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ABSTRACT
In this paper, a passivity – based neural control using genetic algorithm for a DC-DC boost power
converter is proposed. The output of a DC-DC boost power converter is an inductor current. The
control input is the duty ratio. Using a co-ordinate transformation of state variables and control
input, a DC-DC boost power converter is passive. A new plant is zero-state observable and the
equilibrium point at origin of this plant is asymptotically stable. A neural network performs a pas-
sivity - based control law. The goal is that the capacitor voltage is equal to the desired voltage.
The neural network has three layers: the input layer, the hidden layer and the output layer. The
activation function of the hidden layer is tangent-hyperbolic and the activation of the output layer
is linear. The weights of neural network are also adjusted optimally by genetic algorithm using
decimal encoder. Simulation results are done with Simulink in MATLAB. Simulation results of the
passivity-based neural control without using genetic algorithm show that the capacitor voltage
is kept at the desired voltage when the desired voltage, the input voltage, and the load resistor
vary. The results of passivity-based neural control using genetic algorithm show that the capacitor
voltage is kept at the desired value when the input voltage and the load resistor change. Further,
the simulation results of the passivity – based neural control using genetic algorithm have better
performance such as shorter settling time and smaller value of IAE (integral absolute error of the
desired voltage and the capacitor voltage) than the neural control when the input voltage varies.
Finally, simulation results show that the passivity-based neural control using genetic algorithm has
shorter settling time than the neural control when the load resistor changes.
Key words: DC-DC boost power converter, neural control, passivity – based control, genetic
algorithm

INTRODUCTION1

The neural control and the passivity-based control2

have been investigated by many researchers. Ortega3

et al.1 presented the passivity-based control of DC-4

DC boost converter and buck converter, the slid-5

ing mode control and the adaptive control for DC-6

DC power converter. W. He et al.2 presented the7

passivity-based control of DC-DC boost power con-8

verter under time-varying disturbances via general-9

ized proportional integral observer. Cisneros et al.310

presented the passivity-based control of the bilinear11

systems and its applications to the boost and modular12

multilevel converters. The sliding mode control and13

the passivity-based control were presented by Hoai14

Nghia Duong4. Khalil5 presented the Lyapunov sta-15

ble theory, a passivation and the passivity-based con-16

trol of a two-degree of freedom robot. M. H. Huynh,17

H. N. Duong and V. H. Nguyen6 presented the con-18

trol system based on passivity-based control for a bi-19

cycle robot.20

T. Hayakawa et al.7 described the passivity-based21

adaptive output feedback control using neural net-22

work for nonlinear nonnegative dynamical systems. 23

W. Li et al.8 presented the passivity-based distributed 24

tracking control problem of networked agents in the 25

presence of uncertainty and external disturbance. M. 26

Norgaard et al.9 presented the multilayer perceptron 27

network and applications to identification of non- 28

linear systems, the inverse control, and the inter- 29

nal model control of nonlinear systems. Duc Minh 30

Nguyen et al.10 described the control of the inverted 31

pendulum system using neural networks. D. Muthi- 32

rayan and P. P. Khargonekar11 presented a neural 33

adaptive control for a continuous-time system. G. Es- 34

cobar et al.12 presented an experimental comparison 35

of several nonlinear controllers such as input-output 36

linearization, sliding mode control, and passivity- 37

based control for DC-DC boost power converter. M. 38

A. Hassan et al.13 presented the passivity-based con- 39

trol combined with adaptive control of DC-DC buck 40

converter with constant power loads in DCmicrogrid 41

systems. 42

Further, genetic algorithm was described by M. 43

Mitchell14. K. S. Tang et al.15 presented an optimiza- 44

Cite this article : Huynh M N, Duong H N, Nguyen V H. A passivity-based neural control using genetic
algorithm for a DC-DC boost power converter. Sci. Tech. Dev. J. – Engineering and Technology 2025;
():1-15.
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tion of feedforward neural networks of which topol-45

