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A passivity-based neural control using genetic algorithm for a
DC-DC boost power converter

Minh Ngoc Huynh1,2, Hoai Nghia Duong3,*, Vinh Hao Nguyen1

ABSTRACT
In this paper, a passivity – based neural control using genetic algorithm for a DC-DC boost power
converter is proposed. The output of a DC-DC boost power converter is an inductor current. The
control input is the duty ratio. Using a co-ordinate transformation of state variables and control
input, a DC-DC boost power converter is passive. A new plant is zero-state observable and the
equilibrium point at origin of this plant is asymptotically stable. A neural network performs a pas-
sivity - based control law. The goal is that the capacitor voltage is equal to the desired voltage.
The neural network has three layers: the input layer, the hidden layer and the output layer. The
activation function of the hidden layer is tangent-hyperbolic and the activation of the output layer
is linear. The weights of neural network are also adjusted optimally by genetic algorithm using
decimal encoder. Simulation results are done with Simulink in MATLAB. Simulation results of the
passivity-based neural control without using genetic algorithm show that the capacitor voltage
is kept at the desired voltage when the desired voltage, the input voltage, and the load resistor
vary. The results of passivity-based neural control using genetic algorithm show that the capacitor
voltage is kept at the desired value when the input voltage and the load resistor change. Further,
the simulation results of the passivity – based neural control using genetic algorithm have better
performance such as shorter settling time and smaller value of IAE (integral absolute error of the
desired voltage and the capacitor voltage) than the neural control when the input voltage varies.
Finally, simulation results show that the passivity-based neural control using genetic algorithm has
shorter settling time than the neural control when the load resistor changes.
Key words: DC-DC boost power converter, neural control, passivity – based control, genetic
algorithm

INTRODUCTION
The neural control and the passivity-based control
have been investigated by many researchers. Ortega
et al.1 presented the passivity-based control of DC-
DC boost converter and buck converter, the slid-
ing mode control and the adaptive control for DC-
DC power converter. W. He et al.2 presented the
passivity-based control of DC-DC boost power con-
verter under time-varying disturbances via general-
ized proportional integral observer. Cisneros et al.3

presented the passivity-based control of the bilinear
systems and its applications to the boost and modular
multilevel converters. The sliding mode control and
the passivity-based control were presented by Hoai
Nghia Duong4. Khalil5 presented the Lyapunov sta-
ble theory, a passivation and the passivity-based con-
trol of a two-degree of freedom robot. M. H. Huynh,
H. N. Duong and V. H. Nguyen6 presented the con-
trol system based on passivity-based control for a bi-
cycle robot.
T. Hayakawa et al.7 described the passivity-based
adaptive output feedback control using neural net-

