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ABSTRACT

In this paper, a passivity — based neural control using genetic algorithm for a DC-DC boost power
converter is proposed. The output of a DC-DC boost power converter is an inductor current. The
control input is the duty ratio. Using a co-ordinate transformation of state variables and control
input, a DC-DC boost power converter is passive. A new plant is zero-state observable and the
equilibrium point at origin of this plant is asymptotically stable. A neural network performs a pas-
sivity - based control law. The goal is that the capacitor voltage is equal to the desired voltage.
The neural network has three layers: the input layer, the hidden layer and the output layer. The
activation function of the hidden layer is tangent-hyperbolic and the activation of the output layer
is linear. The weights of neural network are also adjusted optimally by genetic algorithm using
decimal encoder. Simulation results are done with Simulink in MATLAB. Simulation results of the
passivity-based neural control without using genetic algorithm show that the capacitor voltage
is kept at the desired voltage when the desired voltage, the input voltage, and the load resistor
vary. The results of passivity-based neural control using genetic algorithm show that the capacitor
voltage is kept at the desired value when the input voltage and the load resistor change. Further,
the simulation results of the passivity — based neural control using genetic algorithm have better
performance such as shorter settling time and smaller value of IAE (integral absolute error of the
desired voltage and the capacitor voltage) than the neural control when the input voltage varies.
Finally, simulation results show that the passivity-based neural control using genetic algorithm has
shorter settling time than the neural control when the load resistor changes.
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» INTRODUCTION

2> The neural control and the passivity-based control
3 have been investigated by many researchers. Ortega
4 et al.! presented the passivity-based control of DC-
DC boost converter and buck converter, the slid-

«

o

ing mode control and the adaptive control for DC-
DC power converter. W. He et al.” presented the
passivity-based control of DC-DC boost power con-
verter under time-varying disturbances via general-

~

©

©

ized proportional integral observer. Cisneros et al.’

o

presented the passivity-based control of the bilinear

~

systems and its applications to the boost and modular
multilevel converters. The sliding mode control and

@

the passivity-based control were presented by Hoai

>

v

Nghia Duong®. Khalil® presented the Lyapunov sta-
ble theory, a passivation and the passivity-based con-

o

trol of a two-degree of freedom robot. M. H. Huynh,

S

18 H. N. Duong and V. H. Nguyen® presented the con-

©

trol system based on passivity-based control for a bi-
cycle robot.

T. Hayakawa et al.” described the passivity-based
adaptive output feedback control using neural net-

S

[N}

work for nonlinear nonnegative dynamical systems.
W. Li et al.® presented the passivity-based distributed
tracking control problem of networked agents in the
presence of uncertainty and external disturbance. M.
Norgaard et al.” presented the multilayer perceptron
network and applications to identification of non-
linear systems, the inverse control, and the inter-
nal model control of nonlinear systems. Duc Minh
Nguyen et al. !0 described the control of the inverted
pendulum system using neural networks. D. Muthi-
rayan and P. P. Khargonekar!! presented a neural
adaptive control for a continuous-time system. G. Es-

cobar et al. ?

presented an experimental comparison
of several nonlinear controllers such as input-output
linearization, sliding mode control, and passivity-
based control for DC-DC boost power converter. M.
A. Hassan et al. ! presented the passivity-based con-
trol combined with adaptive control of DC-DC buck
converter with constant power loads in DC microgrid
systems.

Further, genetic algorithm was described by M.

Mitchell 4. K. S. Tang et al. !> presented an optimiza-

Cite this article : Huynh M N, Duong H N, Nguyen V H. A passivity-based neural control using genetic
algorithm for a DC-DC boost power converter. Sci. Tech. Dev. J. — Engineering and Technology 2025;

():1-15.
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tion of feedforward neural networks of which topol-
ogy and weights were adjusted optimally by genetic
algorithm. The neural networks integrated adaptive
backstepping control of DC-DC boost converter were
presented by T. K. Nizami and A. Chakravarty '©. J.

