitz constraint
qualification (MFCQ) satisfies at x0 if there exists

_
d

such that

(a) g0
i (x0,

_
d)< 0 for all i ∈ I (x0) ;

(b) H is directionally metrically subregular at x0,
DH (x0, ·) is concave on X ,h j is regular for all j ∈ J,
and 0 ∈ DH

(
x0,

_
d
)
.

Theorem 3.1 If (P) has the (PLV) property at x0 ∈ Ω
wrt G and the (MFCQ) satisfies at x0, then the (ACQ)
satisfies at x0.
Proof. By the (MFCQ), there is

_
d such that

go
i (x0,

_
d)< 0 for all i ∈ I (x0). This implies that

⟨x∗,
_
d⟩< 0,∀x∗ ∈

∪
i∈I(x0) ∂Cgi(x),

⟨x∗,
_
d⟩< 0,∀x∗ ∈ conv(

∪
i∈I(x0) ∂Cgi(x)).

By (PLV), one has ⟨x∗,
_
d⟩ < 0 for all

x∗ ∈ ∂CG(x0) and so G0

(
x0,

_
d
)

< 0. Then,

limsupt→0+
G0(x0+t

_
d)−G(x0)
t ≤ G0

(
x0,

_
d
)

< 0,
which implies there are β and ε such that
(1) G

(
x0 + t

_
d
)
− G(x0) < −tβ ,∀t ∈ (0,ε) . Be-

sides, as 0 ∈ DH
(

x0,
_
d
)
, there exist tn → 0+, dn →

_
d, and zn → 0 such that tnzn ∈H (x0 + tndn). Themet-
ric subregularity of H gives a ≥ 0 such that, for large
n,

d
(
x0 + tndn,H−1(0)

)
≤ ad (0,H (x0 + tnun))

≤ atn ||zn|| .
Hence, there exist

_
dn and ε with t−1

n εn → 0+ such that
x0+tn

_
d ∈H−1(0) and ||(x0 + tnun)− (x0 + tn

_
un)|| ≤

atn ||zn||+ εn.

Then,
_
dn → d. Since x0 + tn

_
dn ∈ H−1(0), one has,

max
{

h j

(
x0 + tn

_
dn

)
,−h j

(
x0 + tn

_
dn

)}
≤ 0,

Hence, for large n,
(2) h j(x0 + tn

_
dn) = 0,∀ j ∈ J.

From (1), one has , for large n,
G
(

x0 + tn
_
dn

)
−G(x0)<−tnβ .

Since G is locally Lipschitz at x0, there is L > 0 such
that, for large n,
G
(

x0 + t
_
dn

)
−G

(
x0 + tn

_
dn

)
≤ Ltn

∣∣∣∣∣∣_dn −
_
d
∣∣∣∣∣∣ ,

G
(

x0 + t
_
dn

)
≤ G

(
x0 + t

_
dn

)
+Ltn

∣∣∣∣∣∣_dn −
_
d
∣∣∣∣∣∣

< G(x0)+ tn
(
−β +L

∣∣∣∣∣∣_dn −
_
d
∣∣∣∣∣∣)≤ 0.

This implies that gi

(
x0 + t

_
dn

)
≤ 0 for all i ∈ I . By

combining this and (2), one has x0 + t
_
dn ∈ Ω. Hence,_

d ∈ T (Ω,x0).
Let d ∈ L(Ω,x0), we prove d ∈ T (Ω,x0).
Set dn = n−1

_
d +

(
1−n−1)d for n ≥ 2.