work for nonlinear nonnegative dynamical systems.
W. Li et al.8 presented the passivity-based distributed
tracking control problem of networked agents in the
presence of uncertainty and external disturbance. M.
Norgaard et al.9 presented the multilayer perceptron
network and applications to identification of non-
linear systems, the inverse control, and the inter-
nal model control of nonlinear systems. Duc Minh
Nguyen et al.10 described the control of the inverted
pendulum system using neural networks. D. Muthi-
rayan and P. P. Khargonekar11 presented a neural
adaptive control for a continuous-time system. G. Es-
cobar et al.12 presented an experimental comparison
of several nonlinear controllers such as input-output
linearization, sliding mode control, and passivity-
based control for DC-DC boost power converter. M.
A. Hassan et al.13 presented the passivity-based con-
trol combined with adaptive control of DC-DC buck
converter with constant power loads in DCmicrogrid
systems.
Further, genetic algorithm was described by M.
Mitchell14. K. S. Tang et al.15 presented an optimiza-
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tion of feedforward neural networks of which topol-
ogy and weights were adjusted optimally by genetic
algorithm. The neural networks integrated adaptive
backstepping control of DC-DC boost converter were
presented by T. K. Nizami and A. Chakravarty 16. J.
Aguila-Leon et al.17 presented an optimal PID pa-
rameters tuning for a DC-DC boost converter. M.
Mohammedi et al.18 described the fuzzy logic and
passivity-based controller applied to electric vehicle
using fuel cell and supercapacitors hybrid source. A
passivity-based control using genetic algorithm was
proposed by M. N. Huynh, H. N. Duong and V. H.
Nguyen19. The advantage of the passivity-based con-
trol is the asymptotical stability of the equilibrium
point at origin of the plant. The passivity-based con-
trol combinedwith slidingmode control for aDC-DC
boost power converter was presented by Minh Ngoc
Huynh, Hoai Nghia Duong and Vinh Hao Nguyen20.
J. Wu and Y. Lu21 described the adaptive backtepping
slidingmode control forDC-DCboost converter with
constant power load.
In this paper, a passivity – based neural control using
genetic algorithm of a DC-DC boost power converter
is proposed. The weights of neural network are ad-
justed optimally by genetic algorithm using decimal
encoder. Simulation results are done with Simulink
in MATLAB.
The paper is organized as follows. The introduction
is presented in section 1. The dynamical model of a
DC-DC boost power converter, the passivity-based
method and the passivity property of a DC-DC boost
power converter are presented in section 2. Section
3 presents the passivity-based neural network control
and the tuning the weights of neural network using
genetic algorithm. The simulation results and discus-
sions are described in section 4. Finally, conclusions
are presented in section 5.

PRELIMINARY AND RESEARCH
METHOD

Dynamical model of a DC-DC boost power
converter

A DC-DC boost power converter is described in Fig-
ure 1.
When the switch is at 2, the inductor current i in-
creases and stores energy in the inductor L. When the
switch is at 1, the current i decreases and the energy,
which is from the input voltage E and the inductor L,
stores in the capacitor C (and supplies in the load re-
sistor R). The output voltage of DC-DC boost power
converter is higher than the input voltage E.

Figure 1: A DC-DC boost power converter.

Let x1 = i, x2 = v. x1 is the inductor current i, and
x2 is the capacitor voltage v. A state-space model of
a DC-DC boost power converter is as follows by Or-
tega1 

.
x1 =−(1−α)

1
L

x2 +
E
L

.
x2 = (1−α)

1
C

x1 −
1

RC
x2

(1)

The output signal is x1. The switch variable α is equal
to 1 when there is 0 < t < T1; α is equal to 0 when there
is T1 < t < T. T is constant.
Ortega used an average model1 to design the con-
trollers as follows

.
x1 =−(1−u)

1
L

x2 +
E
L

.
x2 = (1−u)

1
C

x1 −
1

RC
x2

(2)

where x1 and x2 are the corresponding averaged vari-
ables. The control signal u is the duty ratio u= T1

T . The
control signal u is continuous and 0 < u < 1. Let Vd
be the desired value of the capacitor v. The operating
point of the system (2) is

x10 =
V 2

d
ER

; x20 =Vd ; u0 = 1− E
Vd

(3)

With E= 15 (V), R= 30 (Ω), Vd = 20 (V), we have:
xi0 = 0.888; x20 = 20; u0 = 0.25
Our goal is to regulate the capacitor voltage v to the
desired value Vd while E and R can vary.

Figure 2: Application of a DC-DC boost power con-
verter.

Practical application: the DC-DC boost power con-
verter is used in a solar photovoltaic system (PV).The
photovoltaic system and DC load cannot connect di-
rectly. The DC-DC boost power converter is needed.
The application of a DC-DC boost power converter is
illustrated in Figure 2.
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Passivity-based control method
Consider the dynamical system in the following
form: {

.
x = f (x,u)
y = h(x)

(4)

where f is locally Lipschitz; h is continuous; f(0,0)=0,
h(0)=0.
The plant is passive if there exists a continuously dif-
ferentiable positive semidefinite function V(x), which
is called the storage function, such that

uT y ≥
.

