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ABSTRACT
The post-genomic era consists of experimental and computational efforts to meet the challenge
of clarifying and understanding the function of genes and their products. Proteomic studies play
a key role in this endeavour by complementing other functional genomics approaches, encom-
passes the large-scale analysis of complex mixtures, including the identification and quantification
of proteins expressed under different conditions, the determination of their properties, modifica-
tions and functions. Understanding how biological processes are regulated at the protein level is
crucial to understanding the molecular basis of diseases and often highlights the prevention, di-
agnosis and treatment of diseases. High-throughput technologies are widely used in proteomics
to perform the analysis of thousands of proteins. Specifically, mass spectrometry (MS) is an ana-
lytical technique for characterizing biological samples and is increasingly used in protein studies
because of its targeted, nontargeted, and high performance abilities. However, as large data sets
are created, computational methods such as data mining techniques are required to analyze and
interpret the relevant data. More specifically, the application of data mining techniques in large
proteomic data sets can assist in many interpretations of data; it can reveal protein-protein inter-
actions, improve protein identification, evaluate the experimental methods used and facilitate the
diagnosis and biomarker discovery. With the rapid advances in mass spectrometry devices and
experimental methodologies, MS-based proteomics has become a reliable and necessary tool for
elucidating biological processes at the protein level. Over the past decade, we have witnessed a
great expansion of our knowledge of human diseases with the adoption of proteomic technolo-
gies based on MS, which leads to many interesting discoveries. Here, we review recent advances
of data mining in MS-based proteomics in biomedical research. Recent research in many fields
shows that proteomics goes beyond the simple classification of proteins in biological systems and
finally reaches its initial potential – as an essential tool to aid related disciplines, notably biomedi-
cal research. From here, there is great potential for data mining in MS-based proteomics to move
beyond basic research, into clinical research and diagnostics.
Key words: bioinformatics, biomedical research, data mining, mass spectrometry, proteomics

INTRODUCTION
Proteomics encompass a broad range of technologies
that allows the identification and the quantification
of proteins in complex biological specimens. Pro-
teomics approaches rely on the ability to detect small
changes in protein abundance of an altered state given
a control or reference condition. Thus, the identifi-
cation and quantification of differences between two
or more physiological states of a biological system
can be defined as changes on the control sample, de-
termining the up- or down-regulation of such pro-
tein1. These approaches have been extensively ap-
plied in biomedical research for the understanding
of diseases, including protein-based biomarker dis-
covery for early detection and monitoring of differ-
ent types of cancer2, the analysis of abnormal protein
phosphorylation patterns associated with diseases 3

and the identification of therapeutic targets4.

There are many technologies used to extract protein
information from biological samples. These tech-
niques cover a range of approaches and quality of
extracted data. Commonly used techniques include
two-dimensional gel electrophoresis, enzyme-linked
immunosorbent assay (ELISA), protein arrays, affin-
ity separation and mass spectrometry (MS) technolo-
gies. Many of thesemethods, such as gel electrophore-
sis and ELISA are limited in the number of proteins
they can analyze because of time-consuming process.
They also require specific proteins be selected dur-
ing the design of the study and proper available anti-
bodies; this can be a challenge for non-model organ-
isms. Meanwhile, MS-based proteomics has become
a widely used high throughput method to investigate
protein expression and functional regulation. From
being able to study only dozens of proteins, state-of-
art MS proteomic techniques are now able to identify
and quantify ten thousand proteins5.
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MS is used to measure the mass-to-charge (m/z) ra-
tio of molecules. However, the molecules must first
be electrically charged and transformed into a gas
phase due to electromagnetic fields (Figure 1). Elec-
trospray ionization is a commonly used method for
the ionization of molecules. However, other methods
are increasingly popular, including matrix-assisted
laser desorption/ionization (MALDI) and surface-
enhanced laser desorption ionization (SELDI). Once
themolecules have been transformed into a gas phase,
their m/z ratios are measured by their motion in an
electric ormagnetic field, this occurs inmass analyzer.
There are different types of mass analyzers, includ-
ing quadrupole systems, time of flight, ion trap and
fourier transform. Each of these systems has differ-
ent strengths and weaknesses, such as the m/z value
range that can be detected and the mass spectromet-
ric resolution. Once measured, the m/z values are
displayed as mass spectra, describing the molecules
present through the peaks at corresponding m/z val-
ues6.
In recent years, with advances in instrumentation
and detection techniques, MS has been applied more
widely in various areas, including pharmacology and
biomedical practice. However, the more the sensi-
tivity, accuracy and performance of MS analysis are
improved, the more the quantity, dimensionality, and
complexity of the data sets generated by MS have in-
creased significantly. In order to interpret this huge
amount of data efficiently, there is growing interest in
applying informatics technology based on data min-
ing algorithms to meet current demand.
The aim of this article is to give a brief overview how
data mining algorithms could help processing com-
plex MS-based proteomics data, to provide a valuable
molecular insight into different biological specimens,
and make MS techniques more versatile and trans-
latable in solving biomedical problems. First, we in-
troduce the field of data mining in proteomics stud-
ies and highlight the essential concepts. Then spe-
cific implementations of data mining algorithms are
reviewed, ordered by the steps in a typical workflow.
Thereafter, challenges of standardization databases
and softwares availability are mentioned. Finally, ap-
plication of MS-based proteomics in biomedical, as
well as limitations and future perspectives of this ap-
proach are discussed.

MS-BASED PROTEOMICS ANDDATA
MINING
In proteomics, mass spectrometry is increasingly used
in studies because of its specific and high performance

capabilities. The most commonly used method of MS
for protein identification is known as the “bottom-up”
approach. Using this approach, the molecules mea-
sured are peptides generated by the enzymatic diges-
tion of peptides in a sample. The resulting spectra of
the fragmented peptides, known as MS tandem spec-
tra (MS/MS), are generated where the peaks describe
the amino acids present in the peptides. However,
this only provides the identifications of the peptides
present in the sample after enzymatic digestion and,
therefore, it is still necessary to work from the known
peptides to predict which proteins were originally
present in the sample. The “bottom-up” approach
contrasts with the “top-down”approach, for whichMS
is used to directly analyze undigested proteins, by ion-
ization and dissociation of intact mass spectrometer
proteins. This approach may be more specific than
“bottom-up”, but it has higher experimental require-
ments and requires more complex tools to be applica-
ble to a global analysis7.
Data mining techniques have been widely used to an-
alyze data from many areas of biology; in particu-
lar, various machine learning methods have been ap-
plied to data generated by analytical techniques of ge-
nomics, transcriptomics andmetabolomics to classify
unknown samples and identify genes relevant to the
state of the disease. Currently, similar methods are
applied in the field of proteomics, and more specif-
ically, in the analysis of data generated by MS 8. In
many studies, MS generates large data files contain-
ing lists of many peaks. Implementing data mining
methods therefore is necessary for the identification
of proteins related to the interested peaks and to com-
pare the samples. In most cases, the analysis of MS
data follows the paths summarized in Figure 2.