By Proposition 2.1, for all i ∈ I (x0) one has
(3) g0

i (x0,dn) ≤ n−1g0
i

(
x0,

_
dn

)
+(

1−n−1)g0
i

(
x0,

_
dn

)
< 0. Since h j is regular

at x0 and d ∈ L(Ω,x0), one gets for all j ∈ J,
h
′
j (x0,d) = h0

j (x0,d) = 0 and

limt→0+
h j(x0+td)−h j(x0)

t = limt→0+
h j (x0 + td)

t = 0.
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Then, there exists tn → 0+ such that
limn→∞

max{h j(x0+tnd),−h j(x0+tnd)}
tn = 0. Hence,

0 ∈ DH (x0,d).
Because DH(x0, ·) is concave,

n−1DH(x0,
_
d)+

(
1−n−1)DH (x0,d)

∈ DH
(

x0,n−1
_
d +

(
1−n−1)d

)
.

Hence,
(4) 0 ∈ DH (x0,dn)

From (3) and (4), similar to the above arguments, one
has dn ∈ T (Ω,x0). As dn → d and is a closed cone,
d ∈ T (Ω,x0).
The proof is complete. □
Remark 3.1
Nonsmooth SIPs involving mixed constraints9,14, the
(MFCQ) was used to consider a number of equality
constraints. In these paper, the functions were con-
tinuously differentiable with the linearly independent
gradients such that ⟨∇ f j (x0) ,

_
d⟩= 0 for j ∈ J. The in-

equality constraints were continuously differentiable
and the equalities werestrictly differentiable. By em-
ploying directional metric subregularity, out (MFCQ)
can be used to nonsmooth infinite mixed constraint
systems and the condition 0 ∈ DH

(
x0,

_
d
)
can be ap-

plied in many cases..
The next example provides a case where Theorem
3.1 can be employed, while many Mangasarian-
Fromovitz-type constraint qualifications cannot.
Example 3.1 Let gi,h j : R2 →R be defined by for i ∈
N
g1 (x1,x2) = x1,g2i+1 (x1,x2) = x1 − i−1,

g2 (x1,x2) = x2,g2i+2 (x1,x2) =

x2 − (1+ i)−1 ,h j (x1,x2) = j (x1 − x2) , j ∈ (0,1) .
Hence, Ω =

{
(x1,x2) ∈ R2|x1 = x2 ≤ 0

}
.

For x0 = (0,0), I (x0) = {1,2}. We see that
G(x1,x2) = sup{x1,x2} ,H (x1,x2) = |x1 − x2|
are locally Lipschitz at x0 and ∂CG(x0) ⊆
conv

∪
i∈I(x0) ∂Cgi (x) . Thus, (P) has the (PLV)

property at x0 wrt G. Now, we check that the
(MFCQ) is fulfilled at x0 with

_
d = (1,−1). For

i ∈ I(x0), j ∈ J, g0
i (x0,

_
d) = −1 < 0,h j is regular,

H (x1,x2) = |x1 − x2| and so H is directionally
metrically subregular at x0 (by Example 2.1),
DH (x0,(d1,d2)) = conv{(d1,−d2) ;(−d1,d2)} for
all (d1,d2) ∈ X and so DH (x0, ·) is concave, and
0 ∈ DH(x0,

_
d). Therefore, the (MFCQ) holds at x0.

By Theorem 3.1, the (ACQ) holds at x0. (We can
check the (ACQ) by direct calculations as follows.
As g0

1 (x0,d) = d1,g0
2 (x0,d) = d2, and h0

j (x0,d) =
j (d1 −d2), we have
L(Ω,x0) = T (Ω,x0) =

{
(d1,d2) ∈ R2?d1 = d2 ≤ 0

}
and so (ACQ) holds. Because J infinite, the
(MFCQ) 9,14 cannot be employed.

The following example shows the essentialness of the
directional metric subregularity of H.
Example 3.2 Let gi be the same as in Example 3.1 and
h j (x1,x2) = j

(
x2

1 − x2
2
)
, j ∈ (0,1).

