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ABSTRACT
The bootstrap is one of themethod of studying statistical mathwhich this article uses it but is ama-
jor tool for studying and evaluating the values of parameters in probability distribution. Overview
of the theory of infinite distribution functions. The tool to deal with the problems raised in the pa-
per is themathematical methods of random analysis by theory of random process andmultivariate
statistics. Observations (realisations of a stationary process) are not independent, but dependence
in time series is relatively simple example of dependent data. Through a simulation study we found
that the pseudo data generated from the bootstrapmethod always showed aweaker dependence
among the observations than the time series they were sampled from, hence we can draw the
conclusion that even by re-sampling blocks instead of single observations we will lose some of
structural from of the original sample. A potential difficulty by the using of likelihood methods for
the GEV concerns the regularity conditions that are required for the usual asymptotic properties
associated with the maximum likelihood estimator to be valid. To estimate the value of a parame-
ter in GEV we can use classical methods of mathematical statistics such as the maximum likelihood
method or the least squares method, but they all require a certain number samples for verification.
For the bootstrap method, this is obviously not needed; here we use the limit theorems of proba-
bility theory and multivariate statistics to solve the problem even if there is only one sample data.
That is the important practical significance that our paper wants to convey. In predictive analysis
problems, in case the actual data is incomplete, not long enough, we can use bootstrap to add
data.
Key words: Bootstrap, Time series, Bootstrap Jackknife, Generalized Extreme Value distributions,
Predictive Analytics

BASIC FRAMEWORK
Block bootstrap methods for time series
Observations (realisations of a stationary process) are
not independent, dependence in time series is rela-
tively simple example of dependent data. Block boot-
strap methods by time series data have been put for-
ward by Hall, 1985 1, Kunsch2, Singh3, Politis and
Romano4, Lahiri 5.
Let X1, X2, Xn be independent and identically ran-
dom variables with distribution function F.The basic
step in extreme value theory is to investigate the dis-
tribution ofMn = max(X1,X2,Xn) as n→∞. Suppose
there is sequence of constants an > 0, bn∈R such that:

P(Mn ≤ anx + bn) = 

=
n→∞

G(x) , ∀x ∈C (G)

with G(x) is a non-degenerate distribution function,
C(G) is the set of all continuity points of G(x). Limit
distribution functions G(x) satisfying equation. The
function (1) is the well known extreme value of three

types of distributions (Frechet, Weibull, and Gumbel
distributions)6,7.
The generalized extreme value (GEV) family of distri-
bution is:

G(X) = e
−

(
1+ξ

(
x−µ

σ

))−1/ξ

,{
x : 1+ξ

(
x−µ

σ

)
> 0
} (2)

where µ is a location parameter µ ∈ R, σ is a scale
parameter (with σ > 0), and ξ is the extreme value
shape parameter.
Moving Block Bootstrap (MBB)
Blocks length l, starting at Xi : Bi =

(Xi,Xi+1, ...,Xi+l−1). To get a bootstrap sample
we do:
(i) Draw with replacement B∗

1,B
∗
1+1, ...,B

∗
k from

B1,B2, ...,Bn−l+1.

(ii) Concatenate the blocks B∗
1,B

∗
1+1, ...,B

∗
k to give the

bootstrap sampleX∗
1 ,X

∗
2 , ...,X

∗
kl , l = 1, corresponds to

the clacical i.i.d bootstrap.
Blocks in the MBB may overlap8,9.
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Non overlap Block Bootstrap (NBB)
Blocks of length l: B1 = (X1,X2, ...,Xl); B2 =

(Xl ,Xl+1, ...,X2l) ...

B[ n
l ]

= (Xn−l+1,Xn−l+1, ...,xn). To get a bootstrap
sample we do:
Resample blocks B∗

1,B
∗
2, ...B

∗
[ n

l ]
with replacement,

Concantenate to get bootstrap sample X∗
1 ,X

∗
2 , ...X

∗
[ n

l ]

b =
[ n

l
]
blocks (

[ n
l
]
is the largest number less than or

equal to n
l ).

Bi = (Xil ,Xil+1, ...,Xil+l−1), i = 1,2, ...,
[ n

l
]
.

