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ABSTRACT
Chaotic time series are widespread in several real world areas such as finance, environment, meteo-
rology, traffic flow, weather. A chaotic time series is considered as generated from the deterministic
dynamics of a nonlinear system. The chaotic system is sensitive to initial conditions; points that are
arbitrarily close initially become exponentially further apart with progressing time. Therefore, it is
challenging to make accurate prediction in chaotic time series. The prediction using conventional
statistical techniques, k-nearest-nearest neighbors algorithm, Multi-Layer-Perceptron (MPL) neural
networks, Recurrent Neural Networks, Radial-Basis-Function (RBF) Networks and Support Vector
Machines, do not give reliable prediction results for chaotic time series. In this paper, we investi-
gate the use of a deep learning method, Deep Belief Network (DBN), combined with chaos theory
to forecast chaotic time series. DBN should be used to forecast chaotic time series. First, the chaotic
time series are analyzed by calculating the largest Lyapunov exponent, reconstructing the time se-
ries by phase-space reconstruction and determining the best embedding dimension and the best
delay time. When the forecasting model is constructed, the deep belief network is used to feature
learning and the neural network is used for prediction. We also compare the DBN –based method
to RBF network-basedmethod, which is the state-of-the-artmethod for forecasting chaotic time se-
ries. The predictive performance of the two models is examined using mean absolute error (MAE),
mean squared error (MSE) and mean absolute percentage error (MAPE). Experimental results on
several synthetic and real world chaotic datasets revealed that the DBN model is applicable to the
prediction of chaotic time series since it achieves better performance than RBF network.
Keywords: Deep Belief Network, Restricted BoltzmannMachine, chaotic time series, RBF network,
forecasting

INTRODUCTION
Time series in several real world areas such as fi-
nance, environment, meteorology, and weather are
characterized as chaotic in nature. A chaotic time se-
ries is generated from the deterministic dynamics of
a nonlinear system ( 1,2). The chaotic system is sen-
sitive to initial conditions; points that are arbitrar-
ily close initially become exponentially further apart
with progressing time. Therefore, it is challenging to
make accurate prediction in chaotic time series. The
prediction using conventional statistical techniques,
k-nearest-nearest neighbors algorithm, Multi-Layer-
Perceptron (MLP) neural networks, Recurrent Neu-
ral Networks, Radial-Basis-Function (RBF) Networks
and Support VectorMachines (SVMs), do not give re-
liable prediction results for chaotic time series.
Deep learning models, such as Deep Belief Networks
(DBNs), have recently attracted the interest of many
researchers in some applications on big data analysis.
DBN is generative neural network model with many
hidden layers, introduced byHinton et al.3 alongwith

a greedy layer-wise learning algorithm. The building
block of a DBN is a probabilistic model called Re-
stricted Boltzmann Machine (RBM). DBNs and re-
stricted Boltzmann machines (RBMs) have already
been applied successfully to solve many problems,
such as classification, dimensionality reduction and
image processing.
There have been several research works of applying
DBNs to predict time series data in finance ( 4,5),
meteorology (6,7), and industry ( 8). However, so
far there have been very few works on applying
DBNs in forecasting chaotic time series. Kuremoto
et al. in 2014 [6] studied the application of a DBN
which composes RBMs and multi-layer perceptron
(MLP) to predict chaotic time series data. The hyper-
parameters of the deep network were determined by
particle swarm optimization (PSO) algorithm. De-
spite of the simple and effective structure for the pro-
posed DBN, there exist three weaknesses in this pa-
per. First, the paper does not make clear that the
DBN model is combined with chaos theory in deal-
ing with chaotic time series prediction. Second, the
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work has tested DBN model over only two synthetic
chaotic time series datasets: Lorenz and Henon Map.
The lack of testing the proposedmodel with real world
chaotic time series datasets cannot validate the high
performance of DBN model in practical applications
of chaotic time series prediction. Third, the work
compared DBN model with only MLP model, a sim-
ple form of shallow neural networks.
In this work, we present and evaluate extensively a
method of chaotic time series prediction using the
DBN model which has the same structure as given in
the paper9. However, there are three focus points in
our work which makes it different from the previous
work by Kuremoto et al. in 2014.
i) We combine the DBNmodel with the chaos theory,
namely phase space reconstruction, in dealing with
chaotic time series prediction.
ii) We compare the performance of DBN model to
that of Radial Basis Function (RBF) network, a special
kind of shallow neural networks which can bring out
better forecasting precision thanMLP neural network
in chaotic time series prediction10.
iii) To verify the effectiveness of DBN, we experi-
ment the performance of DBN over several bench-
mark chaotic time series datasets. In experiment,
we use three synthetic time series datasets: Lorenz,
Mackey-Class, Rossler and four real world time se-
ries datasets: Sunspots and some financial/economic
datasets. The predictive performance of the twomod-
els is examined using mean absolute error (MAE),
mean square error (MSE) and mean absolute per-
centage error (MAPE). Experimental results through
three evaluation criteria revealed that DBN outper-
forms RBF network in most of the datasets.
The remainder of the paper is organized as follows.
Section 2 provides some basic backgrounds about
DBN and chaos theory. In Section 3, the method us-
ing DBN for forecasting chaotic time series is intro-
duced. Section 4 reports the experiments to compare
the prediction accuracy of the DBNmethod to that of
the RBF network model. Finally, section 5 gives some
conclusions and future work.