Aguila-Leon et al.'”

presented an optimal PID pa-
rameters tuning for a DC-DC boost converter. M.
Mohammedi et al.'® described the fuzzy logic and
passivity-based controller applied to electric vehicle
using fuel cell and supercapacitors hybrid source. A
passivity-based control using genetic algorithm was
proposed by M. N. Huynh, H. N. Duong and V. H.
Nguyen ”. The advantage of the passivity-based con-
trol is the asymptotical stability of the equilibrium
point at origin of the plant. The passivity-based con-
trol combined with sliding mode control fora DC-DC
boost power converter was presented by Minh Ngoc
Huynh, Hoai Nghia Duong and Vinh Hao Nguyen 2’.
J. Wuand Y. Lu?! described the adaptive backtepping
sliding mode control for DC-DC boost converter with
constant power load.

In this paper, a passivity — based neural control using
genetic algorithm of a DC-DC boost power converter
is proposed. The weights of neural network are ad-
justed optimally by genetic algorithm using decimal
encoder. Simulation results are done with Simulink
in MATLAB.

The paper is organized as follows. The introduction
is presented in section 1. The dynamical model of a
DC-DC boost power converter, the passivity-based
method and the passivity property of a DC-DC boost
power converter are presented in section 2. Section
3 presents the passivity-based neural network control
and the tuning the weights of neural network using
genetic algorithm. The simulation results and discus-
sions are described in section 4. Finally, conclusions
are presented in section 5.

PRELIMINARY AND RESEARCH
METHOD

Dynamical model of a DC-DC boost power
converter

A DC-DC boost power converter is described in Fig-
ure 1.

When the switch is at 2, the inductor current i in-
creases and stores energy in the inductor L. When the
switch is at 1, the current i decreases and the energy,
which is from the input voltage E and the inductor L,
stores in the capacitor C (and supplies in the load re-
sistor R). The output voltage of DC-DC boost power
converter is higher than the input voltage E.

i L ao\j
: v (IR

I+

Figure 1: A DC-DC boost power converter.

Let x; = i, x, = v. X1 is the inductor current i, and
x2 is the capacitor voltage v. A state-space model of
a DC-DC boost power converter is as follows by Or-
tega !

1

The output signal is x;. The switch variable a is equal
to 1 when there is 0 < t < T1; a is equal to 0 when there
is Ty <t < T. T is constant.

Ortega used an average model! to design the con-
trollers as follows

. 1 E
xl=f(lfu)f)C2*
L L1 )
=(1 — —
= (1-u) x = e

where x| and x; are the corresponding averaged vari-
ables. The control signal u is the duty ratio u = % The
control signal u is continuous and 0 < u < 1. Let Vd
be the desired value of the capacitor v. The operating
point of the system (2) is

v? E
xlozé;x2O:Vd§MO:1—Vd (3)

With E= 15 (V), R= 30 (Q), V; = 20 (V), we have:
xij0 = 0.888; xp9 = 20; ug = 0.25

Our goal is to regulate the capacitor voltage v to the
desired value V; while E and R can vary.

DC-DC boost | © DC load

power
converter

Solar
photovoltaic
system

Figure 2: Application of a DC-DC boost power con-
verter.

Practical application: the DC-DC boost power con-
verter is used in a solar photovoltaic system (PV). The
photovoltaic system and DC load cannot connect di-
rectly. The DC-DC boost power converter is needed.
The application of a DC-DC boost power converter is
illustrated in Figure 2.
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v Passivity-based control method

120 Consider the dynamical system in the following

121 form:

{ x:f(x,u) (4)

y="h(x)

12,

N

where f is locally Lipschitz; h is continuous; f(0,0)=0,
h(0)=0.

The plant is passive if there exists a continuously dif-

123

12:

X

12!

)

ferentiable positive semidefinite function V(x), which

126 is called the storage function, such that

o

.9V
T _
wy>V= —axf(x,u) Y (x,u)

Consider the plant (4) with u=0. The plant is zero-

12

N

12

3

state observable if y = 0 then x = 0.
Property*: Consider the plant (4). If the plant satisfies

12!