Basic Steps in MS-Based Proteomics Data
Mining
As mentioned above, the use of MS yields a huge
amount of data, where the number of characteristics
(peaks) is larger than the number of samples. MS
data are typically composed of hundreds to thousands
of protein peaks. These data can not be analyzed
manually or managed by normal data mining tools.
In search of adequate tools to analyze available data
and extract useful information, proteomics scientists
are increasingly rely on advanced data mining tech-
niques that can address issues such as thewide dimen-
sionality and limited data sets. These advanced tech-
niques include machine learning and artificial intelli-
gence. Current practices of data mining in MS-based
proteomics include following steps: Firstly, data was
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Figure 1: Illustration of mass spectrometry process 6 .

Figure 2: Typical process of MS based proteomics
studies.

modeling using identified peaks by pre-processing
and feature selection. Then, data sampling was care-
ful applied to process the typical small sample size of
MS data. Lastly, the performance of generated model
was evaluated.

The critical phasesmentioned abovemust be carefully
treated by proteomics researchers to get correct and
robust decision models. The steps are repeated itera-
tive and changes are made to explore different aspects
of the data. Figure 3 describes the typical flowchart in
data mining.

Figure 3: Typical flowchart of the critical steps in
data mining.

Pre-processing
Raw data obtained from MS is often disturbed. The
purpose of pre-processing is to improve data qual-
ity. The results of the classification algorithms will be
misleading and will be negatively affected when data
quality is poor. Therefore, data pre-processing are
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crucial in the analysis of untreated proteomics data.
Many published studies used the software provided
by the manufacturer for pre-processing9. The soft-
ware detects the positions and intensities of the pro-
teins in the samples and performs important pretreat-
ment steps such as first subtraction, intensity normal-
ization, alignment, and peak detection. The criteria
specified by the operator are used to filter the peaks.
To date, there was no study has been conducted to
compare the effectiveness of available reduction tech-
niques and it seems that researchers are optimizing
this step in a heuristic way that works best with their
own datasets. Although most studies focus on to cut
low-frequency noise in spectra, many attempts have
also been made to characterize and subtract high-
frequency noise components10.
With the reduction of the baseline complete, stan-
dardization is the next step. Since a peak in a spec-
trum only describes the relative amount of a pro-
tein, normalization is performed to make sure mean-
ingful comparisons between the spectra. After pre-
processing, obtained peaks are further analyzed by ex-
tra size reduction techniques.

Feature Extraction
Feature extraction involved selection of spectra to
find peaks (or characteristics) and is usually done by
grouping. According to this, each group ofm/z points
entering a container is described by a value, such as its
average or greatest intensity. Subsequently, the char-
acteristics of these containers, such as m/z tray posi-
tion and estimated intensity, are used as features for
data mining. The containers can be independent or
overlapping, of equal or adaptive size. By changing
the size of containers and grouping method, the re-
searcher can empirically optimize the feature extrac-
tion process. Selecting and using only those features
important to the modeling process makes the entire
data extraction process more accurate and efficient.
The data mining algorithm would be faster for a set of
data composed of smaller and more significant peaks
and give simple and meaningful results. Therefore, it
is essential to eliminate irrelevant and redundant fea-
tures to create better models. However, it must be
kept in mind that the function selection process does
not always guarantee a correct selection of peaks for
the classification problem. Therefore, it is necessary
to validate the selected functions when increasing the
size of the data sample11.
Advances inmachine learning have led to develop au-
tomatic function selection tools. There are two types
of feature selection techniques today. A first type an-
alyzes each function independently and removes the

functions one by one depending on the relationship
between the function and the goal12. Selecting in-
dependent features is a simple, straightforward and
fast process. However, it often happens that a group
of entities is more correlated with the desired out-
put. Therefore, the hypothesis of independence of the
characteristics can be rather limiting. To overcome
the above limitation, some techniques have been pro-
posed to select characteristics in which characteristics
are analyzed in groups/subsets 12. The correlation be-
tween the groups of characteristics is considered to
the destination output. Although the process requires
a lot of computation, it exploits the interrelations of
important characteristics when it discovers critical in-
formation generally lost during the analysis of inde-
pendent characteristics.

Classification andDataModelling
Humans and animals gain the ability to learn through
interaction with the environment. Data learning has
been an area of interest for researchers in statistics and
computer science1. Machine learning algorithms can
infer a sample of data through familiarization and re-
peated interaction with the data. These algorithms
vary in their training techniques, their end goal and
correspond data. A wide range of algorithms for ma-
chine learning has been developed. Some popular al-
gorithms are summarized and compared in Table 1.
A learning process normally includes the task of
learning and developing rules or functions from the
data set provided by the samples. The development
of mathematically precise rules and functions to de-
scribe data is called data modeling. The expanded
model identifies the properties of the different classes
and what separates them for proper classification. In
the next phase, called the test, the developed model
is validated with new observations to verify that the
model produces accurate results. The learning phase
and the model estimation are implemented and de-
scribed using different learning methods or algo-
rithms.
There are two types of machine learning algorithms:
supervised and unsupervised. In supervised learn-
ing (also called ”learning with a teacher”), there is a
earlier knowledge of the class to which each case be-
longs (sample). The training data set includes the in-
put values and the associated output classes (provided
by the master). During the learning phase, learning
data is used to decide how entities will be selected,
weighted, and combined to distinguish classes. The
test phase involves the application of weighted char-
acteristics to classify new test data whose class is un-
known and which the decision model has never seen
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before. Therefore, the goal of the classification meth-
ods is to create dataset models by hand and use this
model to classify new samples. The learning process
would create of a model so that model predictions
come close to the desired goal. If the model is able to
correctly classify new data, we have reason to believe
that it is a good model5. The most widely used su-
pervised learning algorithms are Bayesian classifiers,
Rule-based learners and Support Vector Machines.
In unsupervised learning (also called ”learning with-
out a teacher”), the group to which each sample be-
longs is unknown or ignored and the data is grouped
according to similarity measures. The learning pro-
cess does not involve a teacher and the algorithmmust
identify the models in the data. Unsupervised learn-
ing can often lead to more than one possible solution.
Artificial Neural Networks are typical examples of un-
supervised learning used in studies analyzing mass
spectroscopy data 13.
In both learning techniques, the goal is to predict
(classify) or describe data by developing data mod-
els, which are then used to classify or describe new
cases. If the data has only two or three characteris-
tics, it would be easy to classify the data. However,
developing models can be a daunting task if there are
many features to analyze. Large data is not only diffi-
cult to visualize, but all possible combinationsmust be
taken into account through comprehensive research
techniques during the model training phase. A large
number of dimensions with very few samples leads to
what is often called over-regulation or over-training.
Excessive regulatory models can not generalize and
classify new cases with the desired accuracy.