BACKGROUNDAND RELATED
WORKS
Deep Belief Network
Restricted Boltzmann Machines (RBMs) are often
used to construct deeper models such as DBN. RBM
is a kind of stochastic artificial neural network with
two connected layers: a layer of binary visible units (v,
whose states are observed) and a layer of binary hid-
den units (h, whose states cannot be observed). The

hidden units act as latent variables (features) that al-
low the RBM to model probability distribution over
state vectors (see Figure 1). The hidden units are con-
ditionally independent given visible units. Given an
energy function E(v, h) on the whole set of visible and
hidden units, the joint probability is given by:

p(v,h) =
e−E(v,h)

Z
(1)

where Z is a normalization partition function, which
is obtained by summing up the energy of all possible
(v, h) configurations.

Z = ∑v,h e−E(v,h) (2)

For the binary units hi∈ {0, 1} and vi ∈ {0, 1}, the en-
ergy function of the whole configuration is:

E(v,h) =−cvT −bhT −hWvT

=−∑K
k=1 ckvk −∑J

j=1 b jh j −∑J
j=1 ∑K

k=1 W jkvkh j
(3)

where W is J × K matrix of RBM weights, c = [c1,
c2,…, cK] is the bias of the visible units and b = [b1,
b2,…, bJ] the bias of the hidden units. The marginal
distribution over v is:

p(v) = ∑h p(v,h) (4)

The posterior probability of one layer given the other
is easy to compute by the two following equations:

p(h,v) = ∏ j p(h j = 1|v) (5)

where p(h j = 1|v) = σ(b j +∑k W jkvk)

p(v,h) = ∏k p(vk = 1|h) (6)

where p(vk = 1|h) = σ(ck +∑ j W jkh j)

Notice that σ is the sigmoid function. Inference of
hidden factor h given the observed v can be done be-
cause h is conditionally independent given v.
A DBN is a generative model with an input layer
and an output layer, separated by l layers of hidden
stochastic units. This multilayer neural network can
be efficiently trained by composing RBMs in such a
way that the feature activations of one layer are used
as the training data for the next layer.
An energy-based model of RBMs can be trained by
performing gradient ascent on the log-likelihood of
the training data with respect to the RBMs param-
eters. This gradient is difficult to compute analyti-
cally. Markov Chain Monte Carlo methods are well-
suited for RBMs. One iteration of the Markov Chain
works well and corresponding to the following sam-
pling procedure:

v0
p(h0|v0)−−−−−→ h0

p(v1|h1)−−−−−→ v1
p(h1|v1)−−−−−→ h1
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Figure 1: Restricted Boltzmann Machine (RBM)

where the sampling operations are schematically de-
scribed. Rough estimation of the gradient using the
above procedure is denoted by CD-k, where CD-k
represents the Contrastive Divergence algorithm 3 for
performing k iterations of theMarkov Chain up to vk .