©°

13

=3

the following conditions:

131 1) Passive with a storage function V(x) which is posi-

132 tive semidefinite.

¥

133 ii) Zero-state observable.

@

iil) V (x) = 0 asx — oo,

Then with the feedback control law u = —¢ (y) with
@ (0)=0; y @ (y) > 0y # 0, the origin achieves the
global asymptotic stability.

13

r

13!

a

131

o

13

S

Passivity of DC-DC boost power converter

13

3

139 We change the variables as follows

2
X = X1 —X10 = X1 YL
5 ER
Xp=x3—x10=x1—Vy

(5)

120 Note that ;1 =X1; ;2 =Xy = [fl,fz]T

S

1w Insert (5) into (2), we obtain the state-space equation

142 of the plant
p 7E(~ V) E -
¥=p WtVe) = o
e (ma Vi) By Ly ©
277\ ER) Tov, T RC?

14

&

The storage function V is chosen as follows

1, 1
V(X) = 5Lx% + EC"% 7)

144 The function V is positive definite because V (0,0) =
s 0; V (X1,x2) > 0Vx) #0, X # 0. The derivative of V
16 is as follows

V = L)Acilr);ch +L22;2

Insert (6) into V, we have

=V = (x0%] —x10%2) i — E;z%

The plant (6), which has the input # and the output y,
is passive because yu = V4 %f% =yui>V..

The plant (6) is zero-state observable because u =
0,y=0=x=0=x=0=x=0.

PASSIVITY-BASED NEURAL
CONTROL

Passivity-based control

The passivity-based control is constructed as fol-
lows 7.

According to the property*, the control law stabilizes
the equilibrium point at origin of (6):

iu=—@(y) with ¢ (0) = 0; yo () > 0Vy # 0 (9)

We can choose

9 () =iy +ay +asy’ (10)
The passivity-based control law is
5
vi\ Vi
u=—ai Vd xl——d _7‘1( Z_Vd)
ER ER (11)

Passivity-based neural control

Now we construct a neural network which performs
the passivity-based control law (11). The neural net-
work has three inputs: iny, iny, in3 and output u. The
hidden layer has three neurons and its activation is
tangent hyperbolic. The output layer has one neuron
and its activation is linear. The structure of the neural
network is described in Figure 3.

] v v _
_d ) _d oy .
Va <x1 ER) ER( >

£

in1=f

- 23
V2 v?
iy = — |V, -4 )L, vyl ; (12
iny d(xl ER) ER( > —Va) (12)
- :5
y?2 v2
= |y Ve Vi
in3 d(xl ER) 7ER( »—Vy)

147

(8)
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Ini(k)

Ina(k)

Ins(k)

Figure 3: The structure of neural network.

The output of the neural network is u(k).

Algorithm is as follows

Step 1: Setup the initial parameters of DC-DC boost
power converter.

Step 2: Construct the simulation scheme of the neural
control for a DC-DC boost power converter and col-
lect data for genetic algorithm to adjust the weights of
the neural network.

Step 3: Adjust the weights of the neural controller us-
ing genetic algorithm.

The structure of the neural control for a DC-DC boost
power converter is described in Figure 4.

Tuning the weights of neural network using
genetic algorithm

The plant (2) is controlled by the neural control. V;;
is the weights of the hidden layer with i=1,2,3; j=1,2,3.
W is the weights of the output layer with k=1,2,3. The
parameters Vi, Va1, V31, V12, V22, V32, Vi3, V23, V33,
w1, wp and wj are determined such that the function
] is minimized with q;>0, q2>0.