V =
∂V
∂x

f (x,u) ∀(x,u)

Consider the plant (4) with u=0. The plant is zero-
state observable if y ≡ 0 then x ≡ 0.
Property 4: Consider the plant (4). If the plant satisfies
the following conditions:
i) Passive with a storage function V(x) which is posi-
tive semidefinite.
ii) Zero-state observable.
iii)V (x)→ ∞ as x → ∞.
Then with the feedback control law u = −φ (y) with
φ (0) = 0; yT φ (y)> 0 ∀y ̸= 0, the origin achieves the
global asymptotic stability.

Passivity of DC-DC boost power converter
We change the variables as follows

x̃1 = x1 − x10 = x1 −
V 2

d
ER

x̃2 = x2 − x10 = x1 −Vd

ũ = u−u0 = u−
(

1− E
Vd

) (5)

Note that
.∼
x1 =

.
x1;

.∼
x2 =

.
x2; x̃ = [x̃1, x̃2]

T

Insert (5) into (2), we obtain the state-space equation
of the plant

.∼
x1 =

ũ
L
(x̃2 +Vd)−

E
LVd

x̃2

.∼
x2 =− ũ

C

(
x̃1 +

V 2
d

ER

)
+

E
CVd

x̃1 −
1

RC
x̃2

(6)

The storage function V is chosen as follows

V (x̃) =
1
2

Lx̃2
1 +

1
2

Cx̃2
2 (7)

The function V is positive definite because V (0,0) =
0; V (x̃1, x̃2)> 0 ∀x̃1 ̸= 0, x̃2 ̸= 0. The derivative of V
is as follows

.
V = Lx̃1

.∼
x1 +Lx̃2

.∼
x2

Insert (6) into
.

V , we have

.
V =

(
Lx̃1

.∼
x1 +Cx̃2

.∼
x2

)
= Lx̃1

[
ũ
L
(x̃2 +Vd)−

E
LVd

x̃2

]
+

Cx̃2

[
− ũ

C

(
x̃1 +

V 2
d

ER

)
+

E
CVd

x̃1 −
1

RC
x̃2

]
= (x̃1ũx̃2 +Vd x̃1ũ− E

Vd
x̃1x̃2 − x̃1ũx̃2−

x̃2ũ
V 2

d
ER

+
E
Vd

x̃1x̃2 −
1
R

x̃2
2)

⇒
.

V =Vd x̃1ũ−
V 2

d
ER

x̃2ũ− 1
R

x̃2
2

⇒
.

V = (x20x̃1 − x10x̃2) ũ− 1
R

x̃2
2

Let ỹ = x20x̃1 − x10x̃2

⇒ ỹũ =
.

V +
1
R

x̃2
2

(8)

The plant (6), which has the input ũ and the output ỹ,
is passive because ỹũ =

.
V + 1

R x̃2
2 ⇒ ỹũ ≥

.
V .

The plant (6) is zero-state observable because ũ =

0, ỹ = 0 ⇒ x̃1 ≡ 0 ⇒ x̃2 ≡ 0 ⇒ x̃ ≡ 0.

PASSIVITY-BASED NEURAL
CONTROL
Passivity-based control
The passivity-based control is constructed as fol-
lows19.
According to the property 4, the control law stabilizes
the equilibrium point at origin of (6):
ũ =−φ (ỹ) with φ (0) = 0; ỹφ (ỹ)> 0∀ỹ ̸= 0 (9)
We can choose

φ (ỹ) = a1ỹ+a2ỹ3 +a3ỹ5 (10)

The passivity-based control law is

u =−a1

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]

−a2

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]3

−a3

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]5

+

(
1− E

Vd

)
(11)

Passivity-based neural control
Now we construct a neural network which performs
the passivity-based control law (11). The neural net-
work has three inputs: in1, in2, in3 and output u. The
hidden layer has three neurons and its activation is
tangent hyperbolic. The output layer has one neuron
and its activation is linear. The structure of the neural
network is described in Figure 3.
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Figure 3: The structure of neural network.

in1 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]
;

in2 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]3

;

in3 =−

[
Vd

(
x1 −

V 2
d

ER

)
−

V 2
d

ER
(X2 −Vd)

]5

.