Data Sampling
One of the major challenges in applying machine
learning algorithms to biomedical data is the val-
idation of an experimented model with new test
data. The decision modeling process requires that the
model be developed by training a given set of data
(training set), followed by validation of the model in
another dataset never seen before during the training
(test set). The obvious way to handle this is to split
the data into tests and series before constructing the
model using stratified random sampling. However,
medical data is often very difficult and expensive to
acquire. As a result, there are not enough cases avail-
able to be divided into subsets of train tests. In addi-
tion, the disturbance inherent in most medical data
and the complex relationships between characteris-
tics require a sample of sufficient size to efficiently
model the data. In addition, the size of the test set

controls statistical power and confidence in the devel-
oped decision model. As a result, sophisticated sam-
pling strategies are needed to capitalize on the avail-
able data.
Cross-validation is one of the most widely used data
resampling methods to assess the generalization abil-
ity of a predictive model and to prevent overfitting19.
The data is randomly divided into two sets. The deci-
sion model is formed in the first and tested in the sec-
ond. This random division process is repeated several
times to reduce the selection bias. The average of all
test estimates provides the average error of the model.
If the dataset used for the training is too small, the
model may not be able to predict the test cases well.
A small series of tests may not result in a validated
classifier and may generate a high error rate. As a re-
sult, different train test reports are examined (for ex-
ample, 50-50%, 75-25%, etc.) with cross-validation.
A common implementation is cross-validation of k-
folds. The data is partitioned into k-disjoint sets. The
training of the classifier is performed in sets k-1 and
tested in a set of remaining data. This is done for all
k-subsets producing k patterns and the estimated er-
ror will be the average of the error rates k. For exam-
ple, a 10-fold cross-validation divides the data into 10
groups. Nine groups are used for training and tests are
performed in the left group. This is repeated 10 times
until each of the 10 groups has served as a test group.
The average test error of the 10 groups is the estima-
tion of the final test error and gives a rough idea of the
quality of the model for the classification of the data.
To conclude, effective classification methods by MS
data could contribute to early and less-invasive diag-
nosis and also facilitate developments in the bioinfor-
matics field. As protein MS data growing with data
volume becomes complicated and large; improve-
ments in classification methods in terms of classifier
selection and combinations of different algorithms
and preprocessing algorithms aremore emphasized in
further work20.

Performance Assessment
The last phase of the data mining process is the as-
sessment of the models developed by the previously
describedmachine learning algorithms. The accuracy
of the classification is calculated by taking the ratio of
the number of correctly classified samples to the total
number of samples in the test data. However, when
the prevalence of a particular class is higher than that
of another class, the majority class will distort the re-
sult. In such a scenario, measuring accuracy can be
misleading21.
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Table 1: Comparison of some commonly usedmachine learning algorithms

Algorithm Descriptions Advantages and disadvan-
tages

Bayesian
classi-
fiers 14

Based on Bayes’ theorem with an assumption of independence among the
predictors, making it particularly useful for large datasets. Despite its sim-
plicity, Bayesian classifiers oftenworks surprisingly well and is widely used
because it often goes beyond the most sophisticated classification meth-
ods.

Fast and easy to imple-
ment. This method is suit-
able fordatasets with miss-
ing values. The main dis-
advantageis it assumes at-
tributes are independent of
each other.

Rule-based
learners 5

Rule-based learners is a computer term used to understand any machine
learningmethod that identifies, learns, or develops ”rules” for storing, ma-
nipulating, or applying. The defining feature of a rule-based machine stu-
dent is the identification and use of a set of relational rules that collectively
represent the knowledge acquired by the system.

The rules generated are eas-
ilyreadable, and is suitable
for identification of puta-
tive biomarkers, however
there isa possibility of over-
fitting.

Decision
trees 15

The decision tree methodology is a commonly used data extraction
method for establishing classification systems based on multiple covari-
ates or for developing prediction algorithms for an objective variable. This
method classifies a population into branch-like segments that build an in-
verted tree with a root node, internal nodes, and terminal nodes.

The output from decision
trees can be easily inter-
preted, but it does depend
on the algorithm used and
the complexity of the tree
generated. It is also well
suited to datasets withmiss-
ing values.

Random
forest 16

Random forests are common learning methods for classification, regres-
sion and other activities that work by building amultitude of decision trees
at the time of training and leaving the class that is the class mode (classi-
fication) or predicting the mean (regression) of individual trees. Random
forests correct the habit of supercharging decision trees in their training
set.

This method is efficient
on large datasets and can
handlelarge numbers of
attributes, however it is not
verysensitive to outliers.

Support
Vector
Machines
(SVMs) 17

SVMs are machine learning algorithms that analyze the data used for re-
gression and classification analysis. Using a set of learning examples, each
of which falls into one of two categories, an SVM learning algorithm con-
structs a model that assigns new examples to a category or another, mak-
ing it a non-probabilistic binary linear classifier. An SVMmodel is a rep-
resentation of space point examples, assigned so that the examples of dis-
tinct categories are divided by the largest possible gap. Thus, the new ex-
amples are assigned to this same space and should belong to a category
based on the side of the hole in which they are located.

SVMs uses kernels to learn
complex functions, how-
ever they are very slow and
there are multiple param-
eters to be chosen by the
user.

Artificial
Neural
Networks
(ANNs) 18

ANNs are computer models composed of several simple processing units
that communicate by transmitting signals via a large number of weighted
connections. Like human brains, neural networks also consist of treat-
ment units (artificial neurons) and connections (weights) between them.
The processing units carry the incoming information on their outgoing
connections to other units. The ”electrical” information is simulated with
specific values stored in the weights that allow these networks to learn,
memorize and create relationships between the data. A very important
feature of these networks is their adaptive nature, inwhich ”learning by ex-
ample” replaces ”programming” to solve problems. After training, ANNs
can be used to predict the outcome of new independent input data.

ANNs use a multilayer per-
ceptron to learn complex
functions. The output of
ANNs are not able to be
read and the training of the
model can be very slow.
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In samples of two classes, there are four possible out-
comes when testing the decision model. These are
real positive results, true negatives, false positives and
false negatives. Sensitivity (actual positive rate) is the
ratio of the number of correctly graded positive sam-
ples to the total number of positive samples. High
sensitivity is highly desirable in medical diagnosis,
where the impact of a prediction incorrectly indicates
that a sick person is in good health. The false pos-
itive rate is the probability that a healthy person is
wrongly classified as a sick person (so-called speci-
ficity). High specificity is desirable when a false alarm
leads to unwanted tests and elaborate treatments. Ide-
ally, for a perfect classification, sensitivity and speci-
ficity must be equal to 1 (100%). Clinically acceptable
sensitivity and specificity depend on the application.
Several studies reported their results using sensitivity
and specificity as performance indices22. The main
limitation of the use of sensitivity and specificity as
the only indices of evaluation is their dependence on
the prevalence of class and decision threshold. It is
therefore difficult to directly compare the results of
reported studies using only the sensitivity and speci-
ficity measures.

