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Elimination of PPG Signal Disturbances through Variational Mode
Decomposition and Hilbert Transform

Thanh Trung Thai, Thanh Tung Luu*, Khanh Duy Phan

ABSTRACT
The PPG signal presents considerable promise as a non-invasive technique across various applica-
tions. However, effectively utilizing this signal in real-world scenarios demands meticulous han-
dling to identify and rectify disturbances within the photo-plethysmography (PPG) signal. Among
the methodologies explored, integrating time-frequency spectra with a hybrid deep learning
model, such as convolutional – long short term memory neural network model (CNN-LSTM), has
emerged as a promising approach. Yet, prevalent methods often rely on Fourier-based algorithms
for extracting time-frequency spectra, which are prone to energy leakage issues. To surmount this
limitation, decomposition methods like Variational Mode Decomposition (VMD) coupled with the
Hilbert transform offer a compelling solution. In this study, we propose a novel algorithm lever-
aging VMD and Hilbert transform to extract time-frequency spectra as features for a convolutional
neural network model (CNN). Unlike studies employing Fourier-based time-frequency spectra and
the hybrid CNN-LSTM model, this approach adopts a simpler architecture, relying solely on a CNN
model. This simplicity owes to the efficacy of VMD and Hilbert transform in feature extraction,
streamlining the computational process without sacrificing accuracy. Remarkably, our method
yields high-performance outcomes, achieving accuracy, precision, and recall of 0.91, 0.95, 0.88, re-
spectively on the MIMICIII dataset. These results underscore the robustness and effectiveness of
our proposed methodology, offering promising avenues for enhanced utilization of the PPG signal
in diverse biomedical applications. By amalgamating advanced signal processing techniques with
deep learning models, our approach contributes to the advancement of non-invasive biomedical
signal processing, potentially healthcare monitoring and diagnosis.
Key words: photo-plethysmography, photo-plethysmography signal processing

INTRODUCTION
Photoplethysmography (PPG) is a non-invasive tech-
nique that is used to detect blood volume variations
through an infrared light sensor placed on the sur-
face of the skin1,2. Correct identification of the PPG
waveform and its main features is essential in order to
extract several biomarkers, such as heart rate, blood
pressure, cardiac output, and blood oxygen satura-
tion, when the red and infrared light are used si-
multaneously1,3. However, the practical application
of PPG encounters difficulties as this signal is eas-
ily influenced by users’ movements. Consequently,
the identification and removal of disturbed PPG seg-
ments within the overall signal are crucial.
The initial and most basic technique for assessing the
PPG signal involves the Signal Quality Index (SQI).
This approach partitions the PPG signal into multiple
segments, subsequently computing the SQI for each
segment. A segment is deemed to be of high qual-
ity if its SQI value exceeds a predefined threshold4.
The foundation of this method relies on the obser-
vation that PPG signal waveforms undergo periodic

changes, consequently, the SQI associated with these
signals is expected to exhibit a specific distribution
pattern5. Figure 1 indicates the disparity in kurtosis
and skewness distribution between quality and poor-
quality PPG signal. However, a drawback of the SQI
method lies in the multitude of proposed quality in-
dices. Despite Elgendi’s survey,6 favoring ”skewness”
as the optimal index, establishing a universal thresh-
old for these indices remains challenging.
The application of deep learning models can address
the limitations of the SQI method by employing a
deep model to learn the distinguishing features of
high-quality PPG signals. Li et al.7 utilized the Dy-
namic Time Warping (DWT) technique and a multi-
layer perceptron model to evaluate PPG signal. This
method was proposed to address physiological blood
flow variations, leading to changes in the morphology
of PPG signals. Esgalhado et al.8 conducted a sur-
vey on deep learningmodels to eliminate poor-quality
PPG signal segments. The study compared Long
Short-Term Memory (LSTM), Bidirectional LSTM,
and Convolutional Neural Network (CNN) models.
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Figure 1: Sample clean (a-b) and corrupted (c-d) ear-PPG segments applied with linear (a, c) and 32nd order poly-
nomial detrends (b, d) are shown along with their respective histograms and calculated kurtosis (K) and Shannon
entropy (SE) values. The higher-order polynomial detrending is critical to enhance the specificity in the presence
of physiological baseline drift (a) and the sensitivity in the presence of artifacts (c), 4 .