T= 5 (B () + g3 () +@ (1) de (14)

We use genetic algorithm with decimal encoder. The
selection is a linear ranking. The crossover is two-
point. Crossover probability is equal to 0.9. The mu-
tation is uniform mutation with many points. Muta-
tion probability is equal to 0.1. The parameters 6 is
encoded into the chromosome which has twelve gene
segments indicated by vi1, v21, V31, V12, V22, V32, V13,
V23, V33, W1, wp and w3 in Table 1. The value range is:
0<v1£1,0<51m <1,0<v31 <1L,0<vp <1,

0<v»<1,0<vyp<1,0<v3<1,0<vy3<1,
0<v33<1,0<w; <1,0<wr <1,0<w3 < 1. The
maximum generation is equal to 100. The population
size is equal to 30. The exact value € is equal to 10°.
The discrete version of the ] is as follows

J=YV (132 (k) + q233 (k) + i (k)
2
=YYl <x1 (k) — E%R)
2
a2 (x2 (k) = V)* + <“(k) - (1 - E)) ]

. 1
We have a fitness function T¥e

X1,(k) and x5, (k) are the state variables X; and x; at
k' sample. u, (k) is the control input & at k" sample.

SIMULATION RESULTS AND
DISCUSSIONS

The parameters of the circuits are described in Table 2.
The input voltage E varies from 12 (V) to 16.5 (V).
The resistor R varies from 15 (Q) to 40 (2). The ini-
tial weights of neural network are: v{;=0.5, v»;=0.5,
v31=0.5, v12=0.5, v22=0.5, v3,=0.5, v{3=0.5, v»3=0.5,
v33=0.5, w1 =0.2, w»=0.2, w3=0.2. Initially, x; (0) =0
A, x2(0) =0 V.

Passivity-based neural control withour us-
ing genetic algorithm

The simulation time is set to be 45 ms.

Response to the variations of E: At the beginning of
the simulation, the input voltage E is set to be 15 (V).
At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms,
E is decreased to 15 (V). The results are described in
Figure 5 and Table 3.
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\ 4

»PWM —* power converter

Figure 4: The structure of the neural control for a DC-DC boost power converter.

Table 1: The parameters v, V21, V31, V12, V22, V32, V13, V23, V33, W], Wy and ws.

Parameters vll v21 v31 v12 v22 v32

Gene segment 1 2 3 4 5 6

Parameters v13 v23 v33 wl w2 w3

Gene segment 7 8 9 10 11 12
Table 2: The parameters of the DC-DC boost power converter.

Parameters Physical Meaning Value

C Capacitor 68 (UF)

L Inductor 0.02 (H)

E Input voltage 15 (V)

R Load resistor 30Q

vd Desired voltage 20 (V)

Figure 5 shows the current i, the control input u, the
capacitor voltage v, and the input voltage E when the
system is controlled by the passivity-based NC with-
out using GA and the input voltage E varies. Figure 5
shows that at t=15 ms, when E is increased to 16.5
V, the inductor current i is equal to 0.79 A. At t=30
ms, when E is decreased to 15 V, the inductor cur-
rent i is equal to 0.888 A. The settling time is equal
to 3 ms. Figure 5 shows that at t=15 ms, when E is
increased to 16.5 V, the capacitor voltage v has the
value AV = |V; —xz| (V) of 0.80759 V. The settling
time is equal to 3.3 ms and v is equal to 20 V. At t=30
ms, when E is decreased to 15 V, the capacitor volt-
age v has AV (V) of 1.0436 V and v is equal to 20 V.
The settling time is equal to 3.3 ms. The value of IAE
(integral absolute error (IAE) between V,; and x;) is
0.0412.

IAE = [¢" [Va =2

Response to the variations of R: At the beginning of
the simulation, the load resistor R is set to be 30 (Q2).
At t=15 ms, R is increased to 40 (). At t=30 ms, R

is decreased to 30 (Q2). The results are described in
Figure 6 and Table 4.