Standards and Databases
Driving by improvements in speed and resolution
of MS in the field of proteomics, which involves
the large-scale detection and analysis of proteins in
cells, tissues and organisms, continues to expand in
scale and complexity. There is a resulting growth in
datasets of both raw MS files and processed peptide
and protein identifications. MS-based proteomics
technology is also used increasingly to measure ad-
ditional protein properties affecting cellular function
and disease mechanisms, including post-translational
modifications, protein–protein interactions, subcel-
lular and tissue distributions. Consequently, biolo-
gists and clinicians need innovative tools to conve-
niently analyse, visualize and explore such large, com-
plex proteomics data and to integrate it with genomics
and other related large-scale datasets. The main chal-
lenge for big data mining then would be how we can
achieve a transition from association study to causal-
ity study. From this point of view, standarization of
data provides a new way for system-wide study and
could play a key role in such a transition in big-data
era.
For MS-based proteomics, the Standards Initiative
Proteomics of the Human Proteome Organization
(HUPO-PSI) is an organization that plays a pioneer-
ing role in development of standard terminologies,

file format and minimum requirements for MS based
proteomics data23. The most common formats are:
(i) mzML, which stores raw MS data, as well as
the peak list of the processed spectrum 24; (ii) mzI-
dentML, which has information on peptides and pro-
teins obtained fromMSdata 25; and (iii)mzQuantML,
which has detailed quantitative information26. While
mzML and mzIdentML have been applied for a long
time, standards for quantitative data are still rarely ap-
plicable. This is mainly due to the lack of quantitative
standard support from popular analysis tools.
The need for large and easily accessible data repos-
itories is essential for the benefit of proven data ex-
change in other research areas such as genomics and
transcriptomics. Public databases will integrate data
obtained from many laboratories and as a result, data
can be analyzed by applying a new tools or new algo-
rithms. Therefore, some public databases have been
developed, for example, the PRIDE Archive27, GP-
MDB28, PeptideAtlas29, Massive30 and the Human
Proteome Map31 (Table 2). These databases are de-
signed to provide a user-friendly interface, featuring
graphical navigation with interactive visualizations
that facilitate powerful data exploration in an intu-
itive manner. Moreover, they also offer a flexible and
scalable ecosystem to integrate proteomics data with
genomics information, RNA expression and other re-
lated, large-scale datasets.
Because of the nature of biological data, conducting
research in life science to some extent has to change
its style in the era of big data, e.g., from academic ex-
ploration individually to more cooperative study in
systematic, standardized and pipelining ways. The
main challenges here could be to establish interoper-
able databases, make sustainable tools available to the
research community, create tool development centers,
construct resources and infrastructure, such as cloud
computing to serve the huge amount of researches,
generate standards, vocabularies and ontologies of big
biological data, develop new systems of infrastruc-
ture and tools, and obtainbuy-in from the scientific
community, such as cloud service. Clearly, aforemen-
tioned challenges can be solved in a more engineer-
ing manner, and a well-designed experiment system
matching some systematic, standardizing data pro-
cessing pipe-line will be an important factor for a suc-
cessful study.

Softwares and Tools
Many computer programs have been developed for
the analysis of MS-based proteomics data 32,33. Be-
sides the available software, many useful tools have
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Table 2: MS-based proteomics database (available on internet, accessed by November 15, 2019).

Databases Descriptions URL Address

Chorus A Sustainable Cloud Solution forMass Spectrometry
Data

https://chorusproject.org/

GPMDB Open source system for analyzing, validating, and
storing protein identification data

http://gpmdb.thegpm.org/

Human Proteome
Map

An interactive resource to the scientific community
by integrating the massive peptide sequencing result
from the draft map of the human proteome project.

http://www.humanproteomemap.org/

jPOST Japan ProteOme STandard Repository/Database https://jpostdb.org/

MassIVE A community resource developed by the NIH-
funded Center for Computational Mass Spectrom-
etry to promote the global, free exchange of mass
spectrometry data

https://massive.ucsd.edu/

PeptideAtlas A resource for target selection for emerging targeted
proteomics workflows

http://www.peptideatlas.org/

PRIDE Archive The proteomics identifications database https://www.ebi.ac.uk/pride/archive/

ProteomicsDB A protein-centric in-memory database for the ex-
ploration of large collections of quantitative mass
spectrometry-based proteomics data.

https://www.proteomicsdb.org/

also been reported in the programming languages
of BioPython34, BioJava35 and BioPerl36. Further-
more, various bioinformatic tools used to data con-
version, quantification, visualization and identifica-
tion of peptides/proteins have also been noted (http
://tools.proteomecenter.org/; http://wiki.nbic.nl/inde
x.php/ProteomicsTools; http://www.msutils.org/wik
i/pmwiki.php/Main/SoftwareList). Some tools has a
role as components of larger platforms to form mas-
ter data processing processes (Table 3).
Alternatively, there is a large number of software pack-
ages for the analysis of quantitative proteomics data,
available in both commercial and free distributions
(Table 4). This list is intended to serve as a useful
reference and guide to the selection and use of differ-
ent pipelines to perform quantitative proteomics data
analysis depending on the type of instrument, method
or platform used.
Some excellent reviews on existing software are avail-
able, such as37–39. For instance, in37, three differ-
ent software platforms, Progenesis, MaxQuant and
Proteios were compared for peptide-level quantifica-
tion in shotgun proteomics using a spike-in peptide
data set with two different spike-in peptide dilution
series. The performance of the software workflows
was evaluated with different metrics, including har-
monic mean of precision and sensitivity, mean ac-
curacy, coverage and the number of unique peptides
found37. The comparison suggested that Progenesis

performed best, but a noncommercial combination of
Proteios with imported features fromMaxQuant also
performed well37. Algorithms, such as peak picking
and retention time alignment, usually includedwithin
a quantitative shotgun proteomics label-free work-
flow, have also been evaluated and compared sepa-
rately40–42. While such separate comparisons are in-
teresting and the evaluation by Chawade et al.37 is in-
formative, a thorough comparison of multiple work-
flows on protein level is still missing, especially in
terms of differential expression analysis. Here, some
of the most popular free software applications applied
to proteomics profiling biomarker discovery and clus-
ter analysis will be mentioned.

MaxQuant
MaxQuant is a quantitative proteomics software
package designed for analyzing large-scale mass-
spectrometric data sets, developed by the Max Planck
Institute of Biochemistry 43. It supports all main la-
beling techniques like SILAC, Di-methyl, TMT and
iTRAQ aswell as label-free quantification. MaxQuant
is a comprehensive software that performs several
analysis steps: a) Peak detection and scoring of pep-
tides: MaxQuant corrects systematic inaccuracies of
measured peptide masses and corresponding reten-
tion times;b) Mass calibration: It detects mass and
intensity of peptide peaks in MS spectra and assem-
ble them into 3D peak hills over m/z retention time
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plane, followed by filtration to identify isotope pat-
terns; c) Database searches for protein identification:
Peptide and fragment masses (in case of an MS/MS
spectra) are searched in anorganism specific sequence
database, and are then scored by a probability-based
approach termed peptide score d) Protein quantifica-
tion: High mass accuracy is achieved by weighted av-
eraging and through mass recalibration. The software
is written in C# and freely available on http://www.co
xdocs.org.