Hence, Ω =
{
(x1,x2) ∈ R2??τ1 = τ2 ≤ 0

}
and

I (x0) = {1,2} for x0 = (0,0). Similar to Example
3.1, (P) has the (PLV) property at x0 wrt G. We check
that the (MFCQ) holds at x0 for

_
d = (1,−1). We

have g0
i

(
x0,

_
d
)
=−1 < 0 for all i ∈ I (x0).

h j is regular, j ∈ J, H (x1,x2) =∣∣x2
1 − x2

2
∣∣ ,DH (x0,(d1,d2)) = {0} for (d1,d2) ∈ X

and so DH (x0, ·) is concave, and 0 ∈ DH
(

x0,
_
d
)
. On

the other hand, as g0
1(x0,d) = 0, g0

2(x0,d) = d2, and
h0

j (x0,d) = 0, we have
L(Ω,x0) =

{
(d1,d2) ∈ R2?d1 ≤ 0,d2 ≤ 0

}
,

T (Ω,x0) =
{
(d1,d2) ∈ R2?d1 = 0,d2 = 0

}
,

L(Ω,x0) ̸= T (Ω,x0) .

The cause is thatH is not directionally metrically sub-
regular at x0. We have
d
(
tv,H−1(0)

)
= 1/

√
2min{|v1 + v2| , |v1 − v2|}

and d (0,H (tv)) = t2
∣∣v2

1 − v2
2
∣∣ for v = (v1,v2) ∈ R2

and t ∈ R+ with tv ̸∈ H−1(0). Then, the subreg-
ularity means that for any a,r > 0, t ∈ (0,r), and
v ∈ Bx

(_
d,r

)
,

t√
2

min{|v1 + v2| , |v1 − v2|} ≤ at2
∣∣v2

1 − v2
2
∣∣ .

But, this does not hold.
Now, by employ the extend ACQ, we present a neces-
sary optimality condition for weak efficiency of prob-
lem (P), as follows.
Theorem 3.2 Let x0 be a local weak efficiency of (P).
If the (ACQ) holds at x0, △ is closed, and fk is regular
and Lipschitz around x0, for k = 1, ...m, then there exist
(α1, ...,αm) ∈Rm

+\{0} ,βi ≥ 0 for i ∈ I (x0), and γ j ≥
0 for j ∈ J such that
0 ∈ ∑m

k=1 αk∂C fk (x0)+∑i∈I(x0) βi∂Cgi (x0)

+∑ j∈J γ j
(
∂Ch j (x0)∪∂C

(
−h j

)
(x0)

)
.

Proof. Step 1. We claim that the system{
f 0
1 (x0,d)< 0, ..., f 0

m < 0
d ∈ T (Ω,x0)

has no solution. Suppose that there is d ∈ T (Ω,x0)

satisfying f 0
t (x0,d) ≤ 0 for all t = 1,2, ...,m. By

setting y =
(

f 0
1 (x0,d), ..., f 0

m(x0,d)
)
, one has y ∈

−intRm
+. As d ∈ T (Ω,x0), there exist tn → 0+ and

dn → d such that x0 + tndn ∈ Ω for all n ∈N. Since fk
is regular and locally Lipschitz at x0, one has
limn→∞

fk(x0+tnd)− fk(x0)
tn = f 0

k (x0,d) ,

limn→∞
fk(x0+tndn)− fk(x0+tnd)

tn = 0,

limn→∞
fk(x0+tnd)− fk(x0)

tn =

limn→∞
fk(x0+tnd)− fk(x0)+ fk(x0+tndn)− fk(x0+tnd)

tn .

Hence, limn→∞
f (x0+tndn)− f (x0)

tn = y.
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As y ∈ −intRm
+, for large n, one has f (x0 + tndn)−

f (x0)∈−intRm
+,which is a contradiction. Therefore,

the mentioned system has no solution.
Step 2. From Step 1, by Theorem 3.13 in 18, we have
(α1, ..,αm) ∈ Rm

+, such that
∑m

k=1 αk f 0
k (x0,d)≥ 0, ∀d ∈ T (Ω,x0) .