Chaos Theory
Given a univariate time series xt , where t = 1, 2,...,
N, the phase space can be reconstructed using the
method of delays1. The essence in this method is that
the evolution of any single variable of a system is de-
termined by the other variables with which it inter-
acts. Information about the relevant variables is thus
implicitly contained in the history of any single vari-
able. On the basis of this idea, an equivalent phase
space can be constructed by assigning an element of
the time series xt and its successive delays as coordi-
nates of a new vector.

Xt = {xt , xt+τ , xt+2τ , . . . , xt+(m−1)τ}

where Xt are the points of phase space, t is the delay
time andm is embedding dimension. The dimensionm
of the reconstructed phase space is considered as the
sufficient dimension for recovering the object with-
out distorting any of its topological properties, thus it
may be different from the true dimension of the space
where this object lies. Both the t and m parameters
must be determined from the time series.
To determine a reasonable time delayt, we can apply
the mutual information method proposed by Fraser
and Swinney11. To determine the minimum suffi-
cient embedding dimension m we can apply the false
nearest neighbor method proposed by Kennel et al.2.

To check whether a time series is chaotic or not, one
needs to calculate the maximal Lyapunov exponent.
Rosenstein et al.12 proposed amethod to calculate the
largest Lyapunov exponent from an observed time se-
ries.

RelatedWork
In our previous work10, we proposed an efficient
method of chaotic time series prediction using Radial
Basis Function (RBF) network, a special kind of shal-
low neural networks.
The RBF network is characterized by a set of inputs
and a set of outputs. Between the inputs and outputs
there is a layer of hidden units, each of which imple-
ments a radial basis function. Various functions have
been tested as activation function for RBF network.
Gaussian function is often used to activate the hid-
den layer. The nodes in the hidden layer operate on
the distance from an applied input vector to an inter-
nal parameter vector, called a center. The output layer
implements a weighted sum of hidden-unit outputs.
The mapping function is given by:

p j(X) = ∑n
i=1 wi jϕi (||X − ci||) (7)

for j = 1, 2,…, l, where X is the input m-dimensional
vector, p j(X) is the output of the j-th unit, wi j are the
output weight from the i-th hidden unit to the j-th
output unit, n is the number of hidden units, ϕi is the
i-th radial basis function at the i-th hidden node. If
Gaussian function is used as radial basis function, ϕi

is defined as follows.

ϕi (||X − ci||) = exp

(
−1

2

(
||X − ci||

σi

)2
)

(8)
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where ci is the center and σi is the width of the i-th
hidden unit, respectively.
RBF network is trained using unsupervised and
supervised learning methods. The unsupervised
method is implemented between input to hidden lay-
ers and supervised method is implemented from hid-
den to output layer. Clustering algorithms are capable
of finding cluster centers that best represents the dis-
tribution of data in the first stage of the training. There
are two alternative heuristics for finding width factors
(13)
In10, we compared the performance of RBF network
to that of MLP network on several real and synthetic
datasets of chaotic time series. Experimental results
revealed that RBF network with phase space recon-
struction outperforms MLP networks in chaotic time
series prediction.

DEEP LEARNINGMETHOD FOR
CHAOTIC TIME SERIES PREDICTION:
DBN
Inspired with the work by Kumemoto et al.9, we use
the DBN model which composes one or two RBMs
and MLP to forecast chaotic time series. The DBN
model is used for feature learning and the MLP is for
prediction. The forecasting DBN model is described
in Figure 2.
As for the number of input nodes (at the first visible
layer of RBM(s)) of DBN, we determine this param-
eter by using the embedding dimension (m) that we
obtained when applying the phrase-space reconstruc-
tionmethod for each chaotic dataset. Each input node
has one external input which represents the elements
of Xt , i.e., xt , xt+τ , xt+2τ , . . . , xt+(m−1)τ . That means
we combine DBNmodel with chaos theory in chaotic
time series prediction.
As for the activation function used in DBN, we use
RELU function which is described by the following
formula:

RELU(x) =

{
0 i f x < 0
x i f x ≥ 0

The training algorithm for our proposed DBN con-
sists of two stages: an unsupervised learning and a su-
pervised learning.
The unsupervised learning stage is the Contrastive
Divergence (CD) algorithm 3 used for training the
RBM(s). The CD algorithm progresses on a layer-by-
layer basis. First, a RBM is trained directly on the in-
put data. Hence, the neurons in the hidden layer of
the RBM can capture the important features of the in-
put data. The activations of the trained features are
then used as “input data” to train a second RBM.