PEAKS
PEAKS Studio performs LC-MS/MS data analysis and
statistics according to the experimental design. Fol-
lowing the identification of peptides with MS/MS
spectra, the resulting peptide sequences are used
to determine the original protein components of
the samples. PEAKS studio main features include:
a) Peptide/Protein identification: de novo sequenc-
ing, database search, post-translational modification
(PTM) search with 500+modification, sequence vari-
ant and mutation search; b) Protein quantification
in complex biological samples: Label-free, label-
based: TMT (MS2, MS3)/iTRAQ, SILAC, 18O label-
ing, ICAT and c) Supporting fragmentation types:
CID, HCD, ETD/ECD, EThcD, IRMPD, and UVPD.
PEAKS Studio is licensed commercially by Bioinfor-
matics Solutions Inc.44 and a free trial available on ht
tp://www.bioinfor.com/download-peaks-studio/.

OpenMS
OpenMS is an open-source software C++ library for
LC/MS data management and analyses, developed at
the Free University of Berlin, the University of Tübin-
gen, and the ETH Zurich45. It provides a large num-
ber of tools (more than 200) to analyze proteomics
datasets, in the form of command lines. These tools
can perform the following tasks: a) Import, export
and conversion of vendor formats and several open
community-driven XML formats; b) Preprocessing of
spectra: Filtering based on various properties, Peak
picking, Baseline and noise filtering; c) MS2 spec-
trum identification: Support for third-party peptide
search engines, own customisable and extensible ba-
sic search engine, indexing of peptides in custom pro-
tein databases with SeqAn, statistical validation via
posterior error probability and FDR/q-value calcu-
lation, combining results of different peptide search
engines with ConsensusID; d) Visualisation of spec-
tra (on all MS levels), features and peptide identifica-
tions in our TOPPView; e) Finding RNA and protein-
protein crosslinks; f) Identification of phosphoryla-
tion sites with Luciphor. OpenMS is free software and
runs under Windows, macOS and Linux.

Applications in the Post-Genomic Era

Sample classification from protein mass
spectra

Application of datamining suggests a novel algorithm
for pattern classification from protein mass spectra,
which is a slight variation of the “nearest centroid”
classiffication, the proposed “Peak Probability Con-
trast” (PPC). It is first described in the study of Tibshi-
rani et al.46. Briefly, PPC works by extracting peaks
from each spectrum, and then determining the opti-
mal peak height split point for discriminating between
the classes at each site. Then it computes the propor-
tion of spectra in each class with peak heights above
the split point and uses these proportions to build a
nearest centroid classifier. In particular, when applied
to spectra from both diseased and healthy patients,
the PPC technique provides a list of all common peaks
among the spectra, their statistical significance, and
their relative importance in discriminating between
the two groups. Compared to other statistical ap-
proaches for class prediction, this method performs
as well or better than several methods that require the
full spectra, rather than just labeled peaks. The algo-
rithm consists of six sequential steps,as shown in Fig-
ure 4. The development of this method, so as to find
a relative small number of peak clusters for class pre-
diction, is expected to facilitate the identification of
biologically significant and relevant proteins for spe-
cific biological states, such as tumor development and
progression47–50.

Clusteringmass spectra peak-lists

Data mining algorithms are also applied to pro-
teomics data, in an attempt to group proteins based on
their spectral similarities51. Notably, clustering vali-
dationmethods are used to find the clusteringmethod
which most faithfully captures the underlying distri-
bution of the samples. These work also show that
the application of clustering algorithms in proteomics
can assist in (a) identifying peak features responsible
for categorizing samples, (b) formulate hypotheses on
the possible function and role of unidentified proteins
and (c) reveal proteins which act jointly as biomarkers
in a concrete biological state52–54.
The proteomics data onwhich clustering is performed
are themass spectra peak-lists (not the rawmass spec-
tra) which derive from a mass spectrometer. In or-
der to apply cluster analysis, these peak-lists are repre-
sented as vectors in a multidimensional space, where
each vector element is a feature of a specificmass (e.g.,
its intensity) or a group of masses. To deal with the
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Table 3: Programs and tools for MS-based proteomics datamining (available on internet, accessed by
November 15, 2019).

Programs/Tools Descriptions

Input Processing/Data Handling

InsilicosViewer viewer for displaying mzXML data

massWolf Waters MassLynx raw-to-mzXML converter

mzBruker Bruker raw-to-mzXML converter

mzWiff ABI/MDS Sciex Analyst raw-to-mzXML converter

MzXML2Search mzXML to SEQUEST dta, MASCOT generic and Micromass pkl converter

mzXMLViewer viewer for displaying mzXML data

RAMP mzXML data parsers

readmzXML mzXML parser based on RAMP

ReAdW Thermo Xcalibur-to-mzXML converter

validateXML mzXML validation script

Database and Spectral Library Search

Comet an open source tandem mass spectrometry (MS/MS) sequence database search tool

SpectraST a spectral library building and searching tool designed primarily for shotgun Proteomics
applications

X!Tandem open source Proteomics software that attempt to find the best sequence model for a given
MS/MS spectrum of a peptide

Probability Assignment and Validation

iProphet validation of distinct peptide sequences; can also combine search results of multiple search
engines

PeptideProphet validation of PSMs made by tandem mass spectrometry (MS/MS) and database searching;
probabilities are assigned to the peptide identifications made by programs like SpectraST,
Comet or X!Tandem

ProteinProphet statistical model for validation of peptide identifications at the protein level

Protein Quantification

ASAPRatio Automated Statistical Analysis on Protein Ratio

Libra Four channel quantification software

XPRESS software to calculate the relative abundance of proteins in the sample

Miscellaneous

Cytoscape platform for visualizing and integrating molecular interaction networks

Pep3D viewer for LC-MS and LC-MS/MS results

PeptideSieve A tool for predicting proteotypic peptides

PepXMLViewer analyze unassigned but high quality spectra

Prequips Prequips is an interactive software environment for integration, visualization and analysis of
LC-MS/MS data

QualScore peptide dataset interaction

SpecArray tool for analyzing and comparing LC-MS runs

SubsetDB FASTA manipulation
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Table 4: Software packagesfor analysis of quantitative proteomics data (available on internet, accessed by
November 15, 2019).