NBB fewer blocks than in the MBB10.
Circular block bootstrap (CBB)
Figure 1 show the blocks of length l, with sample re-
placement from {B1,B2, ...,Bm} ;
lb = m ≈ n, every observation reseives equal weight:
Bi = (Xi,Xi+1, ...,Xi+l−1), i = 1,2, ...,m.

Figure 1: Blocks of length l.

Stationary block bootstrap (SB)
Blocks are no longer of equal size11. The bootstrap
sample is chosen according to some probability mea-
sure on the sequences. The static bootstrap method
involves sampling blocks of random lengths by each
block with a geometrical distribution:
(H1,K1) ,(H2,K2) , ...H ∼ Uniform(1,2, ...,n) , K ∼
Geometric(p) for some p > 0.
Properties of Block Bootstrap Methods
Through a simulation study we found that pseudo
data achieved from the bootstrap method always dis-
played a weaker dependence among the observations
than the time series they were sampled from, hence
we can draw the conclusion that even by resampling
blocks instead of single observationswewill lose some
of structural from of the original sample.
The pseudo time series produced by themoving block
method is not stationary, even if the original series Xt

is stationary.
The pseudo time series produced by the stationary
bootstrap method is actually a stationary time series
The mean

_
X∗

N of the moving block boostrap is biased
in the sense that:

E
( _

X∗
N |X1,X2, ...,Xn

)
−

_
Xn ̸= 0

TheMBB estimator of the variance of
√

n
_

Xn is biased.
This situation creates problems in using the percentile
method with the MBB.
The usual estimator:

σ̂2 =
1
n

n

∑
i=1

□
(

Xi −
_

Xn

)2

Should be modified to:

σ̂2 = 1
n ∑n

i=1□{
(

Xi −
_

Xn

)2
+

∑i−1
k=1□∑n−k

i=1

(
Xi −

_
Xn

)(
Xi+k −

_
Xn

)
}

By the modification the bootstrap will be able to im-
prove substantially on the normal approximation.
Comparison the block bootstrap methods: We find
that overall the MBB and CBB methods give the es-
timators with the smallest standard error and the SB
method the largest. (Random block length leads to a
larger variance of the parameter estimates than for the
other methods when block length is fixed). The b
The block bootstrap procedure
Assume that, the statistic θ̂ estimates is a θ functional,
depending on the m-dimensional marginal distribu-
tion of the time series data. Now, build vectors of con-
secutive obsevations
Yt = (Xt−m+1, ...,Xt) , t = m, ...,n.
Build overlapping block of consecutive vectors,
(Ym, ...,Ym+l−1) , (Ym+1, ...,Ym+l) , ..., (Ym+l−1, ...,Yn)

where l ∈ N is the block length parameter. Simplicity,
first assume that
m+ l − 1 = kl with k ∈ N. So that, resample block
independently,
YS1+1, ...,YS1+l ,YS2+1, ...YS2+l , ..., YSk+1, ..., YSk+l ,

where the starting points of blocks S1, ...,Sk are i.i.d.
Uniform ({m−1, ...,n− l}) These resampled blocks
of m-vectors could be referred to the block bootstrap
sample. On the other hand, as we will concern the
bootstrapped block estimator is not simply defined by
the plug-in rule and the concept of the bootstrap sam-
ple is not clear. If n−m+ 1 is not a multiple of l, we
resample k = [(n = m+1)/l] + 1 blocks, but we use
only a portion of the k-th block to get n−m+ 1 re-
sampled vectors in total.
Assume that θ̂ = T

(
F(m)

n

)
,

where F(m)
n (x) = 1

n−m+1 ∑n
i=m□1[Yt≤x] is a empirical

distribution function of the m-dimensional marginal
distribution of (Xt)t∈Z , and T is a smooth functional.
The block bootstrapped estimator is defined as
θ̂∗B = T

(
F(m)∗B

n

)
,

F(m)∗B
n (x) = 1

n−m+1 ∑n
i=m□∑

Si+l
t=Si+1□1[Yt≤x]

we have E∗B
[
θ̂ ∗B
]
̸= θ̂ .
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This definition of the block bootstrapped estimator,
can be interpreted as

θ̂∗B = φn−m+1(YS1 , ...,YS1+l ,

YS2 , ...YS2+l , ..., YSk , ..., YSk+l)

