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ABSTRACT
This paper investigates the spectral efficiency (SE) optimization in muti-group (MG) multicast (MC)
multiple-inputmultiple-output (MIMO) cognitive radio (CR) systemswith the assistance of an active
intelligent reflecting surface (IRS). The research aims at designing the transmit precoders (TPCs) at
the secondary base station (SBS) and the reflection coefficients (RCs) at the IRS to maximize either
the sum rates of MC groups or the minimum rates among MC groups in the secondary network
while guaranteeing transmit power (TP) budget constraints at the SBS and reflection amplitude and
amplification power at the IRS and the interference power (IP) constraints at the primary users (PUs).
To address the challenges of coupled variables in the formulated design problems, we exploit al-
ternating optimization (AO) to decompose the design problems into amenable sub-problems. To
tackle the difficulties posed by the nonconvex nature of the design problems, we derive the surro-
gate functions to transform the optimization problems into convex forms. Then, efficient iterative
algorithms are derived to obtain the optimal SBS TPCs and IRS RCs. The numerical simulations
are conducted to investigate the system performance over the various system parameters. The
numerical results demonstrate that maximizing the minimum rates leads to fairer distributions of
achievable rates among groups while maximizing the sum rate offers higher achievable rates for
favorable groups. The results also reveal that systems with optimized IRS RCs obtain superior rates
compared to those with fixed IRS RCs.
Key words: Active intelligent reflecting surface (IRS), spectral efficiency, multi-group multicast
communication, convex optimization

INTRODUCTION
To address the growing demands of emerging wireless
communication applications, spectral efficiency (SE)
and energy efficiency (EE) techniques are crucial con-
siderations in the design of future wireless communi-
cation systems (WCSs). Cognitive radio (CR) is rec-
ognized as an effective way to utilize the radio spec-
trum. However, given the ongoing demands for wire-
less networks with better quality of service features
such as higher data rates, low power consumption,
greater EE, and improved SE, novel technologies are
being investigated for the next generation of WCSs.
A recent novel technology stemming from advance-
ments inmicro-electro-mechanical systems has intro-
duced intelligent reflecting surfaces (IRSs) with low-
cost and energy-effective characteristics. These sur-
faces can be dynamically reconfigured to create intelli-
gent wireless propagation environments1,2. By intel-
ligently altering the reflection coefficients (RCs), the
IRS can adjust the phase shifts of the reflected electro-
magnetic waves to boost the desired signals and mit-
igate interference signals. Passive IRSs (pIRSs) have
been extensively studied in various WCSs 3,4. The