Software Technique Type of data Instruments Input files Distribution

MaxQuant SILAC, ICPL,
Label free,
iTRAQ, TMT

MS1/MS2 Orbitrap, FT-
ICR (Thermo)

.raw (Thermo) Free

OpenMS iTRAQ, SILAC,
Label free

MS1/MS2 Any via
mzXML or
mzML

.dta, mzData,
mzXML,
mzML

Free - Open Source

Proteios TRAQ, TMT MS1/MS2 Any via mzML mzML Free - Open Source

Census 15N, SILAC,
iTRAQ

MS1/MS2 Any via
mzXML

MS1/MS2,
DTASelect,
mzXML,
pepXML

Free

VIPER 18O, ICAT MS1/MS2 Any via
mzXML

.pek, .CSV,

.mzXML, .mz-
Data, .raw
(Thermo)

Free - Open Source

BioWorksTM 15N, SILAC,
iTRAQ

MS1/MS2 Any via
mzXML

MS1/MS2,
DTASelect,
mzXML,
pepXML

Commercial

PEAKS® Q iTRAQ, SILAC,
Label free

LC-MS Any via
mzXML

mzXML,
pepXML

Commercial

Progenesis LC-
MSTM

ICAT, SILAC,
iTRAQ

MS1/MS2 Any via
mzXML or
mzML

mzML, mzI-
dentML

Commercial

ProQuant Label free image
recognition

LC-MS Thermo, Waters OpenRaw Commercial

SILAC: Stable isotope labeling with amino acids in cell culture; ICPL: Inductively coupled plasma; iTRAQ: Isobaric tags for relative and
absolute quantitation; TMT: Tandem mass tag; ICAT: Isotope-coded affinity tag.

high dimensionality of the generated peak-list vec-
tors mass “containers” (i.e., contiguous nonoverlap-
ping regions in them/z axis) can be defined before an-
alyzing the samples of an experiment. The process of
binning performs dimensionality reduction by group-
ing consecutive masses and selecting a representative
feature of those masses for each group(e.g., mean, log,
maximum intensity value). Moreover, one can pre-
process the peak-lists vectors by performing scaling
or normalization.
The suggested clustering algorithms for these data
are the hierarchical as well as the k-means clustering.
For a better comprehension of the clustering results
several visualization methods are also exploited (i.e.,
dendrograms, heatmaps and cluster sets). In the clus-
tering results that derive from this method, not only
well separated protein clusters can be easily discerned,
but also the spectral containers that are most influ-

ential in partitioning the proteins into clusters. Fur-
thermore, the presented method offers the option of
integrating the identification results for the proteins
– members of each cluster, as well as their Gene On-
tology annotation55. By exploiting both the identifi-
cation and the Gene Ontology classification informa-
tion for most proteins in each cluster, one can attempt
to infer the role of unidentified proteins. This can
be based on the already known functions of the pro-
teins which are identified with high confidence and
are found to be close to unidentified proteins in the
same cluster.

Protein-protein interactionspredictionusing
association rules

Thework by Kotlyar et al.56 are first attempts that use
association rules not only to discover protein-protein
interactions, but also to predict whether a given pair
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Figure4: Flowchart of the Peak Probability Contrast
classification analysis 46 .

of proteins interacts. Predicting interactions with as-
sociation mining can be viewed as a classification
problem where the part of the rule consists of a single
item only, the class variable. After the application of
association mining, the rules are ranked according to
a measure of “interestingness” (e.g., confidence, sup-
port) and used for prediction as follows:a given pro-
tein pair is predicted to interact if its attributes include
the items of any rule.
The presented approach is based on the idea that
both direct and indirect evidence (e.g., data com-
ing from experimental and computational methods)
could be used to predict interactions reliably and
on a proteome-wide scale. In particular, datasets
that consist of interacting and non-interacting pro-
tein pairs annotated with different types of evidence
are first constructed. Then, with the help of associa-
tion rules, patterns that discriminate the interacting

and the non-interacting proteins are detected. Lastly,
using these patterns the prediction of interactions is
achieved, assigning a confidence level to each interac-
tion57–59.
To conclude, with this approach, different types of ev-
idence for interaction are integrated in order to cre-
ate rules that act as a classifier for new interaction
pairs. Thus, associationmining is used to search thor-
oughly in large datasets for predictive patterns. How-
ever, to evaluate the performance of this method and
strengthen its applicability, it is important to incorpo-
rate additional evidence, perform testing and valida-
tion using already known interactions from specific
organisms and compare the results to those of other
interaction detection methods60.

Biomarker discovery
Data mining can also be useful in determining which
proteins, from MS data, could be used as biomarkers
to differentiate between samples of different classes 61.
Table 5 includes information from investigations on
the application of data mining on mass spectrom-
etry data for the identification of the most suitable
biomarkers, based on factors such as the ability to
test for proteins in a clinical setting; this includes
both identified proteins and mass spectral peaks as
biomarkers. Further analysis, following identification
of peptides or proteins as putative biomarkers, are
then required, as it may be that the proteins identi-
fied would not actually be suitable for use as biomark-
ers. For example, body fluids such as urine and
serum (blood) are regarded as being most suitable
fluids to search for biomarkers because they are eas-
ier to obtain for assessment purposes during diag-
nostic tests and treatments. Also, blood is pumped
around the body by the circulatory system and bathes
cells, tissues, and organs, thus carrying putative pro-
tein biomarkers around the body before being pro-
cessed by the liver and filtered by the kidneys into
urine62. Table 5 also shows that the number of possi-
ble biomarkers identified varies greatly between stud-
ies, due to differing complexities of data, for exam-
ple, Ralhan et al.63 identified only three m/z values
as biomarkers, and Fan and Chen64 formed a panel
of five biomarkers. This is in comparison to Ryberg
et al.65 and Bloemen et al.66 who identified 41and
40 putative biomarkers, respectively. Some found
biomarkers that had previously been identified; this
is both useful as support for the previous investiga-
tions, and as some validation to the methods being
newly applied to the area. Other investigations iden-
tified biomarkers that work specifically well together
and so formed panels of markers.
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Table 5: List of studies that used datamining onmass spectrometry data for biomarker identification.

Aim of paper and dataset Methods of quantitation, data
mining and evaluation

Identification of biomarker

Classification of prostate cancer
samples
Serum from 19 patients with
bone metastases and 19 with-
out67.

Mascot and novel spectra anal-
ysis implement using Leave-one-
out cross-validation

Multiple biomarkers identified.

Classification and identifi-
cationof biomarkers of heart
failure.
Training set - 100 heart failure
(HF)&100 healthy control. Test
set-32 HF, 20 control68.

Background subtraction and fea-
ture extraction.
SVM tested

18 putative biomarkers identified.

Identification of head and neck
cancer biomarkers.
Five sets of four samples plus
control for each set63.

Bayesian classifiers used for
biomarker panel analysis using
3-fold cross validation.

Panel of 3 best biomarkers identi-
fied.