ogy and weights were adjusted optimally by genetic46

algorithm. The neural networks integrated adaptive47

backstepping control of DC-DC boost converter were48

presented by T. K. Nizami and A. Chakravarty 16. J.49

Aguila-Leon et al.17 presented an optimal PID pa-50

rameters tuning for a DC-DC boost converter. M.51

Mohammedi et al.18 described the fuzzy logic and52

passivity-based controller applied to electric vehicle53

using fuel cell and supercapacitors hybrid source. A54

passivity-based control using genetic algorithm was55

proposed by M. N. Huynh, H. N. Duong and V. H.56

Nguyen19. The advantage of the passivity-based con-57

trol is the asymptotical stability of the equilibrium58

point at origin of the plant. The passivity-based con-59

trol combinedwith slidingmode control for aDC-DC60

boost power converter was presented by Minh Ngoc61

Huynh, Hoai Nghia Duong and Vinh Hao Nguyen20.62

J. Wu and Y. Lu21 described the adaptive backtepping63

slidingmode control forDC-DCboost converter with64

constant power load.65

In this paper, a passivity – based neural control using66

genetic algorithm of a DC-DC boost power converter67

is proposed. The weights of neural network are ad-68

justed optimally by genetic algorithm using decimal69

encoder. Simulation results are done with Simulink70

in MATLAB.71

The paper is organized as follows. The introduction72

is presented in section 1. The dynamical model of a73

DC-DC boost power converter, the passivity-based74

method and the passivity property of a DC-DC boost75

power converter are presented in section 2. Section76

3 presents the passivity-based neural network control77

and the tuning the weights of neural network using78

genetic algorithm. The simulation results and discus-79

sions are described in section 4. Finally, conclusions80

are presented in section 5.81

PRELIMINARY AND RESEARCH82

METHOD83

Dynamical model of a DC-DC boost power84

converter85

A DC-DC boost power converter is described in Fig-86

ure 1.87

When the switch is at 2, the inductor current i in-88

creases and stores energy in the inductor L. When the89

switch is at 1, the current i decreases and the energy,90

which is from the input voltage E and the inductor L,91

stores in the capacitor C (and supplies in the load re-92

sistor R). The output voltage of DC-DC boost power93

converter is higher than the input voltage E.94

Figure 1: A DC-DC boost power converter.

Let x1 = i, x2 = v. x1 is the inductor current i, and 95

x2 is the capacitor voltage v. A state-space model of 96

a DC-DC boost power converter is as follows by Or- 97

tega1 98
.
x1 =−(1−α)

1
L

x2
E
L

.
x2 = (1−α)

1
C

x1 −
1

RC
x2

(1)

The output signal is x1. The switch variable a is equal 99

to 1 when there is 0 < t < T1; a is equal to 0 when there 100

is T1 < t < T. T is constant. 101

Ortega used an average model1 to design the con- 102

trollers as follows 103
.
x1 =−(1−u)

1
L

x2
E
L

.
x2 = (1−u)

1
C

x1 −
1

RC
x2

(2)

where x1 and x2 are the corresponding averaged vari- 104

ables. The control signal u is the duty ratio u= T1
T . The 105

control signal u is continuous and 0 < u < 1. Let Vd 106

be the desired value of the capacitor v. The operating 107

point of the system (2) is 108

x10 =
V 2

d
ER

; x20 =Vd ; u0 = 1− E
Vd

(3)

With E= 15 (V), R= 30 (Ω), Vd = 20 (V), we have: 109

xi0 = 0.888; x20 = 20; u0 = 0.25 110

Our goal is to regulate the capacitor voltage v to the 111

desired value Vd while E and R can vary. 112

Figure 2: Application of a DC-DC boost power con-
verter.

Practical application: the DC-DC boost power con- 113

verter is used in a solar photovoltaic system (PV).The 114

photovoltaic system and DC load cannot connect di- 115

rectly. The DC-DC boost power converter is needed. 116

The application of a DC-DC boost power converter is 117

illustrated in Figure 2. 118
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Passivity-based control method119

Consider the dynamical system in the following120

form:121 {
.
x = f (x,u)
y = h(x)

(4)

where f is locally Lipschitz; h is continuous; f(0,0)=0,122

h(0)=0.123

The plant is passive if there exists a continuously dif-124

ferentiable positive semidefinite function V(x), which125

is called the storage function, such that126

uT y ≥
.