θ̂ = φn−m+1 (Ym, ...,Yn) ,

So, we can say that it employs a plus-in rule based on
vectorized observations.
Choosing an optimal block length
The orders of magnitude of the optimal block size
are known in some inference problems. According to
those authors three different settings of practical im-
portance can be identified; estimation of the bias or
variance, estimation of a one-sided distribution func-
tion and estimation of a two-sided distribution func-
tion.
The optimal block length in the above situations of
different size being b ∼Cn

1
k , with k = 3,4,… respec-

tively where n is the sample size.
This result, will be used here as the basis for the choos-
ing the optimal block length. Two main approaches
can be pointed out:
A cross validation method proposed by Hall et. al.12

and a plug-in method based on a recent work of
Lahiri 5.
Based on a research of Lahiri, a nonparametric plug-
in (NPPI) method for selecting the optimal block
length in order to reduce the bias will be considered.
Unlike traditional plug-in method this method em-
ploys nonparametric resampling procedures to esti-
mate the relevant constants in the leading term of the
optimal block length.
The variance of block bootstrap estimator is an in-
creasing function of the block length l while its bias
is a decreasing function of block length. As a result,
for each block bootstrap estimator, there is critical
value, l0

n that minimizes mean-square error (MSE).
The value of l that minimizes the leading term in the
expension of the MSE is denominated MSE-optimal
block length.
The following notation will be used:
△n = θ(mn)−θ(µ);
β = E△n; σ2

∞ =Var(
√

n△n);

△̂n = θ(m̂n)−θ(Êm̂n);
β̂ = Ê△̂n; σ̂2

∞ = V̂ar(
√

n△̂n);
The block bootstrap will be able to use either over-
lapping or non-overlapping blocks. Define one-sided
and symmetrical distribution functions of the nor-
malized statistic

√
n△n

σ∞
by F1 (z) = P

(√
n△n

σ∞ < z
)

and F2 (z) = P
(
√

n |△n|
σ∞ ≤ z

)

Define bootstrap analogs of F1 and F2 by F̂1(z) =

P̂
(
√

n △̂n
σ̂∞

)
and F̂2(z) = P̂

√
n

∣∣∣△̂n

∣∣∣
σ̂∞

< z

. Let

(ψ , ψ̂) denote either
(

β , β̂
)
or
(

1
n σ2

∞,
1
n σ̂2

∞

)
, and ϕ

denote the standard normal density function: ϕ (x) =
1√
2π

exp
{
− 1

2 x2} .
Hall et. al. show that there are constants
Ci (i = 1,2, ...,6) such that, in addition, n−1+n−1l =
o(1) as n → ∞ then

E (ψ − ψ̂)2 ∼ 1
n2

(
C1

1
l2 +C2

1
l

)
, (3)

E
[
F1(z)− F̂1(z)

]2
∼ 1

n2

(
C3

1
l2 +C4

l2

n

)
ϕ (z)2 , (4)

E
[
F2(z)− F̂2(z)

]2
∼ 1

n2

(
C5

1
l2 +C6

l3

n

)
ϕ (z)2 , (5)

Where the symbol~ indicates that the quantiny on the
right-hand side is the leading term of an asymptotic
expansion. The constantsCi do not depend on n or l.
The terms involving C2,C4 and C6 correspond to the
variance. The variance terms smaller if the bocks are
overlapping than if they are non-overlapping.
Following the expressions (3), (4), and (5), so that the
asymptotically optimal block length (in the case of
minimizing the AMSE) is l = A1n1/3 for bias or vari-
ance estimation, l =A2n1/4 for estimating a one-sided
distribution function, and l = A3n1/5 for estimating a
symmetrical distribution function (A j > 0; j = 1,2,3
are suitable constants that dependents on certain pop-
ulation parametrs).