Ovarian cancer biomarker dis-
covery and classification.
37 patientswith papillary serous
ovarian cancer and 35 con-
trols69.

Quantification using mzMine.
SVM tested.

Accuracy of 97.2% using a com-
bination of nonlinear SVM with
an SVM-based feature selection
method.
Average of 38 features identified
as putative biomarkers using 4 dif-
ferent methods.

Identification of biomarkers for
prostate cancer.
179 adenocarcinoma of the
prostate and 74 benign70.

Feature selection, baseline correc-
tion, and normalization.
Novel feature selection method:
Extended Markov Blanket using
10-fold cross validation.

26 peaks were identified as possi-
ble biomarkers.

Biomarker panel development
for breast cancer.
40 plasma samples from pa-
tients with breast cancer, 40
samples from healthy64.

Label-free proprietary protein
quantification
Artificial Neural Network with a
test set of 40 plasma samples from
patients with breast cancer and 40
samples from healthy controls.

Two best protein panel of
biomarkers identified, containing
7 proteins.

Identification of amyotrophic
lateral sclerosis (ALS) biomark-
ers.
100 ALS, 18 multiple sclero-
sis, 53 Alzheimer’s disease, 29
other neurologic disease, and 41
healthy control subjects65.

Using a biomarker panel of 41
mass peaks between 1.5 and
35kDa.
Rule-based Learner algorithm,
using 10-fold cross-validation.

Biomarker panel used for classi-
fication and a putative biomarker
identified.

Classification using exhaled
proteins as potential biomark-
ers for asthma.
Exhaled breath condensate.
26 well controlled asthma, 14
partially or not controlled and
30 healthy66.

SVM used for classification. 100% classification accuracy. This
was lowered to 73% when the
diagnosed and non-diagnosed
asthma samples were treated as
separate classes.

Continued on next page
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Table 5 continued
Potential urine protein
biomarkers for kidney trans-
plantation dysfunction.
264 biobanked urine samples
with matched biopsies71.

Selected reaction monitoring
method (SRM)

Optimize and detect urinary pep-
tides from 67 proteins.

Candidate biomarkers for hepa-
tocellular carcinoma.
Serums from 205 patients
72.

LC-MS/MSuntargeted proteomic
analysis

11 new biomaker candidates dis-
covered

Biomarkers for idiopathic
pulmonary fibrosis (IPF).
97 differentially expressed
proteins (38 upregulated pro-
teins and 59 downregulated
proteins)73.

STRING software, a regulatory
network containing 87 nodes and
244 edges was built,

4 proteins were found as specific
IPF biomarkers

A protein biomarker panel has
been developed specific for dia-
betic kidney disease.
572 patients with significant
correlations with the current
measures of disease74.

Bayesian classifiersusing 3-fold
cross validation.

Five proteins were significantly as-
sociated with diabetic kidney dis-
ease

Biomarker for early diabetic
mellitus (DM) discovery.
942 proteins in healthy vol-
unteer urine and 645 proteins
in the DM patient urine were
identified with label-free semi-
quantitation75.

Gene ontology and pathway anal-
ysis

In total, 344 proteins were signifi-
cantly associated with DM.

Biomarker for survival in
Non-small-cell lung carcinoma
(NSCLC)patients with im-
munotherapy
47 patients with advanced stage
NSCLC76.

Machine learning Serum proteomic signature may
serve as a biomarker for sur-
vival outcome in patients with
NSCLC, including patients under-
going immunotherapy
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In Fan and Chen64, different panels of biomarkers
were compared and those markers that worked best
together werei dentified. The development of pan-
els of biomarkers is useful as using multiple biomark-
ers may reduce false positives as itremoves depen-
dence on individual proteins, and allows proteins that
are detected for different diseases to be useful. To
discriminate between samples, the majority of the
studies applied data mining to only the peaks from
the mass spectrometry data that correspond to pep-
tides. To facilitate the development of diagnostic as-
says and/or inform the underlying biology at a molec-
ular level, peptide biomarkers require further investi-
gation.

Literaturemining and pathway analysis
Data mining has been shown to highlight important
peptides/MS peaks, however further analysis is re-
quired to determine to which proteins they relate. In
the case of data mining applied to quantified proteins,
literature mining is also useful for understanding the
biological relevance of the proteins identified as po-
tential biomarkers.
It may be important to discover more information
about interacting proteins and pathways in which
they have arole77; by doing this, it can be determined
whether the identified proteins may become useful
biomarkers and which processes would be measured.
Pathway analysis can be used to narrow down, or pro-
vide a focus to, the search for biomarkers by determin-
ing which pathways they participate in78 . Literature
mining is also essential in discovering more informa-
tion after data mining has been applied to M Speaks,
however identification of the proteins the peaks relate
to is first required70. Tools such as Ingenuity Pathway
Analysis (http://www.ingenuity.com) and DAVID79

can be used to facilitate literaturemining and pathway
analysis, or information can be mined directly using
such article databases as PubMed (http://www.ncbi.n
lm.nih.gov/pubmed).

Limitation
The use of MS in proteomics studies has opened up
a number of opportunities; however, there are also
technical and conceptual challenges that need to be
overcome and these will vary from study to study.
First, it is often impractical to produce large num-
bers of samples due to time and financial constraints.
Furthermore, a high-through-put approach is not al-
ways required80. There is also some difficulty in find-
ing proteins of interest if they are at low abundance,
when compared to other proteins within the sam-
ple, which is often the case for proteins that may be

suitable as disease biomarkers81. Moreover, com-
pared to genome studies, current protein studies of-
ten involve several cases, or represent discoveries that
are only intended to prove the principles. Further-
more, although modern machine learning methods
are available, their integration into proteomics anal-
ysis is rarely performed82.
Another limitation of proteomics experiments is the
experimental design. Appropriate experimental de-
sign is often important for a successful study, includ-
ing the amount and type of repetition, as well as the
randomized principles83. A weak test design can not
even determine whether the observed difference be-
tween samples is due to biotransformation or simply
to a technical factor. The high cost of proteomics ex-
periments often leads to poor experimental design,
which includes small amounts of inadequate dupli-
cation and control, and therefore poor reproducibil-
ity84.