V =
∂V
∂x

f (x,u) ∀(x,u)

Consider the plant (4) with u=0. The plant is zero-127

state observable if y ≡ 0 then x ≡ 0.128

Property 4: Consider the plant (4). If the plant satisfies129

the following conditions:130

i) Passive with a storage function V(x) which is posi-131

tive semidefinite.132

ii) Zero-state observable.133

iii)V (x)→ ∞ as x → ∞.134

Then with the feedback control law u = −φ (y) with135

φ (0) = 0; yT φ (y)> 0 ∀y ̸= 0, the origin achieves the136

global asymptotic stability.137

Passivity of DC-DC boost power converter138

We change the variables as follows139

x̃1 = x1 − x10 = x1 −
V 2

d
ER

x̃2 = x2 − x10 = x1 −Vd

ũ = u−u0 = u−
(

1− E
Vd

) (5)

Note that
.∼
x1 =

.
x1;

.∼
x2 =

.
x2 = [x̃1, x̃2]

T
140

Insert (5) into (2), we obtain the state-space equation141

of the plant142 
.∼
x1 =

ũ
L
(x̃2 +Vd)−

E
LVd

x̃2

.∼
x2 =− ũ

C

(
x̃1 +

V 2
d

ER

)
+

E
CVd

x̃1 −
1

RC
x̃2

(6)

The storage function V is chosen as follows143

V (x̃) =
1
2

Lx̃2
1 +

1
2

Cx̃2
2 (7)

The function V is positive definite because V (0,0) =144

0; V (x̃1, x̃2)> 0 ∀x̃1 ̸= 0, x̃2 ̸= 0. The derivative of V145

is as follows146

.
V = Lx̃1

.∼
x1 +Lx̃2

.∼
x2

Insert (6) into
.

V , we have 147

.
V =

(
Lx̃1

.∼
x1 +Lx̃2

.∼
x2

)
= Lx̃1

[
ũ
L
(x̃2 +Vd)−

E
LVd

x̃2

]
+Lx̃2

.∼
x2+

Lx̃2

[
− ũ

C

(
x̃1 +

V 2
d

ER

)
+

E
CVd

x̃1 −
1

RC
x̃2

]
= (x̃1ũx̃2 +Vd x̃1ũ− E

Vd
x̃2x̃1 − x̃1ũx̃2−

x̃2ũ
V 2

d
ER

+
E
Vd

x̃1x̃2 −
1
R

x̃2
2)

⇒
.

V =Vd x̃1ũ−
V 2

d
ER

x̃2ũ− 1
R

x̃2
2

⇒
.

V = (x20x̃1 − x10x̃2) ũ− 1
R

x̃2
2

(8)

The plant (6), which has the input ũ and the output ỹ, 148

is passive because ỹũ =
.

V + 1
R x̃2

2 ⇒ ỹũ ≥
.

V . . 149

The plant (6) is zero-state observable because ũ = 150

0, ỹ = 0 ⇒ x̃1 ≡ 0 ⇒ x̃2 ≡ 0 ⇒ x̃ ≡ 0.. 151

PASSIVITY-BASED NEURAL 152

CONTROL 153

Passivity-based control 154

The passivity-based control is constructed as fol- 155

lows19. 156

According to the property 4, the control law stabilizes 157

the equilibrium point at origin of (6): 158

ũ =−φ (ỹ) with φ (0) = 0; ỹφ (ỹ)> 0∀ỹ ̸= 0 (9) 159

We can choose 160

φ (ỹ) = a1ỹ+a2ỹ3 +a3ỹ5 (10)

The passivity-based control law is 161

u =−a1

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]5

+

(
1− E

Vd

) (11)

Passivity-based neural control 162

Now we construct a neural network which performs 163

the passivity-based control law (11). The neural net- 164

work has three inputs: in1, in2, in3 and output u. The 165

hidden layer has three neurons and its activation is 166

tangent hyperbolic. The output layer has one neuron 167

and its activation is linear. The structure of the neural 168

network is described in Figure 3. 169

in1 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]
;

in2 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]3

;

in3 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]5

.

(12)
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Figure 3: The structure of neural network.