studied results demonstrated the benefits of deploy-
ing the IRSs in WCSs in terms of performance gains
and effective costs1. However, multiplicative fading
effects relevant to IRSs limit the achievable gains of
pIRSs. Recently, active IRSs (aIRSs), which can am-
plify incident signals, have developed by integrating
reflection-type amplifiers into their structures5. Re-
cent works5,6 showed that aIRSs could overcome the
negative impacts of multiplicative fading. Due to the
advantages of IRSs, the integration of IRSs into vari-
ousWCSs to further enhance SE and EE has attracted
considerable search attention7.
IRSs have been studied in CR networks with various
scenarios. The authors8 investigated the pIRS-aided
CR network with two pairs of single-antenna primary
users (PUs) and secondary users (SUs). The authors
optimized the transmit power (TP) at the SUs and the
RCs at the IRS to maximize the SU rate. Alternatively,
the authors1 designed the transmit precoders (TPCs)
and RCs to minimize mean squared error for mul-
tiuser multiple-input multiple-output (MIMO) CR
networks with the assistance of an aIRS. Reference
[9] studied the aIRS-aidedMIMO simultaneous wire-
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less information and power transfer (SWIPT) CR sys-
tems in which the SE maximization was studied with
the constraints of TP, amplification power, interfer-
ence power (IP), and harvested energy. Alternatively,
reference [10] concerned the EE in the pIRS-aided
MIMO SWIPT CR systems.
Themajority of aforementioned studies1,8–10 focused
on deploying IRSs for unicast transmission in which
each user is designed to receive independent data
streams. Such unicast transmission can suffer from
severe interference and poor performance, especially
as the number of users grows11. In practice, a groupof
users may simultaneously request identical messages,
such as applications of television programs and video
conferences. In such scenarios, multicast (MC) trans-
mission in which the same messages are transmitted
to the users in a group is of significant interest11.
Different from most of the previous works1,8–10 fo-
cusing on unicast scenarios in which distinct data
streams are sent to each user, our paper is concerned
with the deployment of an aIRS formulti-group (MG)
MC scenarios. Concerning MC transmission, refer-
ence12 investigated the optimal beamforming design
for MGMCmultiple-input single-output (MISO) CR
systems in which efficient optimization algorithms
were proposed to tackle design problems of the TP
minimization and signal-to-interference-plus-noise-
ratio (SINR) maximization. More recently, the au-
thors13 derived the optimal beamforming structures
to facilitate the numerical optimization algorithms for
the beamforming design problems in MG MCMISO
systems. Similarly, the work14 investigated the MG
MC SWIPT MISO system without IRSs. Alterna-
tively, reference11 considered the MGMCMISO sys-
tem with the aid of a pIRS. Therein, the transmit
beamformers and IRS RCs are optimized tomaximize
the overall sum rate. Similarly, reference15 studied
the MG MC MISO system with the pIRS. By consid-
ering imperfect channel state information (CSI), the
transmit beamforming vectors and IRS RCs are de-
signed to optimize the max-min SINR fairness prob-
lem. The authors16 studied the outage probability
of the WCS in which the single-antenna base sta-
tion transmits a common message to multiple single-
antenna users with the aid of a pIRS of random phase
shifts.
Against this background, in the present paper, we
study a MG MC CR system in which a multiple-
antenna secondary base station (SBS) sends distinct
data streams toMC groups in downlink transmission.
Themultiple-antenna users in the sameMC group re-
ceive identical data streams while suffering interfer-
ence from the data streams of other groups. In ad-

dition, in CR networks, the transmission in the sec-
ondary network must not cause adverse interference
to the PUs. An aIRS is employed to improve the SE
in the secondary network and mitigate IP caused at
the PUs. Our aim is to optimally design the TPCs at
the SBS and RCs at the aIRS to maximize the SE. To
the best of our knowledge, the optimal joint design
of the SBS TPCs and IRS RCs for SE enhancement
in MG MC MIMO CR systems with the application
of an aIRS has not been thoroughly investigated. In
this work, we aim to maximize either the sum rates of
MC groups or minimum rates amongMC groups un-
der the constraints of power budgets at the SBS, RC
amplitudes and amplification power at the aIRS, and
IP at the PUs. The formulated design problems are
mathematically intractable to be directly solved due
to the high coupling of design variables and the non-
convexity of the optimization problems. Accordingly,
to achieve the optimal solutions, we develop efficient
iterative algorithms. Specifically, the main contribu-
tions of our work can be listed as follows:

• Firstly, we introduce the MG MC CR MIMO
systems model with the assistance of an aIRS
in which the users in a MC group can receive
common data streams, and the SUs share the
common spectrum with the PUs. To highlight
the novelty of this paper, we emphasize that
most previous research focuses on either uni-
cast transmission with the deployment of a pIRS
or without an IRS, or without CR. In contrast,
we investigate a more general scenario of MG
MC transmission with the assistance of an aIRS
in a MIMO CR network. We aim at the opti-
mal design of the TPCs at the SBS and the RCs
at the IRS to maximize either the sum rates of
the MC groups or minimum rates among MC
groups under the constraints of TP at the SBS,
reflection amplitude, and power amplification
at the aIRS, and the IP at the PUs. The resul-
tant optimization problems are highly noncon-
vex and mathematically intricate since the ob-
jective functions (OFs) and constraints involve
the nonlinearly coupled variables.