The supervised learning stage is the back-propagation
algorithm used for training the MLP.

EXPERIMENTAL EVALUATION
In this experiment, we compare the DBN method for
chaotic time series forecasting to the method using
RBF network. We implemented the DBN forecasting
method with Tensorflow framework (using Python
language)14 and the RBF method with Microsoft Vi-
sual C#, .Net framework 4.5 and conducted the exper-
iments on a Core i5 2.4 GHz, RAM 8GB PC.
In this study, the mean absolute error (MAE), the
mean squared error (MSE) and the mean absolute
percentage error (MAPE) are used as evaluation crite-
ria. The formula for MAE, MSE and MAPE are given
as follows:

MAE = 1
n ∑n

t=1 |ŷt − yt |
MSE = 1

n ∑n
t=1 (ŷt − yt)

2

MAPE = 1
n ∑n

t=1
|ŷt−yt |

yt

where n is the number of observations, yt is the actual
value in time period t, and ŷt is the forecast value for
time period t.

Datasets and Parameter Setting
Themain purpose of this study is to evaluate the per-
formance of DBN in forecasting not only on syn-
thetic but also real world chaotic time series. This fol-
lows the tradition of evaluating the proposed meth-
ods in chaotic time series prediction. Here, the tested
datasets consist of 3 synthetic chaotic time series
datasets and 4 real world chaotic time series datasets.
All these datasets are commonly-used by the research
community in chaotic time series prediction. They are
described as follows.
1. This dataset is derived from the Lorenz system,
given by the three differential equations:

dx
dt

= a(y− x)
dz
dt

= xy− cz
dy
dt

= x(b− z)− y

(9)

where, a = 10, b = 28, and c = 8/3. This time series
consists of 1000 data points.
2. This dataset is derived from the Mackey-Glass sys-
tem, given by the following differential equation:

dx(t)
dt

=
ax(t − τ)

1+ xc(t − τ)
−bx(t) (10)

where a = 0.2, b = 0.1, c = 10, t = 17 and x0 = 1.2. This
time series consists of 1001 data points.
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Figure 2: A DBN with RBM(s) and MLP ( 9)

3. This dataset is derived from the Rossler system,
given by the three differential equations:

dx
dt

=−z− y
dz
dt

= b+ z∗ (x− c)
dy
dt

= x+a∗ y

(11)

where a = 0.15, b = 0.2 and c = 10. This time series
consists of 8192 data points.
4. Monthly sunspot numbers from January of 1749 to
March of 1977. (This dataset from the web site: http:/
/sidc.oma.be).This time series is in the field of astron-
omy and is a widely-used benchmark dataset in eval-
uation of several proposed methods for chaotic time
series prediction. It consists of 305 data points.
5. Monthly CPI (Consumer Price Index) in Spain
from January of 1960 to June of 2005. (This dataset
from: http ://www.bde.es/bde/en/). This time series
consists of 535 data points.
6. Monthly exchange rates US dollar/British Pound
(USD/GBP) from January 1981 to July of 2005. (This

dataset from the web site: http://www.bde.es/bde/en/
). This time series consists of 295 data points.
7. Daily close prices of IBM stock from June of 1959
to June of 1960. (This dataset from the web site: http:/
/datamarket.com/data/set/). This time series consists
of 255 data points.
Figure 3 shows the plots of the three synthetic
datasets. Figure 4 shows the plots of the four real
world datasets.
With four real world datasets (Sunspots, CPI,
USD/GBP, IBM) we use Lyapunov exponent to check
whether each of time series is chaotic or not. The
test shows that all four datasets possess the chaotic
characteristics.
In this work, we estimate the embedding dimension
and compute Lyapunov exponents by using the tseri-
esChaos package in the R software (website: https://C
RAN.R-project.org/package= tseriesChaos).
In the experiment, we use RBF network in two ver-
sions: RBF with chaos theory (denoted as RBF-2) and
RBF without chaos theory (denoted as RBF-1). For
RBF-2, we have to determine the embedding dimen-
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Figure 3: Three datasets: (a) Lorenz; (b) Mackey-Glass; (c) Rossler