(12)

The output of the neural network is u(k).
Algorithm is as follows
Step 1: Setup the initial parameters of DC-DC boost
power converter.
Step 2: Construct the simulation scheme of the neural
control for a DC-DC boost power converter and col-
lect data for genetic algorithm to adjust the weights of
the neural network.
Step 3: Adjust the weights of the neural controller us-
ing genetic algorithm.
The structure of the neural control for a DC-DC boost
power converter is described in Figure 4.

Tuning theweights of neural networkusing
genetic algorithm

The plant (2) is controlled by the neural control. Vi j

is the weights of the hidden layer with i=1,2,3; j=1,2,3.
Wk is theweights of the output layerwith k=1,2,3. The
parameters v11, v21, v31, v12, v22, v32, v13, v23, v33,
w1, w2 and w3 are determined such that the function
J is minimized with q1>0, q2>0.

J =
∫+∞

0
(
q1x̃2

1 (t)+q2x̃2
2 (t)+ ũ2 (t)

)
dt (14)

We use genetic algorithm with decimal encoder. The
selection is a linear ranking. The crossover is two-
point. Crossover probability is equal to 0.9. The mu-
tation is uniform mutation with many points. Muta-
tion probability is equal to 0.1. The parameters θ is
encoded into the chromosome which has twelve gene
segments indicated by v11, v21, v31, v12, v22, v32, v13,
v23, v33, w1, w2 and w3 in Table 1. The value range is:
0 ≤ v11 ≤ 1, 0 ≤ v21 ≤ 1, 0 ≤ v31 ≤ 1, 0 ≤ v12 ≤ 1,
0 ≤ v22 ≤ 1, 0 ≤ v32 ≤ 1, 0 ≤ v13 ≤ 1, 0 ≤ v23 ≤ 1,
0 ≤ v33 ≤ 1, 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1, 0 ≤ w3 ≤ 1. The
maximum generation is equal to 100. The population
size is equal to 30. The exact value ε is equal to 106.

The discrete version of the J is as follows

J = ∑N
k=1
(
q1x̃2

1 (k)+q2x̃2
2 (k)+ ũ2 (k)

)
= ∑N

k=1[q1

(
x1 (k)−

V 2
d

E ×R

)2

+

q2 (x2 (k)−Vd)
2 +

(
u(k)−

(
1− E

Vd

))2
]

(15)

We have a fitness function 1
J+ε .

x1n(k) and x2n(k) are the state variables x̃1 and x̃2 at
kth sample. un(k) is the control input ũ at kth sample.

SIMULATION RESULTS AND
DISCUSSIONS
Theparameters of the circuits are described in Table 2.
The input voltage E varies from 12 (V) to 16.5 (V).
The resistor R varies from 15 (Ω) to 40 (Ω). The ini-
tial weights of neural network are: v11=0.5, v21=0.5,
v31=0.5, v12=0.5, v22=0.5, v32=0.5, v13=0.5, v23=0.5,
v33=0.5, w1=0.2, w2=0.2, w3=0.2. Initially, x1 (0) = 0
A, x2(0) =0 V.
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Figure 4: The structure of the neural control for a DC-DC boost power converter.

Table 1: The parameters v11, v21, v31, v12, v22, v32, v13, v23, v33, w1, w2 and w3.

Parameters v11 v21 v31 v12 v22 v32

Gene segment 1 2 3 4 5 6

Parameters v13 v23 v33 w1 w2 w3

Gene segment 7 8 9 10 11 12

Table 2: The parameters of the DC-DC boost power converter.