• Secondly, we develop efficient optimization al-
gorithms by leveraging the combination of al-
ternating optimization (AO) and minorization-
maximization (MiMa) frameworks to find the
optimal designs. Specifically, our strategy is to
alternatively optimize sub-problems in which
either the TPCs or RCs are optimized for the
other variables fixed. Then, in each sub-
problem, by utilizing the MiMa technique, we
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exploit the concave minorant of the user rate
function to alter the sub-problem into a convex
one. Thus, the developed iterative algorithms
can be guaranteed convergence and have the
polynomial-time computational complexity.

• Finally, we conduct numerical simulations to
demonstrate the achievable SE performance of
the considered system and the effectiveness of
the proposed algorithm. In addition, we also
investigate the impacts of different system pa-
rameters on the achievable SE. The simulation
results indicate that the minimum rate maxi-
mization (MRM) approach provides fairer rates
among groups, while the sum ratemaximization
(SRM) offers higher rates for favorable groups.
They also show that the optimized IRS RCs can
significantly improve the achievable SE com-
pared to fixed IRS RCs.

The rest of the paper is presented as follows. In Section
II, we introduce the systemmodel, and then formulate
the design problems. Section III derives iterative al-
gorithms to find the optimal designs of the TPCs and
RCs to maximize the SE. Then, the numerical results
and discussion are presented in Section IV while the
conclusions of the paper are given in Section V.
Notations: For a matrix M, notations MT and MH

represent the transpose and Hermitian of a matrix
while <M>, |M| and ||M||F are trace, determinant and
Frobenius norm operations, respectively. Notation M
± 0 indicates that M is positive semi-definite. A diag-
onal matrix with its main diagonal elements of ϕ 1, ϕ2
..., ϕ N is denoted as diag(ϕ 1, ϕ2 ..., ϕ N). Notion ⊙
stands for the Hadamard product. Zero and identity
matrices with appropriate dimensions are represented
by 0 and 1, respectively. For vector m, its Euclidean
norm is represented by ||m||2. The expectation op-
eration is denoted by E(·). Notation m ~ CN (µ , ψ)
represents complex Gaussian random vector m with
mean vector µ and covariancematrixψ . The function
f(x, y) is compactly written as f(X) when y is fixed.

SYSTEMMODEL AND PROBLEM
FORMULATION
Consider an integration of an aIRS in a MGMCMU-
MIMOCR system as shown in Figure 1. The SBS with
NB antennas transmits the data streams toG groups in
the downlink channels. Denote G = {1, 2, ..., g} as the
set of all groups and Kg = {1, 2, ..., Kg} as the set of SUs
in group g where Kg is the number of users in group
g. Each SU with Nu antennas belongs to a single MC
group, resulting in the total number of SUs in the sys-
tem as K = ∑G

g=1Kg. The secondary system operating

Figure 1: An illustration of a MG MC CR MIMO net-
work with the aid of an aIRS.

in the underlay models of CR transmissions utilizes
the frequency spectrum allocated to the primary sys-
tem which comprises P PUs denoted by P = {1, 2, ...,
P}. Each PU is equipped with Np antennas. Define
the data symbol vector intended to SUs in group g as
sg ∈Cdg×1 where dg ≤min{NB, Nu} is the number of
data streams of users in group g and E(sgsH g) = Idg,
E(sgsH l) = 0 for g ̸= l. To mitigate interference and
improve transmission performance, the data symbol
vector of SU k in group g (denoted as SUk,g) is lin-
early processed by the TPCs Wg ∈ CNB×dg . Then, the
transmitted baseband signal at the SBS is expressed as
Eq.1 (Figure 2)
To further enhance the secondary network perfor-
mance and also mitigate interference imposed on the
PUs, an aIRS composed ofN reflection elements (REs)
is deployed. Distinct from pIRSs, aRISs can simulta-
neously manipulate the phase and amplitude of the
incident signals. Denoting the reflection amplitude
and phase shift of RE n as an ∈ [0, an