Besides, they also considered about the input data
for the model. The research findings indicated that
the CNN-LSTM algorithm, with Synchrosqueezed
Fourier Transform (SSFT) input, demonstrated the
highest performance with accuracy, 0.894. To explain
the effectiveness of their approach, the authors ex-
plained that applying a time-frequency transform to
the signals before classification provided the model
with an expanded feature set. This extended dataset
also facilitates signal projection from the time to the
time-frequency domain, where non-stationary com-
ponents may be better represented. Similar stud-
ies utilizing comparable deep learning models can be
found in 9.
It can be seen that deep learning model with a time-
frequency input is a good choice for detecting and
removing non-quality part in PPG signal. However,
Fourier based method like SSFT representations has
drawbacks regarding “energy leakage”10. This is a

phenomenon where energy regions of the signal have
low concentration density, leading to some errors in
CNN model processing. This drawback can be over-
come by a method using VMD andHilbert transform
to create combined time-frequency spectra with CNN
networks to identify and eliminate PPG signal seg-
ments affected by user motion.

MATERIALS-METHODS

Generating time – frequency spectrum

Instead of employing SSFT as in prior research, this
study utilized VMD to decompose the raw PPG signal
into sub-signals known as Intrinsic Mode Functions
(IMFs). Subsequently, dominant IMFs were selected
to generate a time-frequency spectrum by using the
Hilbert transform. VMD, introduced by Dragomiret-
skiyi et al.11, decomposes a signal into signals, called
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Intrinsic Mode Functions (IMFs) in form:

IMF(t) = A(t).cos(ϕ(t)) (1)

where A(t) is the amplitude over time, ϕ (t) is the fre-
quency over time.
VMD determine the central frequency band of each
IMF and proceed to analyze the original signal into
IMFs with frequency domains around the central fre-
quency. By pre-defining the number k of IMFs that
the signal can have, computing the IMF channels is
performed by a recursive loop:
In the (n+1)th iteration, the kth IMF is computed as
follows:

Un+1
k ( f ) =

x( f )Σi<kUn+1
k ( f )−Σi>kUn

k ( f )+
∧n

2
( f )

1+2α
{

2π
(

f − f n
k

)}2

(2)

Un+1
k ( f ) is the Fourier transform of the kth IMF in

the (n+1)th iteration.
Along with that, the central frequency and the La-
grange multiplier are also updated.
kth central frequency, f n+1

k :
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Lagrange multiplier:
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(

X ( f )−ΣkUn+1
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)
where τ is the update rate of the coefficient Larrange.
When the algorithm satisfies the following condition,
the loop stops: Σk
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In this work, the PPG signal was decomposed into
IMF channels through the VMD, with the algorithm’s
parameters as follows:
Number of IMF channels
The number of IMF channels used in this study does
not fix. Instead, for each PPG signal, the number of
IMF channels is automatically adjusted based on the
independence of IMF channels from each other us-
ing the covariance matrix 12. When the determinant
of the matrix is above 0.8, the parameters are selected.
Stopping criteria parameters{

εa = 5.10−6

εr = 5.10−3 (5)

The IMFs which were decomposed from the raw PPG
signal will be used to generate time-frequency spec-
trum by using Hilbert transform. This transform de-
fines an analytic signal as:

z(t) = x(t)+ i.y(t) (6)

y(t) =
1
π

P
∫ +∞

−∞

x(τ)
t − τ

dτ (7)

Where x(t) is the IMF, y(t) is the Hilbert transform
of x(t), P is the Cauchy principle. Then the time-
frequency spectrum is:

H ( f0, t0) = ∑N
i, fi(t0)

= f0ai (t0) (8)