Parameters Physical Meaning Value

C Capacitor 68 (µF)

L Inductor 0.02 (H)

E Input voltage 15 (V)

R Load resistor 30 Ω

Vd Desired voltage 20 (V)

Passivity-based neural control withour us-
ing genetic algorithm

The simulation time is set to be 45 ms.
Response to the variations of E: At the beginning of
the simulation, the input voltage E is set to be 15 (V).
At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms,
E is decreased to 15 (V). The results are described in
Figure 5 and Table 3.
Figure 5 shows the current i, the control input u, the
capacitor voltage v, and the input voltage E when the
system is controlled by the passivity-based NC with-
out using GA and the input voltage E varies. Figure 5
shows that at t=15 ms, when E is increased to 16.5
V, the inductor current i is equal to 0.79 A. At t=30
ms, when E is decreased to 15 V, the inductor cur-
rent i is equal to 0.888 A. The settling time is equal
to 3 ms. Figure 5 shows that at t=15 ms, when E is
increased to 16.5 V, the capacitor voltage v has the
value △V = |Vd − x2| (V) of 0.80759 V. The settling
time is equal to 3.3 ms and v is equal to 20 V. At t=30

ms, when E is decreased to 15 V, the capacitor volt-
age v has △V (V) of 1.0436 V and v is equal to 20 V.
The settling time is equal to 3.3 ms. The value of IAE
(integral absolute error (IAE) between Vd and x2) is
0.0412.
IAE =

∫+∞
0 |Vd − x2|dt

Response to the variations of R: At the beginning of
the simulation, the load resistor R is set to be 30 (Ω).
At t=15 ms, R is increased to 40 (Ω). At t=30 ms, R
is decreased to 30 (Ω). The results are described in
Figure 6 and Table 4.
Figure 6 is the simulation results of passivity-based
NC without GA when R changes. Figure 6 shows the
current i, the control input u, the capacitor voltage v
and the load resistor R. Figure 6 shows that at t=15ms,
when R is increased to 40 Ω, the inductor current i is
equal to 0.667 A. At t=30 ms, when R is decreased to
30 Ω, the inductor current i is equal to 0.888 A. The
settling time is equal to 3.1 ms. Figure 6 shows that
at t=15 ms, when R is increased to 40 Ω, the capaci-
tor voltage v has the value △V (V) of 2.10345 V. The
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Figure 5: The results of the passivity-based NC without GA when E changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the input voltage E.
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Table 3: The capacitor voltage v when E varies.

Increasing (+1.5V) Decreasing (-1.5V)

△V = |Vd − x2| (V) Settling time ts ts (ms) △V (V) Settling time ts (ms)

0.80759 3.3 ms 1.0436 3.3 ms

settling time is equal to 9.2 ms and v is equal to 20 V.
At t=30 ms, when R is deceased to 30 Ω, the capacitor
voltage v has △V (V) of 1.847 V and v is equal to 20
V. The settling time is equal to 9.2 ms. The value of
IAE is 0.0478.
Response to the variations of Vd : At the beginning
of the simulation, the desired voltage Vd is set to be
20(V). At t=15 ms, Vd is decreased to 17 (V). At t=30
ms, Vd is increased to 20 (V).The results are described
in Figure 7 and Table 5.
Figure 7 is the simulation results of passivity-based
NC without GA when Vd changes. Figure 7 shows
the current i, the control input u, the capacitor voltage
v and the desired voltage Vd . Figure 7 shows that at
t=15 ms, when Vd is decreased to 17 V, the capacitor
voltage v has the value △V (V) of 0.91785 V. The ca-
pacitor voltage v is equal to 17 V and the settling time
is equal to 3 ms. At t=30 ms, when Vd is increased
to 20 V, the capacitor voltage v has the value△V (V)
of 1.523 V, and v is equal to 20 V. The value of IAE is
0.0622.