max] and θ n ∈
(0, 2π] for n ∈ N = {1,...,N}, the IRS RC matrix is
represented by Φ = diag(ϕ 1, ϕ2 ..., ϕ N) where ϕ N =
ane jθn is the reflection coefficient of REn. By adopting
the frequency-flat fading channel models, the chan-
nel matrix from the SBS to the IRS is denoted as G ∈
CN×NB . Then, the aIRS produces the output signal
power1 as Eq. 2 (Figure 2)
whereσ I

2 is noise power at eachRE.The aIRS exploits
additional power sources to amplify the incident sig-
nals, and thus the amplification power of the aIRS is
constrained as1 Eq. 3 (Figure 2)
where PIRS

max is the maximum amplification power.
Regarding the received signals at the SUs, denote the
channel matrices from the SBS to SUk,g and from the
IRS to SUk,g as Hd,k,g ∈ CNu×NB and Hr,k,g ∈ CNu×N ,
respectively. Accordingly, the received signal at SUk,g

is given by Eq.4 (Figure 2).
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where Hk,g
△
= Hd,k,g + Hr,k,gϕG is the effective

channel from the SBS to SUk,g and from SBS to
IRS to SUk,g. Vectors nI ∼ CN

(
0,σ2

I IN
)
, nk,g ∼

CN
(

0,σ2
k,gINu

)
are additive noise at the IRS and

SUk,g, respectively7. In equation (4), the first term
is the desired signal at SUk,g while the second term is
interference between theMC groups, the third term is
additive noise from the aIRS, and the last term is ad-
ditive noise at the receiver. Therefore, the achievable
rate (nats/s/Hz) of SUk,g is Eq. 5 (Figure 2).
where we have denoted Jk,g =

∑G
l=1,l ̸=g Hk,gWlW H

l HH
k,g + σ2

I Hr,k,gϕϕ HHH
r,k,g +

σ2
k,gINu and W = {W1,W2, ...,WG}. In MG MC

transmissions, the users in a group decode the
identical data streams. Thus, the achievable rates of
MC group g is given by11 Eq. 6 (Figure 2).
Concerning the PUs, we denote Hd,p ∈ CNp×NB and
Hr,p ∈ CNp×N as the channels from the SBS to PUp

and from the IRS to PUp respectively. Then, the total
IP at PUp is computed by Eq. 7 (Figure 2).
where Hp =Hd,p +Hr,p +ΦG. For underlay CRmod-
els, to guarantee the performance of the PUs, the CR
system cannot cause the total IP at each PU to be
greater than a tolerance threshold. Thus, the IP con-
straints are expressed as1 Eq. 8 (Figure 2).
where γ p is an acceptable IP threshold at PUp.
To investigate the achievable system performance, the
quasi-static flat-fading channel models are adopted,
and perfect CSI is available at the SBS2. Then, our
target is to jointly design the TPCs W and RCs Φ to
maximize either the sum rates of the MC groups or
the minimum rate fairness of the MC groups subject
to the constraints of the SBS TP budget, the amplifi-
cation power at the aIRS, the reflection amplitude of
REs, the IP restrictions imposed on the PUs.

A. Maximization of the sum rates of MC
groups
In communication systems,maximizing the total SE is
of practical importance. Thus, the SRM ofMC groups
is formulated as the following optimization problem:
Eq. 9 (Figure 2).
where Pmax

SBS represents the TP budget allocated to the
SBS.

B. Maximization of the minimum rate
amongMC groups
The SRM problems of the MC groups generally result
in unfairness among groups. Thus, to improve the
fairness among MC groups, we maximize the mini-
mum achievable rate among MC groups, which is ex-
pressed as the MRM: Eq. 10 (Figure 2)

Notice that problems (9) and (10) are highly in-
tractable due to the non-concave nature of the OFs,
non-convexity of the constraints, and intricate cou-
plings of the design variables. Next section is devoted
to developing iterative algorithms to obtain optimal
solutions to these non-convex problems.