Figure 4: Four datasets (a) Sunspots; (b) CPI; (c) USD/GBP; (d) IBM Stock prices

sion m and the time delay t for each chaotic time se-
ries.
For all datasets, the RBF has themaximum number of
learning iterations set to 1000. The parameter values
for two versions of RBF network with all datasets are
reported in Table 1. In Table 1, η3 is the learning rate
for output weights, η2 is the learning rate for centers
and η1 is the learning rate for width factors.
The parameter values of DBN model for all datasets
are reported in Table 2. As suggested in the paper9,

we set the number of RBMs in DBN model to 1 or
2. Except for Sunspots dataset, we use only one RBM
in DBN for all the datasets and use two RBMs only
for the Sunspots dataset. As for the number of input
nodes (at the first visible layer of RBM(s)) of DBN,
we determine this parameter by using the embedding
dimension (m) that we obtained when applying the
phrase-space reconstruction for each chaotic time se-
ries. That means the number of input nodes of the
DBN model is the same as that of RBF network with
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chaos theory (RBF-2) for each dataset. As for the
number units in hidden layer of RBM and the num-
ber of units in hidden layer of MLP and all the other
remaining parameters, we have to determine them
through experiment.
As for the CD-k algorithm to pre-train the DBN, we
set the number of iterations k to 2.
Each dataset is divided into two sets: training set and
test set. The training set and test set for each of the
seven datasets are given in Table 3.

Experimental Results
The experimental results on prediction accuracy are
reported in Table 4. The prediction errors of DBN
model are shown in column 3. The prediction errors
of the two versions of RBF networkmethod are shown
in the columns 4 and 5.
From the experimental results in Table 4, we can see
that the prediction errors MAE, MSE, MAPE of DBN
method are always much lower than those of the two
RBF methods in most of the tested datasets (5 out
of 7). That means the DBN method achieves the
best prediction accuracy for all seven datasets. How-
ever, for the USB/GBP dataset (length= 295) and IBM
dataset (length=255), DBN still brings out lowerMAE
andMSE errors, but hasMAPE error a little bit higher
than the two other methods. We conjecture that for
these two times series datasets of small size, DBN can-
not manifest its strength in comparison to RBF net-
work, a shallow form of neural networks. This ob-
servation implies that deep neural networks, such as
DBNs, can exhibit their superior performance espe-
cially in working with big data rather than small size
data.
The training times (in milliseconds) of the three
methods over seven datasets are given in Table 5.
FromTable 5, we can see that the training time ofDBN
is much higher than those of the two versions of RBF
method in most of the datasets.

DISCUSSION
In all experimented time series, RBF-2 model shows
better prediction performance than RBF-1 model.
This implies that by applying chaos theory (namely,
phase-space reconstruction), RBF-2 model outper-
forms RBF-1 model which does not use chaos theory
in chaotic time series prediction.
It should be noted that in this work the parame-
ters of RBF networks (RBF1, RBF2) and the hyper-
parameters of DBN model are selected only after a
few trial-and-error tests on a limited number of pa-
rameter values. As for DBN model, some previous
works pointed out that its hyper-parameters, such as

learning rate of RBM, the number of hidden units for
MLP, learning rate of MLP, etc. have a great influ-
ence on the performance of this deep learning model
(9). Therefore, the hyper-parameters of DBN model
should be fine-tuned to its optimum before it can be
used. One of the methods to handle this problem is
applying some meta-heuristics to find suitable values
of hyper-parameters in DBNs for forecasting time se-
ries.

CONCLUSIONS
In this paper, we present and evaluate extensively
a method using DBN in phase-space prediction of
chaotic time series. We compare the performance
of DBN with that of RBF network in three synthetic
datasets and four real world datasets of chaotic time
series. Experimental results obtained reveal that the
DBN method performs better than the RBF network,
a shallow form of neural networks, in most of the
datasets. Experimental results also show that deep
neural networks, such as DBNs, can exhibit their su-
perior performance especially in working with big
data rather than small size data.
As for future work, we intend to apply some meta-
heuristics such as Particle SwarmOptimization (PSO)
or Harmony Search in finding suitable values of
hyper-parameters in DBNs for forecasting chaotic
time series.
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MPL: Multi-Layer Perceptron
DBN: Deep Belief Network
SVM: Support vector machine
RBF: Radial Basis Function
PSO: Particle Swarm Optimization
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MSE: Mean squared error
MAPE: Mean absolute percentage error
CD: Contrastive Divergence
USD: United States Dollar
GBP: General British Pound
CPI: Consumer Price Index
IBM: IBM Stock Prices
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Table 1: Parameters of two versions of RBF network