JACKKNIFEMETHOD
We assume a vector of parameters such as θ . The bias
of θ as an estimate of an estimat or θ̂0 of θ 0 is defined
by△= Eθ̂0 −θ0.
A large bias is often an undesirable factor in the es-
timator’s performance. We will able to use the boot-
strap to estimate the bias of any estimator θ as an esti-
mate of an estimator θ̂0. We generate B independent
bootstrap samples X∗1,X∗2,...,X∗B, each consisting of
n data value drawn with replication corresponding
to each bootstrap sample from X, as X∗1= Xi1, X

∗2=
Xi2,..., X

∗ = Xin.
We can select the sample of B in the range 25 −
1000. Then evaluate of the bootstrap application cor-
responding to each bootstrap sample, it may be an
indication that the statistic. X̂ ∗ (b) = SX∗b, b =

1,2, ...,B. The bootstrap estimate of bias is defined by
△B = θ̂∗

0 − θ̂0 where θ̂∗
0 = 1

n ∑B
b=1θ̂∗

b .
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We have focused on the standard error as a measure
of accuracy for an estimator θ̂0. Estimate the standart
error seBθ̂0 by the sample standard deviation of the B
replications,

ŝeB =

[
1

B−1
∑B

b=1

(
θ̂ (b)− θ̂∗

0

)2
]1

2
. (6)

The jackknife estimate of bias is a alternative method
to find out the bias which it was original computer
based method for estimating biases and standard er-
rors. If we have a sample set x = (x1,x2, ...,xn) and
an estimator θ̂0 = S (X).The ith jackknife sample x(i),
is defined to be x with ith data point removed, x(i) =
(x1,x2, ...,xi−1,xi+1, ...xn) .

For i = 1,2,...,n, the jackknife estimate of bias is de-
fined by
ŝe jack =

[ n−1
n ∑n

i=1□
]
, where θ̂(·) = 1

n ∑n
i=1□θ̂(i).

The jackknife estimate of standard error is ŝe jack =[
n−1

n ∑n
i=1□

(
θ̂(i)− θ̂(·)

)2
] 1

2

The jackknife usually provides a nice and simple ap-
proximation to the bootstrap, for estimation of stan-
dard error and bias.
As a basic rule, if a bias of less than 0.25, the standard
errors can be ignored, unless we are trying to do care-
ful confidence interval calculations. The root mean

square error of an estimator θ̂ for θ is
√

E
(

θ̂ −θ
)2

a
measure of accuracy that takes into regards both bias
and standard error. It can be shown that the square
root of the square is equal,

√
E
(

θ̂ −θ
)2

= ŝe
̂√

1+
(
△
ŝe

)
∼= ŝe

[
1+0.5

(
△
ŝe

)2
] (7)

If∆= 0 then the rootmean square equals itsminimum
value of standard error. Reverse, rate

∣∣∣△ŝe

∣∣∣ = 0.25,
then the root mean square error is no more that 0.031
greater than value of standard error.
The obvious bias corrected estimator is, θcorr = θ̂0 −
△ = 2θ̂0 − θ̂∗

0 where, △ = △B. When bias is small
compared to the estimated standard error se; then it
is b safer to use θ̂0 than θ corr . Reverse, bias is large
compared to standard error, then it may be an indica-
tion that the statistic θ̂0 = S (X) is not an appropriate
estimate of the parameter θ .
Quantifying the accuracy of an estimation tool can of-
ten be clearer by calculating confidence intervals. A
standard result claims that θ̂0 is the maximum like-
lihood estimator has a limiting multivariate normal

distribution with mean θ 0 and variance covariance
matrix Hθ0 = I (θ0)

−1,

Where I(θ) =
[
ei, j(θ)

]
dxd with ei, j (θ) =−E ∂ 2L(θ)

∂θi∂θ j
,

andL(θ)=∑n
i=1□ log log f0(xi) is likehood function.

Thematrix I(θ) is “Fischer’s informationmatrix”. Be-
cause the true value of θ 0 is generally unknown, it
is usual to approximate the term of I with those of
the “Fischer’s information matrix” defined by I(θ) =[
− ∂ 2L(θ)

∂θi∂θ j

]
dxd

and evaluated at θ = θ̂ . Denoting an
arbitrary term in the inverse of IO (θ ) byσ̃i, j , it fol-
lows that an approximate (1− τ) with 0 < τ < 1, con-
fidence interval for θ 0 is θ̂i ± zτ/2

√
σ̃i, j

Let θ̂0 be the maximum likelihood estimator of the
k-dimensional parameter θ 0 with approximate vari-
ance covariance matrix Hθ0 .
Moreover, a confidence interval can derived from the
likelihood function, using approximation

L(θ0) = 2
(

L
(

θ̂0

)
−L(θ0)

)
∼ χ2

2

It follows that an approximate (1 − τ) confidence re-
gion for θ 0 is given by Cτ = {θ : L(θ ) ≤ cτ }, where
cτ is the (1 − τ) quantile of the χ2

d distributtion.
This approximation is usually more accurate than that
based on the asymptotic normality of the maximum
likelihood estimator.
The log likelihood for θ can be formally written as
Lp

(
θ (1),θ (2)

)
where θ have two components.