The output of the neural network is u(k).170

Algorithm is as follows171

Step 1: Setup the initial parameters of DC-DC boost172

power converter.173

Step 2: Construct the simulation scheme of the neural174

control for a DC-DC boost power converter and col-175

lect data for genetic algorithm to adjust the weights of176

the neural network.177

Step 3: Adjust the weights of the neural controller us-178

ing genetic algorithm.179

The structure of the neural control for a DC-DC boost180

power converter is described in Figure 4.181

Tuning theweights of neural networkusing182

genetic algorithm183

The plant (2) is controlled by the neural control. Vi j184

is the weights of the hidden layer with i=1,2,3; j=1,2,3.185

Wk is theweights of the output layerwith k=1,2,3. The186

parameters v11, v21, v31, v12, v22, v32, v13, v23, v33,187

w1, w2 and w3 are determined such that the function188

J is minimized with q1>0, q2>0.189

J =
∫+∞

0
(
q1x̃2

1 (t)+q2x̃2
2 (t)+ ũ2 (t)

)
dt (14)

We use genetic algorithm with decimal encoder. The190

selection is a linear ranking. The crossover is two-191

point. Crossover probability is equal to 0.9. The mu-192

tation is uniform mutation with many points. Muta-193

tion probability is equal to 0.1. The parameters θ is194

encoded into the chromosome which has twelve gene195

segments indicated by v11, v21, v31, v12, v22, v32, v13,196

v23, v33, w1, w2 and w3 in Table 1. The value range is:197

0 ≤ v11 ≤ 1, 0 ≤ v21 ≤ 1, 0 ≤ v31 ≤ 1, 0 ≤ v12 ≤ 1,198

0 ≤ v22 ≤ 1, 0 ≤ v32 ≤ 1, 0 ≤ v13 ≤ 1, 0 ≤ v23 ≤ 1, 199

0 ≤ v33 ≤ 1, 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1, 0 ≤ w3 ≤ 1. The 200

maximum generation is equal to 100. The population 201

size is equal to 30. The exact value ε is equal to 106. 202

The discrete version of the J is as follows 203

J = ∑N
k=1
(
q1x̃2

1 (k)+q2x̃2
2 (k)+ ũ2 (k)

)
= ∑N

k=1[q1

(
x1 (k)−

V 2
d

E ×R

)2

+

q2 (x2 (k)−Vd)
2 +

(
u(k)−

(
1− E

Vd

))2
]

(15)

We have a fitness function 1
J+ε . 204

x1n(k) and x2n(k) are the state variables x̃1 and x̃2 at 205

kth sample. un(k) is the control input ũ at kth sample. 206

SIMULATION RESULTS AND 207

DISCUSSIONS 208

Theparameters of the circuits are described in Table 2. 209

The input voltage E varies from 12 (V) to 16.5 (V). 210

The resistor R varies from 15 (Ω) to 40 (Ω). The ini- 211

tial weights of neural network are: v11=0.5, v21=0.5, 212

v31=0.5, v12=0.5, v22=0.5, v32=0.5, v13=0.5, v23=0.5, 213

v33=0.5, w1=0.2, w2=0.2, w3=0.2. Initially, x1 (0) = 0 214

A, x2(0) =0 V. 215

Passivity-based neural control withour us- 216

ing genetic algorithm 217

The simulation time is set to be 45 ms. 218

Response to the variations of E: At the beginning of 219

the simulation, the input voltage E is set to be 15 (V). 220

At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms, 221

E is decreased to 15 (V). The results are described in 222

Figure 5 and Table 3. 223

4
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Figure 4: The structure of the neural control for a DC-DC boost power converter.

Table 1: The parameters v11, v21, v31, v12, v22, v32, v13, v23, v33, w1, w2 and w3.

Parameters v11 v21 v31 v12 v22 v32

Gene segment 1 2 3 4 5 6

Parameters v13 v23 v33 w1 w2 w3

Gene segment 7 8 9 10 11 12

Table 2: The parameters of the DC-DC boost power converter.