Dataset RBF-1 RBF-2

Lorenz (5-5-0)
Error threshold: 0.001
η3: 0.1, η2: 0.00001, η1: 0.9

(10-10-1)
Error threshold: 0.001
η3: 0.015, η2: 0.00002, η1: 0.015
Time delay t : 7

Mackey-Glass (10-10-1)
Error threshold: 0.001
η3: 0.0025, η2: 0.0002, η1: 0.025

(10-10-1)
Error threshold: 0.001
η3: 0.2, η2: 0.3, η1: 0.3
Time delay t: 17

Rossler (10-10-1)
Error threshold: 0.001
η3: 0.02, η2: 0.0001, η1: 0.1

(10-10-1)
Error threshold: 0.001
η3: 0.04, η2: 0.02, η1: 0.01
Time delay t : 15

Sunspots (4-4-1)
Error threshold: 0.001
η3: 0.001, η2: 0.001, η1: 0.002

(5-5-1)
Error threshold: 0.0001
η3: 0.02, η2: 0.001, η1: 0.02
Time delay t: 2

CPI (2-2-1)
Error threshold: 0.0001
η3: 0.0045, η2: 0.0035, η1: 0.006

(2-2-1)
Error threshold: 0.0001
η3: 0.004, η2: 0.0048, η1: 0.0065
Time delay t: 77

USD/GBP (4-4-1)
Error threshold: 0.0001
η3: 0.004, η2: 0.003, η1: 0.009

(4-4-1)
Error threshold: 0.0001
η3: 0.04, η2: 0.003, η1: 0.01
Time delay t: 17

IBM (5-5-1)
Error threshold: 0.0001
η3: 0.004, η2: 0.0001, η1: 0.01

(5-5-1)
Error threshold: 0.0001
η3: 0.045, η2: 0.0001, η1: 0.009
Time delay t: 15
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Table 2: Parameters for DBN (RBM+MLP)

Dataset DBN (RBM+MLP)

Lorenz The max number of epochs for RBM: 100, Learning rate of RBM: 0.01,
The max number of epochs for MLP: 1500, The number of hidden units for MLP: 5
Learning rate of MLP: 0.03

Mackey-Glass The max number of epochs for RBM: 100, Learning rate of RBM: 0.01,
The max number of epochs for MLP: 1500, The number of hidden units for MLP: 10
Learning rate of MLP: 0.03

Rossler The max number of epochs for RBM: 20, Learning rate of RBM: 0.01,
The max number of epochs for MLP: 500, The number of hidden units for MLP: 10
Learning rate of MLP: 0.03

Sunspots The max number of epochs for RBM: 50, Learning rate of RBM: 0.05,
The max number of epochs for MLP: 2500, The number of hidden units for MLP: 5
Learning rate of MLP: 0.008

CPI The max number of epochs for RBM: 150, Learning rate of RBM: 0.01,
The max number of epochs for MLP: 1200, The number of hidden units for MLP: 2
Learning rate of MLP: 0.005

USD/GBP The max number of epochs for RBM: 400, Learning rate of RBM: 0.005,
The max number of epochs for MLP: 4000, The number of hidden units for MLP: 2
Learning rate of MLP: 0.0005

IBM The max number of epochs for RBM: 400, Learning rate of RBM: 0.01,
The max number of epochs for MLP: 4000, The number of hidden units for MLP: 2
Learning rate of MLP: 0.0005

Table 3: Training set and test set for each of 7 datasets

Dataset Length Training set Test set

Lorenz 1000 800 200

Mackey-Glass 1001 800 201

Rossler 8192 8000 192

Sunspots 305 288 17

CPI 535 481 54

USD/GBP 295 285 10

IBM 255 245 10
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Table 4: Prediction Errors of the threemethods over 7 datasets