PROPOSEDMETHOD FOR SE
OPTIMIZATION
This section will develop iterative optimization algo-
rithms to solve SRM problem (9) and MRM problem
(10). First, we focus on solving SRM problem , and
then extend the approach for MRM problem (10).

A. Proposed method for the SRM of MC
groups
First, problem (9) is equivalently rewritten as Eq. 11
(Figure 2)
The above optimization problem is difficult to solve
directly due to intricately coupled optimization vari-
ables. Thus, by capitalizing on the AO framework, we
decompose the original optimization problem in (11)
into two subproblems.

1. Subproblem 1-OptimizingWwith givenΦ
When the RCs Φ are fixed, problem (11) is rewritten
with respect to (w.r.t.) the TPCs W as Eq. 12 (Fig-
ure 2)
Given W(r) at iteration τ , we define as Eq. 13 (Fig-
ure 2).
Then, the concave minorant of the achievable rate of
SUk,g is derived as10,17,18 Eq. 14 (Figure 2).
where q(τ)B,k,g =

Rk,g

(
W (τ)

)
−⟨W (τ),H

g HH
k,gJ(τ)−1

B,k,g Hk,gW (τ)
g ⟩,QB,k,g =

W (τ),H
g HH

k,gJ(τ)−1
B,k,g and V (τ)

B,k,g = J(τ)−1
B,k,g −(

J(τ)B,k,g +Hk,gW (τ)
g W (τ),H

g HH
k,g

)−1
≻
−

0. Then,
problem (12) is reformulated as Eq. 15 (Figure 2).
Problem (15) is convex, and thus convex solvers such
as CVX 19 can be efficiently used to obtain the optimal
solution.

2. Subproblem 2-OptimizingΦwith givenW
When the TPCsWare fixed, problem (11) is rewritten
w.r.t. the RCs Φ as Eq. 16 (Figure 2).
Given Φ(κ) at iteration κ , we define H(κ)

k,g = Hd,k,g
+ Hr,k,gΦ(κ)G and Eq. 17 (Figure 2).
Then, the concaveminorant w.r.t RCsΦ of the achiev-
able rate of SUk,g is given by10,17,18 as Eq. 18 (Fig-
ure 2).
where q(κ)R,k,g =

Rk,g

(
ϕ (τ)

)
− ⟨W H

g H(κ)H
k,g J(κ)−1

R,k,g H(κ)
k,g Wg⟩, Q(κ)

R,k,g =
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H(κ),H
g W H

g J(κ)−1
R,k,g , V (κ)

R,k,g = J(κ)−1
R,k,g −(

J(κ)R,k,g +H(κ)
k,g WgW (H)

g H(κ),H
k,g

)−1
≻
−

0. Then,
problem (16) is reformulated as Eq. 19 (Figure 2).
It can been seen that problem (19) becomes convex,
and thus convex solvers, e.g., CVX 19 can be leveraged
to obtain the optimal solution.

3. Overall iterative algorithm for designing
TPCs and RCs to maximize the sum rates of
MC groups

From the derivations in subsections III-A1 and III-
A2, the AO algorithm to alternatively update the
TPCs and RCs to maximize the sum rates of MC
groups is described in Algorithm 1 (Figure 3).

B. Proposed method for the maximization
of theminimum rate amongMC groups

Similar to the derivations in subsection III-A, prob-
lem (10) is reformulated as Eq. (20)

1. Subproblem 1-OptimizingWwith givenΦ
Problem (20) is derived w.r.t. the TPCs W as Eq. 21
(Figure 2).

2. Subproblem 2- OptimizingWwith givenΦ
Problem (20) is recast w.r.t. the RCsW as Eq. 22 (Fig-
ure 2).

3. Overall iterative algorithm for designing
TPCs and RCs tomaximize theminimum rate
amongMC groups

From subsections III-B1 and III-B2, theAOalgorithm
for themaximization of theminimumrate amongMC
groups is presented in Algorithm 2 (Figure 4).