Parameters Physical Meaning Value

C Capacitor 68 (µF)

L Inductor 0.02 (H)

E Input voltage 15 (V)

R Load resistor 30 Ω

Vd Desired voltage 20 (V)

Figure 5 shows the current i, the control input u, the224

capacitor voltage v, and the input voltage E when the225

system is controlled by the passivity-based NC with-226

out using GA and the input voltage E varies. Figure 5227

shows that at t=15 ms, when E is increased to 16.5228

V, the inductor current i is equal to 0.79 A. At t=30229

ms, when E is decreased to 15 V, the inductor cur-230

rent i is equal to 0.888 A. The settling time is equal231

to 3 ms. Figure 5 shows that at t=15 ms, when E is232

increased to 16.5 V, the capacitor voltage v has the233

value △V = |Vd − x2| (V) of 0.80759 V. The settling234

time is equal to 3.3 ms and v is equal to 20 V. At t=30235

ms, when E is decreased to 15 V, the capacitor volt-236

age v has △V (V) of 1.0436 V and v is equal to 20 V.237

The settling time is equal to 3.3 ms. The value of IAE238

(integral absolute error (IAE) between Vd and x2) is239

0.0412.240

IAE =
∫+∞

0 |Vd − x2241

Response to the variations of R: At the beginning of242

the simulation, the load resistor R is set to be 30 (Ω).243

At t=15 ms, R is increased to 40 (Ω). At t=30 ms, R244

is decreased to 30 (Ω). The results are described in 245

Figure 6 and Table 4. 246

Figure 6 is the simulation results of passivity-based 247

NC without GA when R changes. Figure 6 shows the 248

current i, the control input u, the capacitor voltage v 249

and the load resistor R. Figure 6 shows that at t=15ms, 250

when R is increased to 40 Ω, the inductor current i is 251

equal to 0.667 A. At t=30 ms, when R is decreased to 252

30 Ω, the inductor current i is equal to 0.888 A. The 253

settling time is equal to 3.1 ms. Figure 6 shows that 254

at t=15 ms, when R is increased to 40 Ω, the capaci- 255

tor voltage v has the value △V (V) of 2.10345 V. The 256

settling time is equal to 9.2 ms and v is equal to 20 V. 257

At t=30 ms, when R is deceased to 30 Ω, the capacitor 258

voltage v has △V (V) of 1.847 V and v is equal to 20 259

V. The settling time is equal to 9.2 ms. The value of 260

IAE is 0.0478. 261

Response to the variations of Vd : At the beginning 262

of the simulation, the desired voltage Vd is set to be 263

20(V). At t=15 ms, Vd is decreased to 17 (V). At t=30 264

ms, Vd is increased to 20 (V).The results are described 265

5
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Figure 5: The results of the passivity-based NC without GA when E changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the input voltage E.

6
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Figure 6: The results of the passivity-based NC without GA when R changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the load resistor R.

7
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Table 3: The capacitor voltage v when E varies.

Increasing (+1.5V) Decreasing (-1.5V)

△V = |Vd − x2| (V) Settling time ts ts (ms) △V (V) Settling time ts (ms)

0.80759 3.3 ms 1.0436 3.3 ms

Table 4: The capacitor voltage v when R varies.

Increasing (+10 Ω) Decreasing (-10 Ω)

△V (V) ts (ms) △V (V) ts (ms)