Dataset DBN RBF-1 RBF-2

Lorenz MAE 0.012 4.15 1.18

MSE 0.000002 20.32 2.51

MAPE 0.47% 45.4‘% 18.35%

Mackey-
Glass

MAE 0.0047 0.14 0.01

MSE 0.000035 0.03 0.013

MAPE 0.78% 16.43% 11.89%

Rossler MAE 0.000112 3.63 1.94

MSE 0.000006 17.52 6.42

MAPE 0.35% 137.17% 51%

Sunspots MAE 0.0392 33.80 10.82

MSE 0.0026 1843.37 150.61

MAPE 18.69% 72.27% 20.49%

CPI MAE 0.0047 2.13 1.84

MSE 0.000036 5.49 4.46

MAPE 0.52% 1.91% 1.66%

USD/GBP MAE 0.0023 0.15 0.01

MSE 0.00018 0.00027 0.0003

MAPE 4.87% 2.12% 1.59%

IBM MAE 0.03 14.35 5.49

MSE 0.001608 257.647 41.46

MAPE 3.51% 2.49% 1.06%

Table 5: Training time of the threemethods on 7 datasets

Dataset DBN RBF-1 RBF-2

Lorenz 513000 133 4905

Mackey-Glass 151000 362 191

Rossler 395000 362 191

Sunspots 66500 1028 3363

CPI 122000 336 2189

USD/GBP 184000 36 57

IBM 219000 637 534
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TÓM TẮT
Dữ liệu chuỗi thời gian có tính hỗn loạn xuất hiện nhiều trong các lãnh vực ứng dụng thực tế như
tài chính, môi trường, khí tượng thủy văn, giao thông, thời tiết.v.v. Chuỗi thời gian có tính hỗn loạn
được xem như sinh ra từ chuyển động tất định của một hệ thống phi tuyến. Một hệ thống có tính
hỗn loạn thường nhạy cảm với những điều kiện ban đầu: những điểm mà ngẫu nhiên ban đầu
gần nhau lại trở nên cách xa nhau với mức độ tăng hàm mũ theo thời gian. Do đó dự báo dữ liệu
chuỗi thời gian có tính hỗn loạn là một công tác đầy thách thức. Công tác dự báo sử dụng các kỹ
thuật thống kê truyền thống, giải thuật k-lân cận gần nhất, mạng perceptron đa tầng (MPL), mạng
nơ ron hồi quy, mạng hàm căn bản xuyên tâm (Radial-Basis-Function-RBF) và máy vector hỗ trợ,
thường không đem lại kết quả dự báo đáng tin cậy đối với chuỗi thời gian có tính hỗn loạn. Trong
bài báo này, chúng tôi khảo sát bằng thực nghiệm việc dự báo dữ liệu chuỗi thời gian có tính hỗn
loạn bằng cách kết hợp mạng nơ ron học sấu Deep Belief Network (DBN) với lý thuyết hỗn loạn.
Mạng nơ ron DBN nên được dùng để dự báo chuỗi thời gian có tính hỗn loạn. Đầu tiên, chuỗi thời
gian có tính hỗn loạn được phân tích bằng cách tính số mũ Lyapunov cực đại, tái cấu trúc chuỗi
thời gian dựa vào xây dựng không gian pha và xác định số chiều nhúng và độ trễ thời gian tốt nhất.
Chúng tôi so sánh phương pháp đề xuất với mạng nơ ron RBF, một phương pháp hiệu quả để dự
báo dữ liệu chuỗi thời gian có tính hỗn loạn. Chất lượng dự báo của hai mô hình được khảo sát
dựa vào các tiêu chí đánh giá: sai số tuyệt đối trung bình (MAE), sai số bình phương trung bình
(MSE) và sai số phần tram tuyệt đối trung bình (MAPE). Kết quả thực nghiệm trên nhiều bộ dữ liệu
chuỗi thời gian tổng hợp và chuỗi thời gian thực tế có tính hỗn loạn cho thấy phương pháp sử
dụng mạng Deep Belief Network hữu dụng cho việc dự báo dữ chuỗi thời gian có tính hỗn loạn vì
phương pháp đem lại độ chính xác dự báo cao hơn mạng nơ ron RBF.
Từ khoá: Mạng Deep Belief Network, Máy Boltzmann Giới Hạn, chuỗi thời gian có tính hỗn loạn,
mạng RBF, dự báo
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