C. Convergence and computational com-
plexity

Note that the iterative procedures in solving subprob-
lems 1 and 2 for seeking the optimal TPCs andRCs are
provable convergence according to the principles of
MiMa methods20. In addition, the AO approaches in
Algorithms 1 and 2 guarantee that their correspond-
ing OFs are nondecreasing over iterations. Further-
more, the OFs are upper bounded for the feasible sets
of the considered constraints. Thus, the convergence
properties of Algorithms 1 and 2 are guaranteed.
Regarding the computational complexity, Algorithms
1 and 2 rely on convex optimization, and thus, the
proposed optimization algorithms exhibit a polyno-
mial time computational complexity.

SIMULATION RESULTS AND
DISCUSSION
This section presents numerical investigations on the
achievable SE performance of the proposed optimiza-
tion algorithms for aIRS-aided MG MC CR systems
with various system settings. In numerical simula-
tions, the system consists of one SBS with NB = 4 an-
tennas, one aIRS, G = 2 groups, Kg = 3 SUs in each
group, and P = 2 PUs. Each user is equipped with Nu

= Np = 2 antennas and each MC group is expected to
receive dg = 2 data streams. The SBS is at position (0,
0) m while the IRS is at position (0, 30) m. The SUs
in group g are randomly located in a circle with a ra-
dius 10 m1. The center of group 1 is at position (100,
0) and that of group 2 is at position (-100, 0). The
PUs are randomly distributed in a circle with the cen-
ter at (-200, 0) m and a radius of 10 m 9. The channel
coefficients for the transmission distance drt between
transmitter t and receiver r are modelled by Eq. 23
(Figure 2).
Here, Lr,t = L0(drt /d0)−αrt is the path loss where L0

= 10−3 is the pathloss at the reference distance d0 =
1 m and αrt is the path loss exponent21. Small scale
fading channels HLoS

rt , HNLoS
rt respectively are deter-

ministic line-of-sight (LoS) and Rayleigh fading non-
LoS (NLoS) components of channels with the Rician
factor κrt . IRS-related channels are modeled as the
Rician fading channels with the Rician factor of 3 and
the path loss exponents of 2.2 while other channels
are modeled as the Rayleigh fading channels with the
path loss exponents of 3.6. The noise powers at the
SUs and the IRS are σ2

k,g = σ I
2 = -100 dBm. The al-

lowable IP at the PU is set as γ p = -100 dBm. Regard-
ing the iterative algorithms, we set ∈ = 10−3, Tmax =
100. Unless specified, the other parameters are given
as follows. TheTPbudget at the SBS isPmax

SBS = 10 dBm.
The number of active REs is N = 20. The maximum
reflection amplitude coefficients are amax

n = amax = 1.9
and maximum amplification power at the IRS is Pmax

IRS
= 10 dBm. The simulations are conducted over 100
random channel realizations to compute the average
numerical results.
Example 1: First, we investigate the convergence
characteristics of the proposed AO algorithms for the
SRM andMRMofMC groups. To this end, we visual-
ize the OF values obtained over iterations in Figure 5
and Figure 6 for a random channel realization with
different SBS TP budgets. The results in these figures
show the non-decreasing characteristics of theOFval-
ues versus iterations, which verifies the convergence
of the proposed AO algorithms. In addition, the OF
values converge to stable points within less than 20 it-
erations. On the other hand, as expected, the higher
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Figure 3: Algorithm 1

OF values are obtained when the TP budgets at the
SBS grow.

Figure 5: The OF values over iterations of the pro-
posed AO algorithm for the SRM of MC groups.