Figure 6 is the simulation results of passivity-based
NC without GA when R changes. Figure 6 shows the
current i, the control input u, the capacitor voltage v
and the load resistor R. Figure 6 shows that at t=15 ms,
when R is increased to 40 Q, the inductor current i is
equal to 0.667 A. At t=30 ms, when R is decreased to
30 Q, the inductor current i is equal to 0.888 A. The
settling time is equal to 3.1 ms. Figure 6 shows that
at t=15 ms, when R is increased to 40 €, the capaci-
tor voltage v has the value AV (V) of 2.10345 V. The
settling time is equal to 9.2 ms and v is equal to 20 V.
At t=30 ms, when R is deceased to 30 Q, the capacitor
voltage v has AV (V) of 1.847 V and v is equal to 20
V. The settling time is equal to 9.2 ms. The value of
TAE is 0.0478.

Response to the variations of V;: At the beginning
of the simulation, the desired voltage V is set to be
20(V). At t=15ms, V is decreased to 17 (V). At t=30
ms, V4 isincreased to 20 (V). The results are described
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Figure 5: The results of the passivity-based NC without GA when E changes:

control input u, (c) the capacitor voltage v, and (d) the input voltage E.

(a) the inductor current i, (b) the



Science & Technology Development Journal - Engineering and Technology 2025, ():1-15

fi} 0.5 1
ol : . ; . : : . : ]
0 0005 001 0015 002 0025 003 0035 004 0045
(a) time(sec)
1 | : ' l : : I ' : -
J o5}
0 . . . ; ] i
0 0005 001 0015 002 0025 003 0035 004 0045
(b) time(sec)
25 T T T T T T T -
o0 b = g — T ===
= 155 - = Vd 1
> 10} — 1
5 t -
0 0005 001 0015 002 0025 003 0035 004 0045
time(sec
40 | 1
E
O 35 1
(24
30
0 0005 001 0015 002 0025 003 0035 004 0045
time(sec)
(d)

Figure 6: The results of the passivity-based NC without GA when R changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the load resistor R.
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Table 3: The capacitor voltage v when E varies.

Increasing (+1.5V)

Decreasing (-1.5V)

AV = Vg —x2| (V) Settling time ts 7; (ms) AV (V) Settling time #; (ms)
0.80759 3.3 ms 1.0436 3.3 ms
Table 4: The capacitor voltage v when R varies.
Increasing (+10 &) Decreasing (-10 Q)
AV (V) ty (ms) AV (V) ty (ms)
2.10345 9.2 ms 1.847 9.2 ms

in Figure 7 and Table 5.

Figure 7 is the simulation results of passivity-based
NC without GA when V, changes. Figure 7 shows
the current i, the control input u, the capacitor voltage
v and the desired voltage V;. Figure 7 shows that at
t=15 ms, when V,; is decreased to 17 V, the capacitor
voltage v has the value AV (V) of 0.91785 V. The ca-
pacitor voltage v is equal to 17 V and the settling time
is equal to 3 ms. At t=30 ms, when V is increased
to 20 V, the capacitor voltage v has the value AV (V)
of 1.523 V, and v is equal to 20 V. The value of IAE is
0.0622.

Passivity-based neural control using ge-
netic algorithm

The simulation time is set to be 45 ms. The results of
passivity-based NC before using GA are used to col-
lect data for tuning the parameters using GA.

The initial weights of neural network are: v;1=0.5,
V21 =0.5, V31 =0.5, V12:0.5, V22=0.5, V32:0.5, V13:0.5,
V23:0.5, V33=0.5, w1=0.2, wp=0.2, W3:0.2.

Response to the variations of E: At the beginning of
the simulation, the input voltage E is set to be 15 (V).
At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms,
E is decreased to 15 (V).

The results of the passivity-based neural control using
GA, with q; =1, qp=1, are presented when E changes.
The results at generation 0 are: vy19p=0.6787,
v210=0.7577, v310=0.7431, v120=0.3922, v520=0.6555,
v320=0.1712, v130=0.706, v230=0.0318, v330=0.2769,
w10=0.0462, wp(=0.0971, w3(=0.8235, Jy = 49960.
The optimal results after tuning the parameters using
GA are as follows: v{;=0.694, vo;=0.015, v31=0.743,
v12=0.034, v»»=0.438, v3=0.381, v;3=0.761,
v23=0.431, v33=0.015, W =0.045, w»=0.09, w3=0.646,
J=49858. Stop at generation 51. The best chromo-
some is 1. The cost function is illustrated in Figure 8.
When E changes, the results of the passivity-based
neural control using genetic algorithm is illustrated
in Figure 9 and Table 6.