The profile log likelihood for θ (1) is define as
Lp

(
θ (1)

)
= L

(
θ (1),θ (2)

)
and similarly,
Lp

(
θ (2)

)
= L

(
θ (1),θ (2)

)
.

So, under suitable regularly conditions, for large n,
Lp

(
θ (1)

)
= 2{L

(
θ̂0

)
−Lp

(
θ (1)

)
} ∼ χ2

k .

For a single component θi,Cr =
{

θi : Lp (θi ≤ cr)
}
is

a (1− τ) confidence interval, where cr is the (1− τ)
quantile of the χ2

1 distribution.
Another method of model selection is the Akaike In-
formation Criterion (AIC). The AIC has played a sig-
nificant role in solving problems in a wide variety of
fields as a model selection criterion for analyzing ac-
tual data. The AIC is defined by
AIC = −2 (maximum log likelihood) +2 (number of
free parameters).
The amount of free parameters in a model refers to
the dimensions of the parameter vector θ contained
in the specified model f (x|θ ).
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ANALYSIS FOR GEV DISTRIBUTIONS
An implicit difficulty with the using of likelihood
methods for the GEV concerns the regularity condi-
tions that are required for the usual asymptotic prop-
erties associated with the maximum likelihood esti-
mator to be valid. Those conditions are not satis-
fied by the GEV model because the end points of
the GEV distribution are functions of the parame-
ter values,µ=− σ ξ is an upper end-point of the distri-
bution when ξ < 0; and a lower end-point when ξ
> 0. These offend of the usual regularity conditions
means that the standard asymptotic likelihood results
are not automatically applicable13,14. This problem
have studied in our details and obtained the follow-
ing results
(i). if ξ > −0.5 maximum likelihood estimators are
regular, in the impression of having the usual, asymp-
totic properties
(ii). when −1 < ξ < −0.5, maximum likelihood esti-
mators are generally obtainable, but do not have the
standard asymptotic properties, and
(iii). with ξ <−1,maximum likelihood estimators are
unlikely to be obtainable.
Under the assumption that X1, X2 ,..., Xm are inde-
pendent random variables having the GEV distribu-
tion, the log likelihood for the GEV parameters when
ξ 0 is

L(x,µ,σ ,ξ ) =−mloglogσ −
(

1+ 1
ξ

)
∑m

i=1

□ log
[
1+ξ

(
xi−µ

σ

)]
−∑m

i=1□

loglog
[
1+ξ

(
xi−µ

σ

)] 1
ξ
,

where 1+ξ
(

xi−µ
σ

)
> 0, with i =1, 2, …, m.

The case ξ → 0 requires separate treatment using the
Gumbel limit of the GEV distribution. This leads to
the log likelihood

L(x,µ,σ ,ξ ) =−mloglogσ −
(

1+
1
ξ

)
∑m

i=1

□
(

xi −µ
σ

)
−∑m

i=1□exp
[
−
(

xi −µ
σ

)] (9)

There is no analytical solution, but for any given
dataset the maximization is straightforward using
standard numerical optimization algorithms.
Estimates of extreme quantile of the maximum dis-
tribution under linear normalization are obtained by
inverting equation (1)

xp = {µ − σ
ξ

(
1− (− log(1− p))−ξ

)
; ξ ̸= 0

µ −σ log log(1− p) ; ξ = 0
(10)

The return levels are exceeded by the annual maxi-
mum in any particular time with probability (1− p).