Example 2: Next, to study more insights into the ef-
fects of the SBS TP budgets on the achievable SE of the
considered system, we visualize the average achiev-
able sum rates and max-min rates versus the SBS TP
budgets in Figure 7 and Figure 8 respectively for dif-
ferent values of maximum reflection amplitude co-

Figure 6: The OF values over iterations of the pro-
posed AO algorithm for the MRM of MC groups.

efficients. From these figures, we can observe that
the achievable rates increase with the SBS TP bud-
get. However, when maximum reflection amplitudes
at the IRS are low (e.g., amax =1.9), the achievable rates
become saturated as the SBS TP budget is large. This
provides useful insights in selecting the appropriate
SBS TP budgets and maximum reflection amplitudes
of the active IRS to obtain the desired rates. Specif-
ically, from Figure 7 and Figure 8 for the IRS with
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Figure 4: Algorithm 2

the maximum reflection amplitudes amax = 1.9, an in-
crease in the SBS TP budgets from 25 dBm to 30 dBm
is not useful since the SE improvements are negligible.
This phenomenon can be explained as follows: When
the SBS TP budget is low, the IP constraints at the
PUs and reflection amplification power and ampli-
tude constraints at the aIRS are inactive. Thus, the SBS
can exploit the maximum TP to increase the achiev-
able rates. However, when the SBS TP budget is suffi-
ciently large, the design problems are restricted by IP
constraints and/or reflection amplification power and
amplitude constraints, preventing the SBS fromutiliz-
ing the full TP budget. Consequently, the achievable
rates cannot increase further.
To further investigate the fairness in terms of achiev-
able rates of groups, we visualize the average achiev-
able rates of MC groups obtained by the SRM in Fig-
ure 9, and those obtained by the MRM in Fig. Obvi-
ously, from Figure 9, the MC group 1 achieves higher
rates than the MC group 2. That is because MC group
2 in the simulation setting is located close to the PUs,
and the SBS and IRS steer the signals away from the
PUs to mitigate interference. In contrast, by applying
the MRM, MC groups achieve the same average rates
as demonstrated in Figure 10, which provides fairness

Figure 7: Average achievable sum rates of MC
groups versus the SBS TP budgets.

among groups.
Example 3: Finally, we study the impacts of the num-
ber of IRS REs on the achievable SE performance. In
addition, to validate the effectiveness of our proposed
optimization algorithms, a baseline scheme, namely,
fixed IRS, in which the reflection coefficients at the
IRS are fixed (i.e., Φ = amaxIN) while the TPCs are
optimally designed. Figure 8 and Figure 9 visualize
the achievable sum rates of MC groups and the min-
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Figure 8: Average achievablemax-min rates among
MC groups versus the SBS TP budgets.

Figure 9: Average achievable rates of MC groups
versus the SBS TP budgets by using the SRM algo-
rithm.

Figure 10: Average achievable rates among MC
groups versus the SBS TPbudgets by using theMRM
algorithm.

imum rates of MC groups versus the number of IRS
REs with the maximum reflection amplitude amax =
10. From these figures, the achievable SE curves for
optimized designs by the proposed AO algorithms of-
fer upward trends with the number of IRS Res, while
those of fixed IRSs are decreased with the number of
IRS REs. These numerical results reveal that the de-
ployment of the active IRS with a greater number of
REs can improve the SE if the RCs are optimally de-
signed; otherwise, the SE can degrade if the IRS RCs
are fixed.

Figure 11: Average achievable rates of MC groups
versus the number of IRS REs by using the SRM al-
gorithm.

Figure 12: Average achievable max-min rates
among MC groups versus the number of IRS REs by
using the MRM algorithm.