Passivity-based neural control using ge-
netic algorithm
The simulation time is set to be 45 ms. The results of
passivity-based NC before using GA are used to col-
lect data for tuning the parameters using GA.
The initial weights of neural network are: v11=0.5,
v21=0.5, v31=0.5, v12=0.5, v22=0.5, v32=0.5, v13=0.5,
v23=0.5, v33=0.5, w1=0.2, w2=0.2, w3=0.2.
Response to the variations of E: At the beginning of
the simulation, the input voltage E is set to be 15 (V).
At t= 15 ms, E is increased to 16.5 (V) and at t=30 ms,
E is decreased to 15 (V).
The results of the passivity-based neural control using
GA, with q1=1, q2=1, are presented when E changes.
The results at generation 0 are: v110=0.6787,
v210=0.7577, v310=0.7431, v120=0.3922, v220=0.6555,
v320=0.1712, v130=0.706, v230=0.0318, v330=0.2769,
w10=0.0462, w20=0.0971, w30=0.8235, J0 = 49960.
The optimal results after tuning the parameters using
GA are as follows: v11=0.694, v21=0.015, v31=0.743,
v12=0.034, v22=0.438, v32=0.381, v13=0.761,
v23=0.431, v33=0.015, w1=0.045, w2=0.09, w3=0.646,
J=49858. Stop at generation 51. The best chromo-
some is 1. The cost function is illustrated in Figure 8.

When E changes, the results of the passivity-based
neural control using genetic algorithm is illustrated
in Figure 9 and Table 6.
Figure 9 shows the current i, the control input u, the
capacitor voltage v, and the input voltage E when the
system is controlled by passivity-based NC using GA
and the input voltage E varies. Figure 9 shows that at
t=15 ms, when E is increased to 16.5 V, the inductor
current i is equal to 0.802 A. At t=30 ms, when E is
decreased to 15 V, the inductor current i is equal to
0.893 A. The settling time is equal to 2.9 ms. Figure 9
shows that at t=15 ms, when E is increased to 16.5 V,
the capacitor voltage v has the value △V = |Vd − x2|
(V) of 0.79965 V. The settling time is equal to 2.9 ms
and v is equal to 20 V. At t=30ms, when E is decreased
to 15 V, the capacitor voltage v has△V (V) of 0.8723
V and v is equal to 20 V. The settling time is equal to
2.9 ms. The value of IAE is 0.0391.
Genetic algorithm is integrated into a neural con-
troller and adjusts optimally the weights of the neural
network such as v11, v21, v31, v12, v22, v32, v13, v23,
v33, w1, w2 and w3. The value of q1 has influence to
the inductor current i and decreases the settling time,
2.9 ms. The value of q2 has influence to the capacitor
voltage v and decreases the settling time, 2.9 ms.
The results show that compared with the neural con-
trol without GA, the proposed passivity-based neural
control usingGAhas shorter settling time and smaller
value of IAEwhenE changes. Moreover, the passivity-
based NC using GA has smaller value of △V . The
comparison results are described in Figure 10 and Ta-
ble 6.
Response to the variations of R: At the beginning of
the simulation, the load resistor R is set to be 30 (Ω).
At t=15 ms, R is increased to 40 (Ω). At t=30 ms, R is
decreased to 30 (Ω).
The results of the passivity-based neural control using
GA, with q1=1, q2=1, are presented when R changes.
The results at generation 0 are: v110=0.6563,
v210=0.8349, v310=0.6399, v120=0.3271, v220=0.275,
v320=0.2164, v130=0.2794, v230=0.2528, v330=0.711,
w10=0.0821, w20=0.2998, w30=0.1112, J0 = 50916.
The optimal results after tuning the parameters
using GA are as follows: v11=0.646, v21=0.633,
v31=0.639, v12=0.394, v22=0.736, v32=0.326,
v13=0.52, v23=0.077, v33=0.21, w1=0.05, w2=0.299,
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Figure 6: The results of the passivity-based NC without GA when R changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the load resistor R.

2360



Science & Technology Development Journal – Engineering and Technology 2025, 7(3):2353-2368

Figure 7: The results of the passivity-based NC without GA when Vd changes: (a) the inductor current i, (b) the
control input u, (c) the capacitor voltage v, and (d) the desired voltage Vd .
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Table 4: The capacitor voltage v when R varies.