2.10345 9.2 ms 1.847 9.2 ms

in Figure 7 and Table 5.266

Figure 7 is the simulation results of passivity-based267

NC without GA when Vd changes. Figure 7 shows268

the current i, the control input u, the capacitor voltage269

v and the desired voltage Vd . Figure 7 shows that at270

t=15 ms, when Vd is decreased to 17 V, the capacitor271

voltage v has the value △V (V) of 0.91785 V. The ca-272

pacitor voltage v is equal to 17 V and the settling time273

is equal to 3 ms. At t=30 ms, when Vd is increased274

to 20 V, the capacitor voltage v has the value△V (V)275

of 1.523 V, and v is equal to 20 V. The value of IAE is276

0.0622.277

Passivity-based neural control using ge-278

netic algorithm279

The simulation time is set to be 45 ms. The results of280

passivity-based NC before using GA are used to col-281

lect data for tuning the parameters using GA.282

The initial weights of neural network are: v11=0.5,283

v21=0.5, v31=0.5, v12=0.5, v22=0.5, v32=0.5, v13=0.5,284

v23=0.5, v33=0.5, w1=0.2, w2=0.2, w3=0.2.285

Response to the variations of E: At the beginning of286

the simulation, the input voltage E is set to be 15 (V).287

At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms,288

E is decreased to 15 (V).289

The results of the passivity-based neural control using290

GA, with q1=1, q2=1, are presented when E changes.291

The results at generation 0 are: v110=0.6787,292

v210=0.7577, v310=0.7431, v120=0.3922, v220=0.6555,293

v320=0.1712, v130=0.706, v230=0.0318, v330=0.2769,294

w10=0.0462, w20=0.0971, w30=0.8235, J0 = 49960.295

The optimal results after tuning the parameters using296

GA are as follows: v11=0.694, v21=0.015, v31=0.743,297

v12=0.034, v22=0.438, v32=0.381, v13=0.761,298

v23=0.431, v33=0.015, w1=0.045, w2=0.09, w3=0.646,299

J=49858. Stop at generation 51. The best chromo-300

some is 1. The cost function is illustrated in Figure 8.301

When E changes, the results of the passivity-based302

neural control using genetic algorithm is illustrated303

in Figure 9 and Table 6.304

Figure 9 shows the current i, the control input u, the 305

capacitor voltage v, and the input voltage E when the 306

system is controlled by passivity-based NC using GA 307

and the input voltage E varies. Figure 9 shows that at 308

t=15 ms, when E is increased to 16.5 V, the inductor 309

current i is equal to 0.802 A. At t=30 ms, when E is 310

decreased to 15 V, the inductor current i is equal to 311

0.893 A. The settling time is equal to 2.9 ms. Figure 9 312

shows that at t=15 ms, when E is increased to 16.5 V, 313

the capacitor voltage v has the value △V = |Vd − x2| 314

(V) of 0.79965 V. The settling time is equal to 2.9 ms 315

and v is equal to 20 V. At t=30ms, when E is decreased 316

to 15 V, the capacitor voltage v has△V (V) of 0.8723 317

V and v is equal to 20 V. The settling time is equal to 318

2.9 ms. The value of IAE is 0.0391. 319

Genetic algorithm is integrated into a neural con- 320

troller and adjusts optimally the weights of the neural 321

network such as v11, v21, v31, v12, v22, v32, v13, v23, 322

v33, w1, w2 and w3. The value of q1 has influence to 323

the inductor current i and decreases the settling time, 324

2.9 ms. The value of q2 has influence to the capacitor 325

voltage v and decreases the settling time, 2.9 ms. 326

The results show that compared with the neural con- 327

trol without GA, the proposed passivity-based neural 328

control usingGAhas shorter settling time and smaller 329

value of IAEwhenE changes. Moreover, the passivity- 330

based NC using GA has smaller value of △V . The 331

comparison results are described in Figure 10 and Ta- 332

ble 6. 333

Response to the variations of R: At the beginning of 334

the simulation, the load resistor R is set to be 30 (Ω). 335

At t=15 ms, R is increased to 40 (Ω). At t=30 ms, R is 336

decreased to 30 (Ω). 337

The results of the passivity-based neural control using 338

GA, with q1=1, q2=1, are presented when R changes. 339

The results at generation 0 are: v110=0.6563, 340

v210=0.8349, v310=0.6399, v120=0.3271, v220=0.275, 341

v320=0.2164, v130=0.2794, v230=0.2528, v330=0.711, 342

w10=0.0821, w20=0.2998, w30=0.1112, J0 = 50916. 343

The optimal results after tuning the parameters 344

8
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Figure 7: The results of the passivity-based NC without GA when Vd changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the desired voltage Vd .
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Table 5: The capacitor voltage v when Vd varies.

Decreasing (-3 V) Increasing (+3 V)

△V (V) ts (ms) △V (V) ts (ms)

0.91786 3 ms 1.523 3 ms

Figure 8: The cost function J of the passivity-based NC using GA with q1=1, q2=1 when E varies.

Table 6: The capacitor voltage v of the NCwithout GA and the passivity-based NC using GAwith q1=1, q2=1
when E varies.