CONCLUSION
We have investigated the SE of MG MC MIMO CR
systems with the deployment of an aIRS. Concern-
ing the SE, we formulate two optimization design
problems, namely the SRM and the MRM. To tackle

2410



Science & Technology Development Journal – Engineering and Technology 2024, 7(4):2402-2412

the nonconvex formulated design problems, we de-
velop efficient iterative algorithms capitalizing on the
AO frameworks with the utilization of the MiMa
principle, which renders solving convex optimization
problems in iterations. The simulation results have
demonstrated the fast convergence of the proposed
optimization algorithms. The numerical results have
offered valuable insights into the SE performance of
the aIRS-aidedMCMGCRMIMO systems under the
different SBSTP budgets, IRS reflection amplitude co-
efficients, number of IRS REs. The results have also
verified the superior performance in terms of the SE
of the systems with the optimally designed IRS RCs in
comparison with the systems with fixed IRS RCs.
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Hiệu suất phổ cho hệ thống vô tuyến nhận thức phát thông tin đa
nhóm có sự hỗ trợ của bềmặt phản xạ thôngminh tích cực

Hà Hoàng Kha1,2,*, Nguyễn Xuân Xinh1,2, Võ Tuấn Kiệt1,2, Đinh Quốc Hùng1,2

TÓM TẮT
Bài báo này nghiên cứu tối ưu hóa hiệu suất phổ (SE) trong hệ thống vô tuyến nhận thức (CR) đa
đầu vào đa đầu ra (MIMO) với đa nhóm (MG-MC), được hỗ trợ bởi bềmặt phản xạ thôngminh (IRS)
tích cực. Mục tiêu nghiên cứu là thiết kế các bộ tiền mã hóa phát (TPCs) tại trạm gốc thứ cấp (SBS)
và các hệ số phản xạ (RCs) tại IRS nhằm tối đa hóa tổng tốc độ dữ liệu của các nhóm hoặc tối đa
hóa tốc độ dữ liệu tối thiểu giữa các nhóm trongmạng thứ cấp, đồng thời đảm bảo các ràng buộc
về quỹ công suất phát (TP) tại SBS, biên độ phản xạ và công suất khuếch đại tại IRS, cũng như ràng
buộc công suất can nhiễu (IP) tại người dùng sơ cấp (PUs). Để giải quyết các thách thức liên quan
đến các biến liên kết với nhau trong các bài toán thiết kế đã được xây dựng, chúng tôi sử dụng tối
ưu hóa luân phiên (AO) để chia bài toán thiết kế thành các bài toán con có thể xử lý được. Để giải
quyết khó khăn do tính không lồi của bài toán thiết kế, chúng tôi xây dựng các hàm thay thế để
biến đổi bài toán tối ưu hóa thành dạng lồi. Sau đó, các thuật toán lặp hiệu quả được đề xuất để
tìm ra các bộ tiền mã hóa phát tại trạm gốc thứ cấp và các hệ số phản xạ tại IRS tối ưu. Các mô
phỏng số được thực hiện để đánh giá hiệu năng hệ thống qua các tham số khác nhau. Kết quả số
cho thấy rằng việc tối đa hóa tốc độ tối thiểu giúp phân phối công bằng hơn tốc độ dữ liệu giữa
các nhóm, trong khi tối đa hóa tổng tốc độ dữ liệu mang lại tốc độ cao hơn cho các nhóm có điều
kiện thuận lợi. Kết quả cũng cho thấy hệ thống với các hệ số phản xạ IRS được tối ưu hóa đạt tốc
độ dữ liệu tốt hơn so với hệ thống sử dụng IRS với các hệ số phản xạ cố định.
Từ khoá: Bề mặt phản xạ thông minh tích cực (IRS), hiệu suất phổ, truyền thông phát đa nhóm,
tối ưu hóa lồi

Trích dẫn bài báo này: Kha H H, Xinh N X, Kiệt V T, Hùng D Q. Hiệu suất phổ cho hệ thống vô tuyến 
nhận thức phát thông tin đa nhóm có sự hỗ trợ của bề mặt phản xạ thông minh tích cực. Sci. Tech. 
Dev. J. - Eng. Tech. 2024, 7(4):2402-2412.
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