Increasing (+10 Ω) Decreasing (-10 Ω)

△V (V) ts (ms) △V (V) ts (ms)

2.10345 9.2 ms 1.847 9.2 ms

Table 5: The capacitor voltage v when Vd varies.

Decreasing (-3 V) Increasing (+3 V)

△V (V) ts (ms) △V (V) ts (ms)

0.91786 3 ms 1.523 3 ms

Figure 8: The cost function J of the passivity-based NC using GA with q1=1, q2=1 when E varies.

Table 6: The capacitor voltage v of the NCwithout GA and the passivity-based NC using GAwith q1=1, q2=1
when E varies.

Controller Increasing (+1.5V) Decreasing (-1.5V) IAE

△V (V) ts (ms) △V (V) ts (ms)

NC without GA 0.80759 3.3 1.0436 3.3 0.0412

Passivity-based
NC using GA
with q1=1, q2=1

0.79965 2.9 0.8723 2.9 0.0391
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Figure 9: The results of the passivity-basedNC usingGAwith q1=1, q2=1when E changes: (a) the inductor current
i, (b) the control input u, (c) the capacitor voltage v and (d) E.
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Figure10: The results ofNCwithoutGA (continuous
line) and the passivity-based NC using GA (discrete
line) when E changes: (a) the inductor current i, (b)
the control input u, and (c) the capacitor voltage v
with q1=1, q2=1.

w3=0.111, J=50910. Stop at generation 51. The
best chromosome is 1. The cost function is illus-
trated in Figure 11. When R changes, the results
of the passivity-based neural control using genetic
algorithm is illustrated in Figure 12 and Table 7.
Figure 12 is the simulation results of passivity-based
NCwithout GAwhen R changes. Figure 12 shows the
current i, the control input u, the capacitor voltage v
and the load resistor R. Figure 12 shows that at t=15
ms, when R is increased to 40 Ω, the inductor current
i is equal to 0.665 A. At t=30 ms, when R is decreased
to 30 Ω, the inductor current i is equal to 0.885 A.The
settling time is equal to 3 ms. Figure 12 shows that
at t=15 ms, when R is increased to 40 Ω, the capacitor
voltage v has the value△V (V) of 2.022 V.The settling
time is equal to 2.8 ms and v is equal to 20 V. At t=30

Figure11: The cost function J of thepassivity-based
NC using GA with q1=1, q2=1 when R varies.

ms, when R is deceased to 30 Ω, the capacitor voltage
v has △V (V) of 1.873 V and v is equal to 20 V. The
settling time is equal to 2.8 ms. The value of IAE is
0.0482.
Genetic algorithm is integrated into a neural con-
troller and adjusts optimally the weights of the neural
network such as v11, v21, v31, v12, v22, v32, v13, v23,
v33, w1, w2 and w3. The value of q1 has influence to
the inductor current i and decreases the settling time,
3 ms. The value of q2 has influence to the capacitor
voltage v and decreases the settling time, 2.8 ms.
The results show that compared with NC without
GA, the proposed passivity-based NC using GA has
shorter settling time when R changes. It has smaller
value of △V when R is increased to 40 Ω. However,
the NC without using GA has smaller value of IAE.
The comparison results are described in Figure 13 and
Table 7.

CONCLUSIONS
In this paper, the passivity-based neural control us-
ing genetic algorithm for a DC-DC boost power con-
verter is proposed. The equilibrium point at origin of
the plant (6) is asymptotically stable. The neural net-
work performs the passivity-based control law. The
simulation results of the passivity-based neural con-
trol using genetic algorithm and the results of the NC
without using GA are done with Simulink in MAT-
LAB.
The simulation results of the passivity-based neural
control without using GA are done when the desired
voltage Vd , the input voltage E and the load resistor
R change. The results of the NC without using GA
show that the capacitor voltage v is kept at the desired
value. The results of the passivity-based NC using GA
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Figure 12: The results of the passivity-based NC using GA when R varies: (a) the inductor current i, (b) the control
input u, (c) the capacitor voltage v and (d) R with q1=1, q2=1.
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Table 7: The capacitor voltage v of the NCwithout GA and the passivity-based NC using GAwith q1=1, q2=1
when R varies.