If xp are plotted against 1
1−p the plots are linear. By

substituting the maximum likelihood estimates of the
GEV parameters into (10), the maximum likelihood
estimate of xp for 0 < p < 1, is obtained as

x̂p =

 µ̂ − σ̂
ξ̂

(
1− y−ξ

p

)
, ξ̂ ̸= 0

µ̂ − σ̂ log
(
yp
)
, ξ̂ = 0

(11)

where yp = − log log (1− p). By the delta method,
we get

Var
(
xp
)∼= ∇xT

p H0∇xp,

whereθ = [µ,σ ,ξ ], H0 is variance covariancematrix,
and

∇xT
p =

[
∂xp
∂ µ ; ∂xp

∂σ ; ∂xp
∂ξ

]
= [1,

−ξ−1
(

1− y−ξ
p

)
, σξ−2(1− y−ξ

p )

−σξ−1y−ξ
p log

(
yp
)
]

corresponding value is
(

µ̂, σ̂ , ξ̂
)
.

When the ξ̂ → 0 and equation (12) is still valid with

∇xT
p =

[
1, logyp

]
, (12)

corresponding value is (µ̂, σ̂).
Profile likelihood. Numerical evaluation of the pro-
file likelihood for any of the individual parameters µ ,
σ or ξ is straightforward. For example, to obtain the
profile likelihood for ξ , we fix ξ = ξ 0, and maximize
the log likelihood (8) with respect to the remaining
parameters, µ and σ . This is repeated for a range of
values of ξ 0. This methodology can also be applied
when inference is required on some combination of
parameters. In particular, we can obtain the profile
likelihood for any specified return level xp: This re-
quires a re-parameterization of the GEV model, so
that xp is one of the model parameters, after which
the profile log likelihood is obtained by maximization
with respect to the remaining parameters in the usual
way. Re-parameterization is straightforward,

µ = {xp −
σ
ξ

(
1− y−ξ

p

)
, ξ ̸= 0,

xp −σ log
(
yp
)
, ξ = 0.

(13)

so that replacement of µ in (8),(9) with (13) has the
desired effect of expressing the GEV model in terms
of the parameters (xp,σ ,ξ ).
Model validity. A probability plot is a comparison of
the empirical and fitted distribution functions. With
ordered block maximum data x1 ≤ x2 ≤ ... ≤ xm,
the empirical distribution function evaluated at xi is
given by
G
(

x(i)
)
= i

m+1
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By substitution of parameter estimates into (2), the
corresponding model based estimates are

Ĝ(xi) = {exp

[
−
(

1+ ξ̂
(

x(i)−µ̂
σ̂

))− 1
ξ

]
; ξ ̸= 0,

exp
[
−exp

(
−
(

x(i)− µ̂
σ̂

))]
; ξ ̸= 0.

We then construct plot consisting of the points.{(
G−1

(
x(i)
)
, Ĝ
(

x(i)
))

, i = 1,2, ...,m
}

A weakness of the probability plot for extreme value
models is that both G−1

(
x(i)
)

and Ĝ
(

x(i)
)

are
bound to approach 1 as x(i) increases, while it is usu-
ally the accuracy of themodel for large values of x that
is of greatest concern. That is, the probability plot pro-
vides the least information in the region of most in-
terest. This deficiency is avoided by the quantile plot,
consisting of the points{(

Ĝ−1
(

i
m+1

)
,x(i)

)
, i = 1,2, ...,m

}
If Ĝ is a reasonable estimate of G, then the quantile
plot should also consist of points close to the unit di-
agonal.

CONCLUSION
To estimate the value of a parameter in GEV we
can use classical methods of mathematical statistics
such as the maximum likelihood method or the least
squares method but they all require a certain number.
samples for verification. For the bootstrap method,
this is obviously not needed; here we use the limit the-
orems of probability theory andmultivariate statistics
to solve the problem even if there is only one sam-
ple data. That is the important practical significance
that our paper wants to convey. We used the boot-
strap method to process statistical data in hydrologi-
cal and used random calculations, R software for anal-
ysis data.
In the research of Cuong at. el.15. Regarding water,
salinity and flood peaks of theMekong Delta, we have
forecasted for the period up to 2020 based on data
from 1976 to 2016. But we still see that the data is not
long enough for more accurate forecasts, therefore we
will use bootstrap to increase data for Predictive An-
alytics problems.

LIST OF ABBREVIATION
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NPPI: Non-Parametric Plug-In
SB: Stationary Block Bootstrap
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