For each coordinate (t0,f0) in the spectrum, the spec-
trum value is the sum of all amplitudes of all IMFs at
time t0 with the respective frequency equal to f0.
Where f,t are frequency and time point of interest, a(t)
is the instantaneous amplitude at time, t, f(t) is the in-
stantaneous frequency at time, t. The instantaneous
amplitude and frequency of each IMF are calculate as
follow:
The instantaneous amplitude

a(t) =
√

x2 (t)+ y2 (t) (9)

The instantaneous frequency

f (t) =
1

2π
d
dt

[
arc tan

y(t)
x(t)

]
(10)

Another advantage in implementing VMD and
Hilbert transform is to filter out frequency band noise
of signal without affect to the purity of original sig-
nal. This is conducted via chosen IMFs with central
frequency regions ranging from 0.5Hz to 3Hz. The
central frequency region is determined based on the
mean and standard deviation of the instantaneous fre-
quency of that IMF, specifically.
The average instantaneous frequency

_
f =

1
T

∫ T

0
f (t)dt (11)

Standard deviation of the instantaneous frequency

_
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√
1
T
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0
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Then the central frequency range will be(_
f − _

s,
_
f +

_
s
)
.
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Figure 2: The pineline of the proposed method

Proposedmethod
As mentioned earlier, the proposed methodology in
this study relied on VMD and the Hilbert transform
in conjunction with a CNNmodel. The pipeline illus-
trating the entire process is depicted in Figure 2.
Given the typical requirement of approximately 10
seconds of data length for most PPG signal applica-
tions, the raw PPG signal was segmented into 10-
second segments with 1-second padding at both the
start and end. Each segment underwent decomposi-
tion into IntrinsicMode Functions (IMFs) usingVari-
ational Mode Decomposition (VMD). The mean and
standard deviation of the instantaneous frequency of
each IMF were computed to establish the central fre-
quency range. An IMF exhibiting a central frequency
range between 0.5Hz and 3Hz was selected as the
dominant IMF. The dominant IMFs were utilized to
construct a time-frequency spectrum via the Hilbert
transform. Subsequently, the 1-second padding at the
spectrum’s beginning and end was removed to miti-
gate the ’end effect’ inherent in the Hilbert transform.
The resulting spectrum was reshaped into a image.
This image served as input for a CNNmodel designed
to assess the quality of the PPG signal. The architec-
ture of this model is detailed in Table 1. The entire
method was implemented using the PyTorch frame-
work and Python programming language.

Dataset
This study obtained PPG data from a cohort of sub-
jects sourced from the open source MIMIC-III wave-

form database13. Each PPG signal in the dataset was
segmented into 10-second segments with 1-second
padding and labeled as either “good” or “not good”
via the criteria from study of Elgendi et al.6. Figure 3
dispicts the classcify of PPG signal.
The training process utilized data from only 80% of
the PPG segments in the MIMIC-III dataset. A de-
tailed statistical description of the data is presented in
Table 2.

METRIC
The model is evaluated based on its precision, accu-
racy, and recall, as most studies in this field have em-
ployed. The calculation formulas for these criteria are
as follows:
Precision

Pre =
T P

T P+FP
(13)

Recall

Re =
T P

T P+FN
(14)

Accuracy

Acc =
T P+T N

FP+T P+T N +FN
(15)

TP:Thenumber of samples that are correctly classified
as positive instances (i.e., the model predicts positive
and the actual class is positive).
TN: The number of samples that are correctly classi-
fied as negative instances (i.e., themodel predicts neg-
ative and the actual class is negative).
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Table 1: Structure of themodel

Layer Type Kernel Strike Channels Shape

1 CNV 5×9 1 8 128×512×3

LeakyReLU - - - 128×512×8

MAX 5×9 1 - 128×512×8

2 CNV 5×9 1 8 128×512×8

LeakyReLU - - - 128×512×8

MAX 5×9 2 - 128×512×8

3 CNV 5×9 1 8 64×256×8

LeakyReLU - - - 64×256×16

MAX 5×9 1 - 64×256×16

4 CNV 5×9 1 16 64×256×16

LeakyReLU - - - 64×256×16

MAX 5×9 2 - 64×256×16

5 CNV 3×5 1 16 32×128×16

LeakyReLU - - - 32×128×16

MAX 3×5 2 - 32×128×16

6 CNV 1×3 1 16 16×64×16

LeakyReLU - - - 16×64×16

MAX 3×5 2 - 16×64×16

7 CNV 1×3 1 16 8×32×16

LeakyReLU - - - 8×32×16

MAX 3×5 2 - 8×32×16

8 Fully connected layer - - 256 1024

9 Fully connected layer - - - 256

10 Fully connected layer - - - 150

11 Output - - - 2

Table 2: Statistical description of the data.