Controller Increasing (+1.5V) Decreasing (-1.5V) IAE

△V (V) ts (ms) △V (V) ts (ms)

NC without GA 0.80759 3.3 1.0436 3.3 0.0412

Passivity-based
NC using GA
with q1=1, q2=1

0.79965 2.9 0.8723 2.9 0.0391

10
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Figure 9: The results of the passivity-basedNC usingGAwith q1=1, q2=1when E changes: (a) the inductor current
i, (b) the control input u, (c) the capacitor voltage v and (d) E.
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Figure10: The results ofNCwithoutGA (continuous
line) and the passivity-based NC using GA (discrete
line) when E changes: (a) the inductor current i, (b)
the control input u, and (c) the capacitor voltage v
with q1=1, q2=1.

using GA are as follows: v11=0.646, v21=0.633,345

v31=0.639, v12=0.394, v22=0.736, v32=0.326,346

v13=0.52, v23=0.077, v33=0.21, w1=0.05, w2=0.299,347

w3=0.111, J=50910. Stop at generation 51. The348

best chromosome is 1. The cost function is illus-349

trated in Figure 11. When R changes, the results350

of the passivity-based neural control using genetic351

algorithm is illustrated in Figure 12 and Table 7.352

Figure 12 is the simulation results of passivity-based353

NCwithout GAwhen R changes. Figure 12 shows the354

current i, the control input u, the capacitor voltage v355

and the load resistor R. Figure 12 shows that at t=15356

ms, when R is increased to 40 Ω, the inductor current357

i is equal to 0.665 A. At t=30 ms, when R is decreased358

to 30 Ω, the inductor current i is equal to 0.885 A.The359

settling time is equal to 3 ms. Figure 12 shows that360

Figure11: The cost function J of thepassivity-based
NC using GA with q1=1, q2=1 when R varies.

at t=15 ms, when R is increased to 40 Ω, the capacitor 361

voltage v has the value△V (V) of 2.022 V.The settling 362

time is equal to 2.8 ms and v is equal to 20 V. At t=30 363

ms, when R is deceased to 30 Ω, the capacitor voltage 364

v has △V (V) of 1.873 V and v is equal to 20 V. The 365

settling time is equal to 2.8 ms. The value of IAE is 366

0.0482. 367

Genetic algorithm is integrated into a neural con- 368

troller and adjusts optimally the weights of the neural 369

network such as v11, v21, v31, v12, v22, v32, v13, v23, 370

v33, w1, w2 and w3. The value of q1 has influence to 371

the inductor current i and decreases the settling time, 372

3 ms. The value of q2 has influence to the capacitor 373

voltage v and decreases the settling time, 2.8 ms. 374

The results show that compared with NC without 375

GA, the proposed passivity-based NC using GA has 376

shorter settling time when R changes. It has smaller 377

value of △V when R is increased to 40 Ω. However, 378

the NC without using GA has smaller value of IAE. 379

Thecomparison results are described in Figure 13 and 380

Table 7. 381

CONCLUSIONS 382

In this paper, the passivity-based neural control us- 383

ing genetic algorithm for a DC-DC boost power con- 384

verter is proposed. The equilibrium point at origin of 385

the plant (6) is asymptotically stable. The neural net- 386

work performs the passivity-based control law. The 387

simulation results of the passivity-based neural con- 388

trol using genetic algorithm and the results of the NC 389

without using GA are done with Simulink in MAT- 390

LAB. 391

The simulation results of the passivity-based neural 392

control without using GA are done when the desired 393

voltage Vd , the input voltage E and the load resistor 394

R change. The results of the NC without using GA 395

12
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Figure 12: The results of the passivity-based NC using GA when R varies: (a) the inductor current i, (b) the control
input u, (c) the capacitor voltage v and (d) R with q1=1, q2=1.
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Table 7: The capacitor voltage v of the NCwithout GA and the passivity-based NC using GAwith q1=1, q2=1
when R varies.