Figure 9 shows the current i, the control input u, the
capacitor voltage v, and the input voltage E when the
system is controlled by passivity-based NC using GA
and the input voltage E varies. Figure 9 shows that at
t=15 ms, when E is increased to 16.5 V, the inductor
current i is equal to 0.802 A. At t=30 ms, when E is
decreased to 15V, the inductor current i is equal to
0.893 A. The settling time is equal to 2.9 ms. Figure 9
shows that at t=15 ms, when E is increased to 16.5 V,
the capacitor voltage v has the value AV = |V; — x|
(V) of 0.79965 V. The settling time is equal to 2.9 ms
and vis equal to 20 V. At t=30 ms, when E is decreased
to 15V, the capacitor voltage v has AV (V) of 0.8723
V and v is equal to 20 V. The settling time is equal to
2.9 ms. The value of IAE is 0.0391.

Genetic algorithm is integrated into a neural con-
troller and adjusts optimally the weights of the neural
network such as Vi1, V21> V31, V12, V22, V32, V13, V23,
v33, Wi, wo and w3. The value of q; has influence to
the inductor current i and decreases the settling time,
2.9 ms. The value of q; has influence to the capacitor
voltage v and decreases the settling time, 2.9 ms.

The results show that compared with the neural con-
trol without GA, the proposed passivity-based neural
control using GA has shorter settling time and smaller
value of TAE when E changes. Moreover, the passivity-
based NC using GA has smaller value of AV. The
comparison results are described in Figure 10 and Ta-
ble 6.

Response to the variations of R: At the beginning of
the simulation, the load resistor R is set to be 30 (Q).
At t=15 ms, R is increased to 40 (Q). At t=30 ms, R is
decreased to 30 ().

The results of the passivity-based neural control using
GA, with q;=1, qp=1, are presented when R changes.
The results at generation 0 are: vy19=0.6563,
v210=0.8349, v3190=0.6399, v{20=0.3271, vp79=0.275,
v320=0.2164, v130=0.2794, v»30=0.2528, v33¢=0.711,
W10=0.0821, W20=0.2998, W30=0.1112, ]() = 50916.
The optimal results after tuning the parameters
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Figure 7: The results of the passivity-based NC without GA when V,; changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the desired voltage V.
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Table 5: The capacitor voltage v when V,; varies.

Decreasing (-3 V) Increasing (+3 V)
AV (V) ty (ms) AV (V) ts (ms)
0.91786 3 ms 1.523 3 ms
e J
<10
4.996 W T T T T T
4,994 7
4992 g
4,99 r y
J
4988 N
4986 7
4I 984 1 1 'l 'l 'l
0 10 20 30 40 50 60
generation

Figure 8: The cost function J of the passivity-based NC using GA with gq;=1, =1 when E varies.

Table 6: The capacitor voltage v of the NC without GA and the passivity-based NC using GA with q;=1, q>=1
when E varies.

Controller Increasing (+1.5V) Decreasing (-1.5V) IAE
AV (V) ts (ms) AV (V) ts (ms)

NC without GA  0.80759 33 1.0436 3.3 0.0412

Passivity-based 0.79965 2.9 0.8723 2.9 0.0391

NC using GA

with q1=1, q=1

10
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Figure 9: The results of the passivity-based NC using GA with q;=1, q,=1 when E changes: (a) the inductor current
i, (b) the control input u, (c) the capacitor voltage v and (d) E.
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Figure 10: The results of NC without GA (continuous
line) and the passivity-based NC using GA (discrete
line) when E changes: (a) the inductor current i, (b)
the control input u, and (c) the capacitor voltage v
with q1=1, gp=1.

using GA are as follows: v;1=0.646, v,1=0.633,
v31=0.639, v12=0.394, v9=0.736, v3,=0.326,
V13:0.52, V23=0.077, V33:0.21, W1=0.05, W2:0.299,
w3=0.111, J=50910. The
best chromosome is 1. The cost function is illus-

Stop at generation 51.

trated in Figure 11. When R changes, the results
of the passivity-based neural control using genetic
algorithm is illustrated in Figure 12 and Table 7.