Future Perspectives
Data mining has been successfully applied to pro-
teomics studies, yet it can still be used for other pur-
poses. For example, rule-based learners, as well as be-
ing used for classification, are suitable for the identi-
fication of biomarkers, as the attributes that are used
frequently in rules are those that are better at discrim-
inating between classes. Rule-based machine learn-
ing has also been applied to microarray data to de-
velop gene interaction networks based on genes that
are used together in rules85. This method could be
applied to MS data in the same way, generating net-
works from groups of proteins that appear together in
rules.
There are also other methods that were originally de-
veloped for transcriptomic data, such as gene set anal-
ysis86, that could be modified for application to pro-
teomics. Furthermore, machine learning could be
combined with literature data to include background
knowledge, which is not necessary for machine learn-
ing to be applied, but could improve the data analysis
process87.
Deep learning is a recent and fast-growing field ofma-
chine learning. It attempts to model abstraction from
large-scale data by employingmulti-layered deep neu-
ral networks (DNNs), thus making sense of data such
as images, sounds, and texts. The early framework for
deep learning was built on artificial neural networks
(ANNs) in the 1980s, while the real impact of deep
learning became apparent in 2006. Since then, deep
learning has been applied to a wide range of fields, in-
cluding automatic speech recognition, image recog-
nition, natural language processing, drug discovery,
and bioinformatics88.
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Peptide identification by fragmentation is a funda-
mental part of bottom-up mass-spectrometry-based
proteomics. Peptide molecules are fragmented
with the aid of one of several technique, including
collision-induced dissociation (CID), higher energy
collisional dissociation (HCD) and electron transfer
dissociation, producing a pattern of fragments that
is indicative of the amino acid sequence89. The fre-
quency with which a peptide backbone bond breaks
determines the relative signal intensities in a frag-
mentation spectrum. Theoretically, the intensities
can be calculated by quantum chemistry. However,
for molecules as large as peptides, this is too compu-
tationally expensive to be practical. Hence, the in-
tensity information contained in fragmentation spec-
tra remains underused in many peptide identifica-
tion strategies. This problem is an ideal situation to
employ deep learning. It can learn the relationship
between sequence and fragment abundances based
on a large dataset of training examples, without ex-
plicit knowledge of the physical mechanisms behind
it. Furthermore, the predictive models do not have
to remain black boxes, but can be examined with
specialized methods that identify features or combi-
nations thereof that are most relevant for making a
prediction. While fragment intensity prediction has
been attempted before using a variety of methods,
they have had limited success90,91. Very recently, Ti-
wary et al.92 present a deep learning method called
DeepMass whose accuracy is close to the theoret-
ical limitation. Furthermore, they demonstrate its
utility by integrating it into data-dependent acquisi-
tion(DDA) and data-independent acquisition (DIA)
computational proteomics workflows, and the results
suggest that both can benefit from the improved spec-
trum prediction. With the applications of deep learn-
ing in the field of mass spectrometry, we can success-
fully demonstrated a more accurate method that sig-
nificantly increases our ability to identify and charac-
terize known biomarkers in a sample.

CONCLUSION
Data mining is a data-driven process where the re-
sults obtained largely depend on the analyzed data.
The methods employed for feature selection, classi-
fication, data sampling, and performance evaluation
drive the process and alter final results. Thus, it is
recommended to explore more than one technique to
make comparisons and better understand the prob-
lem in hand. Furthermore, standardized and opti-
mized methodology is essential for achieving accu-
rate measurement and meaningful analysis. This in-
cludes all involved steps extending from experimen-
tal design, specimen collection, storage and handling,

throughout all methods used in the analytical chem-
istry andMS signal processing. Proper bioinformatics
including analytical tools, data storage and sharing are
required for data mining and validation.
As proteins are critical biomarkers of disease devel-
opment and progression - the more we know about
them and their relationship to specific diseases, the
earlier and more precisely we can intervene. We hope
that data mining will enable researchers to character-
ize disease-relevant protein profiles to build new di-
agnostic tools and therapeutics. We look forward to
continuing the application of machine learning and
deep learning to proteomics and other fields, to fulfill
the mission of making health data useful.
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TÓM TẮT
Các nghiên cứu thời kỳ hậu genomic bao gồm nhiều thiết kế thử nghiệm và tính toán để làm rõ và
hiểu chức năng của gen cũng như các sản phẩm của chúng. Các nghiên cứu về proteomic đóng
một vai trò quan trọng trong xu hướng này bằng cách bổ sung cho các phương pháp tiếp cận
chức năng bộ gen khác, bao gồm phân tích quy mô lớn các hỗn hợp phức tạp, xác định và định
lượng protein được biểu hiện trong các điều kiện khác nhau, xác định tính chất, biến đổi và chức
năng tương ứng của chúng. Việc hiểu làm thế nào các quá trình sinh học được điều chỉnh ở mức
độ protein là rất quan trọng để hiểu cơ sở phân tử của bệnh và thường có nhiều tiềm năng ứng
dụng việc phòng ngừa, chẩn đoán và điều trị bệnh. Các kỹ thuật thông lượng cao được sử dụng
rộng rãi trong nghiên cứu proteomic để thực hiện việc phân tích hàng ngàn protein cùng lúc. Cụ
thể, khối phổ (mass spectrometry - MS) là một kỹ thuật thường dùng trong phân tích đặc điểm
các mẫu sinh học và ngày càng được sử dụng nhiều trong các nghiên cứu về protein vì khả năng
nhắm mục tiêu, không nhắm mục tiêu và hiệu suất cao của nó. Tuy nhiên, khi các tập dữ liệu lớn
được tạo, các phương pháp tính toán như kỹ thuật khai thác dữ liệu là cần thiết để phân tích và
giải thích dữ liệu liên quan. Cụ thể hơn, việc áp dụng các kỹ thuật khai thác dữ liệu trong các bộ
dữ liệu proteomic lớn có thể hỗ trợ nhiều cách hiểu về dữ liệu; nó có thể làm sáng tỏ các tương tác
protein-protein, cải thiện nhận dạng protein, đánh giá các phương pháp thí nghiệm được sử dụng
và tạo điều kiện thuận lợi cho chẩn đoán và phát hiện dấu ấn sinh học. Với những tiến bộ nhanh
chóng trong thiết kế các thiết bị quang phổ khối và phương pháp thí nghiệm phù hợp, proteomic
dựa trên MS đã trở thành một công cụ đáng tin cậy và cần thiết để làm sáng tỏ các quá trình sinh
học ở cấp độ protein. Trong những thập kỷ qua, chúng ta đã chứng kiến sự mở rộng kiến thức về
các bệnh của con người với việc áp dụng các công nghệ proteomic dựa trên MS, dẫn đến nhiều
khám phá quan trọng. Trong tổng quan này, chúng tôi trình bày những tiến bộ gần đây của lĩnh
vực khai thác dữ liệu proteomic dựa trên MS trong nghiên cứu y sinh. Những nghiên cứu gần đây
trong nhiều lĩnh vực cho thấy rằng proteomic đã vượt ra ngoài việc phân loại protein đơn giản
trong các hệ thống sinh học và cuối cùng đạt được tiềm năng như một công cụ thiết yếu để hỗ
trợ các ngành liên quan, đặc biệt là nghiên cứu về sức khỏe. Do đó, khai thác dữ liệu proteomic
dựa trên MS sẽ có tiềm năng lớn để vượt ra ngoài những nghiên cứu cơ bản, ứng dụng vào nghiên
cứu lâm sàng và chẩn đoán y sinh.

Từ khoá: khai thác dữ liệu, khối phổ, nghiên cứu y sinh, proteomic, tin sinh học
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