Controller Increasing (+10 Ω) Decreasing (-10 Ω) IAE

△V (V) ts (ms) △V (V) ts (ms)

NC without GA 2.10345 9.2 1.847 9.2 0.0478

Passivity-based
NC using GA
with q1=1,
q2=1

2.022 2.8 1.873 2.8 0.0482

Figure13: The results ofNCwithoutGA (continuous
line) and the passivity-based NC using GA (discrete
line) when R varies: (a) the inductor current i, (b) the
control input u, and (c) the capacitor voltage v with
q1=1, q2=1.

show that the capacitor voltage v is kept at the desired 396

value. The results of the passivity-based NC using GA 397

are performed when the input voltage E and the resis- 398

tor R vary. The weights of the neural network are ad- 399

justed optimally using genetic algorithmwith decimal 400

encoder. The simulation results of the passivity-based 401

neural control using GA show that the capacitor volt- 402

age v is kept at a desired value Vd . Genetic algorithm 403

is integrated into a neural controller and adjusts opti- 404

mally the weights of the neural network such as v11, 405

v21, v31, v12, v22, v32, v13, v23, v33, w1, w2 and w3. 406

The value of q1 has influence to the inductor current 407

i and decreases the settling time. The value of q2 has 408

influence to the capacitor voltage v and decreases the 409

settling time. 410

The results show that compared with the neural con- 411

trol without GA, the proposed passivity-based neural 412

control usingGAhas shorter settling time and smaller 413

value of IAEwhenE changes. Moreover, the passivity- 414

based NC using GA has smaller value of△V than the 415

NC.The results show that compared with NCwithout 416

GA, the proposed passivity-based NC using GA has 417

shorter settling time when R changes. It has smaller 418

value of △V when R is increased to 40 Ω. However, 419

the NC without using GA has smaller value of IAE 420

when R changes. 421

The paper has limitations such as the assumed circuit 422

parameters. Future research will explore a practical 423

real-time experiments. 424
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TÓM TẮT
Trong bài báo này, điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di truyền cho bộ
biến đổi công suất boost DC-DC được đề nghị. Ngõ ra của bộ biến đổi công suất boost DC-DC là
dòng điện cuộn cảm. Ngõ vào điều khiển là tỉ lệ nhiệm vụ. Sử dụng phép biến đổi tọa độ của các
biến trạng thái và tín hiệu điều khiển, bộ biến đổi công suất boost DC-DC là thụ động. Hệ mới là
quan sát được trạng thái 0 và điểm cân bằng ở gốc tọa độ của hệ này là ổn định tiệm cận. Mạng
nơron thực hiện luật điều khiển dựa vào tính thụ động. Mục tiêu là điện áp trên tụ điện bằng với
điện áp mong muốn. Mạng nơron có ba lớp: lớp ngõ vào, lớp ẩn và lớp ngõ ra. Hàm tác động của
lớp ẩn là tan-hyperbol và hàm tác động của lớp ngõ ra là tuyến tính. Trọng số của mạng nơron
được chỉnh tối ưu bằng giải thuật di truyền dùngmã hóa thập phân. Kết quảmô phỏng được thực
hiện bằng Simulink trong MATLAB. Kết quả mô phỏng của điều khiển mạng nơron dựa vào tính
thụ động không dùng giải thuật di truyển chứng tỏ rằng điện áp trên tụ điện được giữ ổn định tại
điện ápmongmuốn khi điện ápmongmuốn, điện áp ngõ vào và điện trở tải thay đổi. Kết quả của
điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di truyển chứng tỏ rằng điện áp
trên tụ điện được giữ ổn định tại điện áp mong muốn khi điện áp ngõ vào và điện trở tải thay đổi.
Hơn nữa, kết quả mô phỏng của điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di
truyển có chất lượng tốt hơn như là thời gian quá độ ngắn hơn và giá trị IAE (integral absolute error
of the desired voltage and the capacitor voltage) nhỏ hơn kết quả của điều khiển mạng nơron khi
điện áp ngõ vào thay đổi. Cuối cùng, kết quả mô phỏng chứng tỏ rằng điều khiển mạng nơron
dựa vào tính thụ động dùng giải thuật di truyển có thời gian quá độ ngắn hơn điều khiển mạng
nơron khi điện trở tải thay đổi.
Từ khoá: bộ biến đổi công suất boost DC-DC, điều khiển mạng nơron, điều khiển dựa vào tính
thụ động, giải thuật di truyền
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