MIMIC 140 subjects

Total segment 3500 segments

Quality Non - quality

Training set 912 1187

Validation set 316 383

Test set 354 346
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Figure 3: The classification criteria for PPG signals adhere to the methodology outlined by Elgendi et al. 6.

FP:The number of samples that are incorrectly classi-
fied as positive instances (i.e., the model predicts pos-
itive but the actual class is negative).
FN:The number of samples that are incorrectly classi-
fied as negative instances (i.e., themodel predicts neg-
ative but the actual class is positive).

RESULT
The training process consists of 45 epochswith a batch
size of 512, learning rate of 0.0001. Figure 4 and Fig-
ure 5 illustrate the training and validation accuracy
for each epoch. It is evident that the loss and accuracy
values for both datasets are closely aligned, indicating
the absence of overfitting.
The identification results for the test set demonstrate
high performance. As shown in Table 3, the confu-
sion matrix indicates an accuracy of 0.91, a precision
of 0.95, and a recall of 0.88.

DISCUSSION
Compared to other time-frequency spectrum and
deep model-based approaches, the proposed method
achieves similar high performance with a simpler
deep model. This advantage contributes to its imple-
mentation for applications on edge devices. Esgal-
hado et al.8 utilized a hybrid CNN-LSTMmodel with

Figure 4: Loss value in training process.

SSFT time-frequency spectrum input and achieved
performance with accuracy 0.89, precision 0.92, and
recall 0.91. In contrast, the proposed method only
employed CNN and demonstrated comparable per-
formance in terms of accuracy 0.91, precision 0.95,
and recall 0.88. This disparity can be attributed to
differences in time-frequency spectrum generation
methods. Fourier-based methods, such as SSFT used
in8, exhibit energy leakage phenomena. This leads
to less dense spectra, necessitating more complex
models to enhance sparsity at each layer for accu-
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Table 3: Confusionmatrix of the propsedmethod’s result on test set.

Confusion matrix True class

Positive Negative

Predicated class Positive TP = 339 FP = 15

Negative FN = 44 TN = 302

Figure 6: Time-frequency spectrums of a PPG signal (A) generated by SSFT (B) and VMD-Hilbert (C) respectrively

Figure 5: Accuracy value in training proces.

rate processing. Conversely, time-frequency spectra
from VMD and Hilbert transform offer denser spec-
tra, enabling simpler models to handle them more
effectively. Figure 6 illustrates time-frequency spec-
tra of the same PPG signal generated by SSFT and
VMD-Hilbert methods, respectively. Upon initial
inspection, the signal exhibits two disturbance seg-
ments around sample 200 and sample 1200, both
of which are clearly depicted in both spectra with
chaotic frequency zones at the respective samples.
Moreover, there is a significant difference between
the two spectra, influencing their effectiveness as
model inputs. The spectrum generated by the VMD-
Hilbert method features three distinct frequency
modes around 0.84Hz, 1.56Hz, and 2.27Hz. In con-
trast, although also depicting two frequency modes
around 0.84Hz and 1.56Hz, the spectrum from SSFT