Figure 12 is the simulation results of passivity-based
NC without GA when R changes. Figure 12 shows the
current i, the control input u, the capacitor voltage v
and the load resistor R. Figure 12 shows that at t=15
ms, when R is increased to 40 Q, the inductor current
iis equal to 0.665 A. At t=30 ms, when R is decreased
to 30 Q, the inductor current i is equal to 0.885 A. The
settling time is equal to 3 ms. Figure 12 shows that

12

5.003 [~
5.0928
5.0926
5.0924
5.0922

5.002
5.0918
5.0916
5.0914

5.0012

5.001
0 10 20 30 40 50 60

generation

Figure 11: The cost function J of the passivity-based
NC using GA with q;=1, =1 when R varies.

at t=15 ms, when R is increased to 40 Q, the capacitor
voltage v has the value AV (V) of 2.022 V. The settling
time is equal to 2.8 ms and v is equal to 20 V. At t=30
ms, when R is deceased to 30 Q, the capacitor voltage
v has AV (V) of 1.873 V and v is equal to 20 V. The
settling time is equal to 2.8 ms. The value of IAE is
0.0482.

Genetic algorithm is integrated into a neural con-
troller and adjusts optimally the weights of the neural
network such as Vi1, V21> V31, V12, V22, V32, V13, V23,
v33, Wi, wo and w3. The value of q; has influence to
the inductor current i and decreases the settling time,
3 ms. The value of q, has influence to the capacitor
voltage v and decreases the settling time, 2.8 ms.

The results show that compared with NC without
GA, the proposed passivity-based NC using GA has
shorter settling time when R changes. It has smaller
value of AV when R is increased to 40 Q. However,
the NC without using GA has smaller value of IAE.
The comparison results are described in Figure 13 and
Table 7.

CONCLUSIONS

In this paper, the passivity-based neural control us-
ing genetic algorithm for a DC-DC boost power con-
verter is proposed. The equilibrium point at origin of
the plant (6) is asymptotically stable. The neural net-
work performs the passivity-based control law. The
simulation results of the passivity-based neural con-
trol using genetic algorithm and the results of the NC
without using GA are done with Simulink in MAT-
LAB.

The simulation results of the passivity-based neural
control without using GA are done when the desired
voltage V4, the input voltage E and the load resistor
R change. The results of the NC without using GA
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Figure 12: The results of the passivity-based NC using GA when R varies: (a) the inductor current i, (b) the control
input u, (c) the capacitor voltage v and (d) R with q;=1, qp=1.
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Table 7: The capacitor voltage v of the NC without GA and the passivity-based NC using GA with q;=1, q;=1

when R varies.

Controller

NC without GA

Passivity-based

Increasing (+10 &)

AV (V) ty (ms)
2.10345 9.2
2.022 2.8

Decreasing (-10 ) IAE
AV (V) ty (ms)

1.847 9.2 0.0478
1.873 2.8 0.0482

NC using GA
with qi=1,
Q=1
12
o8
E. 06

—NC
= = Passivity-based NC using GA

(a)

0 0005 001 0015 002 0025 003 0035 0.04 0045 005

time(sec)

08 —NC
= = Passivity-based NC using GA

0 0005 001 0015 002 0025 003 0035 0.04 0045 005

lime{sec)

——nC
= = Passhity-based NC using GA

0 0005 001 0015 002 0025 003 0035 004 0045 0.05
I time{sec)

Figure 13: The results of NC without GA (continuous
line) and the passivity-based NC using GA (discrete
line) when R varies: (a) the inductor current i, (b) the
control input u, and (c) the capacitor voltage v with
q1=1,q2=1.