Because (ACQ) holds, one has
(5) ∑m

k=1 αk f 0
k (x0,d)≥ 0,∀d ∈ L(Ω,x0) .

Step 3. Denote
A = cone(conv(△))

and the indicator function of A0 by δA0 .
Then, (5) implies that
∑m

k=1 αk f 0
k (x0,d)≥ 0,∀d ∈ A0.

Because 0 ∈ A0 and ∑m
k=1 αk f 0

k (x0,0) = 0,
0 ∈ argmind∈X

{
∑m

k=1 αk f 0
k (x0,d)+δA0 (d)

}
.

By Proposition 2.1, f 0
k (x0, ·) is continuous and convex

and A0 is convex. Therefore ( 19),
0 ∈ ∂

(
∑m

k=1 αk f 0
k (x0, ·)+δA0(·)

)
(0).

By the sum rule of subdifferentials, one has
(6) 0 ∈ ∂

(
∑m

k=1 αk f 0
k (x0, ·)

)
(0)+∂δA0(·)(0)

Since ∂ f 0
k (x0, ·)(0) = ∂C f 0

k (x0), one gets
∂
(
∑m

k=1 αk f 0
k (x0, ·)

)
(0) = ∑m

k=1 αk∂k fk (x0) .

As △ is closed, by the bipolar theorem, one has
∂δA0(0) =

(
A0)0

= A. Hence, from (6), there ex-
ist (α1, ...,αm) ∈ Rm

+\{0}, βi ≥ 0 for i ∈ I (x0), and
γ j ≥ 0 for j ∈ J such that

0 ∈ ∑m
k=1 αk∂k fk (x0)+∑i∈I(x0) βi∂Cgi (x0)+

∑ j∈J γ j
(
∂Ch j (x0)∪∂C

(
−h j

)
(x0)

)
.

The proof is complete. □
Example 3.3
Let f : R2 →R2 with f = ( f1, f2) and gi,h j : R2 →R
be defined by

f1 (x1,x2) =

{
x1 + x2 i f x1 ≥ 0,
x2

1 + x2 i f x1 < 0,
f2 (x1,x2) = x2,

g1 (x1,x2) = x2,gi (x1,x2) = x2
1x2 − 1

i , i ∈ N\{1} ,
h j (x1,x2) = jx3

1 − x1x2, j ∈ (0,1) .
Let x0 = (0,0). I(x0) = {1}. By direct computations,
one has

Ω =
{
(x1,x2) ∈ R2?x1 = 0,x2 ≤ 0

}
,

T (Ω,x0) =
{
(d1,d2) ∈ R2? d1 = 0,d2 ≤ 0

}
,

∂C f1 (x0)= {(y,1) , y ∈ [0,1]} , ∂C f2 (x0)= {(0,1)} ,
∂Cg1 (x0) = {(0,1)} ,∂Cgi (x0) = (0,0)}, i ∈N\{1} ,
∂Ch1 (x0) = {(0,0)} , j ∈ (0,1) .
We can check that f1, f2 are regular at x0 and
L(Ω,x0) =

{
(d1,d2) ∈ R2 d1 = 0,d2 ≤ 0

}
=

T (Ω,x0). Thus the (ACQ) holds. Now we apply
Theorem 3.2. If x0 is a local weak efficiency then there
are α1,α2 ∈ R2

+\{(0,0)} , βi > 0 for i ∈ I (x0) = 1,
and γ j ≥ 0 for j ∈ J such that

0 ∈ ∑m
l=1,2 αk∂k fk (x0)+∑i∈I(x0) βi∂Cgi (x0)+

∑ j∈J γ j
(
∂Ch j (x0)∪∂C

(
−h j

)
(x0)

)
.

α1 (y,1)+α2 (0,1)+β1 (0,1) = (0,0)

Consequently α1 +α2 +β1 = 0, a contradiction. Ac-
cording toTheorem 3.2, (0,0) is not a local weak effi-
ciency of (P).
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