exhibits significant energy leakage with numerous
frequency zones, rendering the frequency mode at
2.27Hz nearly indistinct. The explanation for this
disparity lies in the VMD method, which decom-
poses the signal into individual modes, each repre-
senting a specific frequency zone while preserving
the signal’s non-linear and continuous instantaneous
frequency characteristics. Due to its ability to sep-
arate frequency modes distinctly, it becomes easier
to eliminate unrelated components, such as those in-
duced by environmental noise, based on the central
frequency range mentioned earlier. This process en-
sures that the final spectrum retains only the domi-
nant frequency modes, revealing the essential aspects
of the signal. In contrast, the SSFT analyzes the entire
signal directly from the raw data. While the imple-
mentation of a bandpass filter can mitigate this issue,
it risks eliminating crucial signal features, as noted
in14. Additionally, employing the Hilbert transform
for each IMF enhances independence between indi-
vidual IMFs. This independence contributes to the
density of the spectrum compared to SSFT, which an-
alyzes data along sliding windows without consider-
ing the independent nature of each frequency mode.

CONCLUSION
This paper presents a method for identifying and re-
moving disturbed PPG segments. The algorithm’s
key feature is based on the exceptional non-stationary
analysis capabilities of VMD and the Hilbert trans-
form. Despite the utilization of a deep model, it re-
mains simple enough to be applied in practice with
edge devices.
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Loại bỏ nhiễu tín hiệu PPG thông qua phân giải chế độ biến đổi và
biến đổi Hilbert

Thái Thành Trung, Lưu Thanh Tùng*, Phan Khánh Duy

TÓM TẮT
Tín hiệu PPG cho thấy nhiều triển vọng nhưmột kỹ thuật không xâm lấn trong các ứng dụng khác
nhau. Tuy nhiên, để sử dụng hiệu quả tín hiệu này trong các tình huống thực tế, cần phải xử lý cẩn
thận để nhận diện và khắc phục các nhiễu trong tín hiệu photo-plethysmography (PPG). Trong số
các phương pháp đã được khám phá, việc tích hợp phổ thời gian-tần số với mô hình học sâu kết
hợp, chẳng hạn như mô hình mạng nơ-ron tích chập – bộ nhớ dài ngắn hạn (CNN-LSTM), đã nổi
lên như một phương pháp đầy hứa hẹn. Tuy nhiên, các phương pháp phổ biến thường dựa vào
các thuật toán Fourier để trích xuất phổ thời gian-tần số, vốn dễ gặp vấn đề rò rỉ năng lượng. Để
khắc phục hạn chế này, các phương pháp phân giải như Phân Giải Chế Độ Biến Đổi (VMD) kết hợp
với biến đổi Hilbert cung cấp một giải pháp hấp dẫn. Trong nghiên cứu này, chúng tôi đề xuất
một thuật toán mới sử dụng VMD và biến đổi Hilbert để trích xuất phổ thời gian-tần số làm đặc
trưng cho mô hình mạng nơ-ron tích chập (CNN). Không giống như các nghiên cứu sử dụng phổ
thời gian-tần số dựa trên Fourier và mô hình kết hợp CNN-LSTM, cách tiếp cận này áp dụng một
kiến trúc đơn giản hơn, chỉ dựa vào mô hình CNN. Sự đơn giản này nhờ vào hiệu quả của VMD và
biến đổi Hilbert trong việc trích xuất đặc trưng, giúp quá trình tính toán trở nên tinh gọnmà không
giảm độ chính xác. Đáng chú ý, phương pháp của chúng tôi đạt được kết quả hiệu suất cao, với độ
chính xác, độ chính xác và độ nhớ tương ứng là 0.91, 0.95, 0.88 trên bộ dữ liệu MIMICIII. Những kết
quả này nhấnmạnh tính bền vững và hiệu quả của phương pháp đề xuất của chúng tôi, mở ra các
hướng đi đầy hứa hẹn cho việc sử dụng tín hiệu PPG trong các ứng dụng y sinh học đa dạng. Bằng
cách kết hợp các kỹ thuật xử lý tín hiệu tiên tiến với các mô hình học sâu, cách tiếp cận của chúng
tôi góp phần vào sự tiến bộ của xử lý tín hiệu y sinh không xâm lấn, có tiềm năng trong giám sát
và chẩn đoán sức khỏe.
Từ khoá: tín hiệu photo-plethysmography, xử lý tín hiệu photo-plethysmography
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