14

show that the capacitor voltage v is kept at the desired
value. The results of the passivity-based NC using GA
are performed when the input voltage E and the resis-
tor R vary. The weights of the neural network are ad-
justed optimally using genetic algorithm with decimal
encoder. The simulation results of the passivity-based
neural control using GA show that the capacitor volt-
age v is kept at a desired value V. Genetic algorithm
is integrated into a neural controller and adjusts opti-
mally the weights of the neural network such as vy,
Va1, V31, V12, V22, V32, V13, V23, V33, W, Wp and w3.
The value of q; has influence to the inductor current
i and decreases the settling time. The value of q has
influence to the capacitor voltage v and decreases the
settling time.

The results show that compared with the neural con-
trol without GA, the proposed passivity-based neural
control using GA has shorter settling time and smaller
value of TAE when E changes. Moreover, the passivity-
based NC using GA has smaller value of AV than the
NC. The results show that compared with NC without
GA, the proposed passivity-based NC using GA has
shorter settling time when R changes. It has smaller
value of AV when R is increased to 40 Q. However,
the NC without using GA has smaller value of IAE
when R changes.

The paper has limitations such as the assumed circuit
parameters. Future research will explore a practical

real-time experiments.
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Diéu khién mang noron dua vao tinh thu déng dung giai thuat di
truyén cho bé bién ddi cdng suat boost DC-DC

Minh Ngoc Huynh'-2, Hoai Nghia Duong?'*, Vinh Hao Nguyén'

e
£ '\E‘_ﬁ!f TOM TAT
Erituz o Trong bai bao nay, diéu khién mang noron dua vao tinh thu déng dung giai thuat di truyén cho bo

bién déi cong sudt boost DC-DC dugc dé nghi. Ngd ra clia bo bién ddi cong sudt boost DC-DC la
dong dién cudn cdm. Ngd vao diéu khién 1a ti 1& nhiém vu. Strdung phép bién déi toa do clia cac
bién trang thai va tin hiéu diéu khién, bo bién déi cong sudt boost DC-DC la thu dong. Hé mdi
quan st dugc trang théi 0 va diém can bang & géc toa do ctia hé nay la &n dinh tiém can. Mang
noron thuc hién luat diéu khién dua vao tinh thu dong. Muc tiéu la dién ap trén tu dién bang véi
dién ap mong mudn. Mang noron cé ba I6p: 16p ngd vao, I&p n va I6p ngd ra. Ham tac déng cla
I6p dn la tan-hyperbol va ham tac dong ctia I6p ngd ra la tuyén tinh. Trong sé clia mang naron
dugc chinh téi uu bang gidi thuat di truyén dung ma héa thap phan. Két qua mé phong dugc thuc
hién bang Simulink trong MATLAB. Két qua mé phong cla diéu khién mang noron dua vao tinh
thu dong khéng dung gidi thuat di truyén chiing té rang dién ap trén tu dién dugc gitr 8n dinh tai
dién &4p mong mudn khi dién ap mong mudn, dién dp ngd vao va dién tré tai thay déi. Két qué clia
diéu khién mang naoron dua vao tinh thu dong dung giai thuat di truyén ching té rang dién &p
trén tu dién dugc gitt &n dinh tai dién 4p mong mudn khi dién dp ngd vao va dién tré tai thay doi.
Hon nira, két qud moé phéng clia diéu khién mang noron dua vao tinh thu déng dung giai thuat di
truyén c6 chat lugng tt hon nhu la thai gian qua dé ngén hon va gid tri IAE (integral absolute error
of the desired voltage and the capacitor voltage) nhd hon két qua ctia diéu khién mang noron khi
dién 4p ngd vao thay déi. Cudi cung, két qua mod phong ching to réng diéu khién mang noron
dua vao tinh thu déng dung giai thuat di truyén co thdi gian qua dé ngdn hon diéu khién mang
noron khi dién tré tai thay déi.

Tur khoa: bo bién ddi cong sudt boost DC-DC, diéu khién mang naoron, diéu khién dua vao tinh
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