Controller Increasing (+10 Ω) Decreasing (-10 Ω) IAE

△V (V) ts (ms) △V (V) ts (ms)

NC without GA 2.10345 9.2 1.847 9.2 0.0478

Passivity-based
NC using GA
with q1=1,
q2=1

2.022 2.8 1.873 2.8 0.0482

Figure13: The results ofNCwithoutGA (continuous
line) and the passivity-based NC using GA (discrete
line) when R varies: (a) the inductor current i, (b) the
control input u, and (c) the capacitor voltage v with
q1=1, q2=1.

are performed when the input voltage E and the resis-
tor R vary. The weights of the neural network are ad-
justed optimally using genetic algorithmwith decimal
encoder. The simulation results of the passivity-based
neural control using GA show that the capacitor volt-
age v is kept at a desired value Vd . Genetic algorithm
is integrated into a neural controller and adjusts opti-
mally the weights of the neural network such as v11,
v21, v31, v12, v22, v32, v13, v23, v33, w1, w2 and w3.
The value of q1 has influence to the inductor current
i and decreases the settling time. The value of q2 has
influence to the capacitor voltage v and decreases the
settling time.
The results show that compared with the neural con-
trol without GA, the proposed passivity-based neural
control usingGAhas shorter settling time and smaller
value of IAEwhenE changes. Moreover, the passivity-
based NC using GA has smaller value of△V than the
NC.The results show that compared with NCwithout
GA, the proposed passivity-based NC using GA has
shorter settling time when R changes. It has smaller
value of △V when R is increased to 40 Ω. However,
the NC without using GA has smaller value of IAE
when R changes.
The paper has limitations such as the assumed circuit
parameters. Future research will explore a practical
real-time experiments.
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Điều khiểnmạng nơron dựa vào tính thụ động dùng giải thuật di
truyền cho bộ biến đổi công suất boost DC-DC

Minh Ngọc Huỳnh1,2, Hoài Nghĩa Dương3,*, Vĩnh Hảo Nguyễn1

TÓM TẮT
Trong bài báo này, điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di truyền cho bộ
biến đổi công suất boost DC-DC được đề nghị. Ngõ ra của bộ biến đổi công suất boost DC-DC là
dòng điện cuộn cảm. Ngõ vào điều khiển là tỉ lệ nhiệm vụ. Sử dụng phép biến đổi tọa độ của các
biến trạng thái và tín hiệu điều khiển, bộ biến đổi công suất boost DC-DC là thụ động. Hệ mới là
quan sát được trạng thái 0 và điểm cân bằng ở gốc tọa độ của hệ này là ổn định tiệm cận. Mạng
nơron thực hiện luật điều khiển dựa vào tính thụ động. Mục tiêu là điện áp trên tụ điện bằng với
điện áp mong muốn. Mạng nơron có ba lớp: lớp ngõ vào, lớp ẩn và lớp ngõ ra. Hàm tác động của
lớp ẩn là tan-hyperbol và hàm tác động của lớp ngõ ra là tuyến tính. Trọng số của mạng nơron
được chỉnh tối ưu bằng giải thuật di truyền dùngmã hóa thập phân. Kết quảmô phỏng được thực
hiện bằng Simulink trong MATLAB. Kết quả mô phỏng của điều khiển mạng nơron dựa vào tính
thụ động không dùng giải thuật di truyển chứng tỏ rằng điện áp trên tụ điện được giữ ổn định tại
điện ápmongmuốn khi điện ápmongmuốn, điện áp ngõ vào và điện trở tải thay đổi. Kết quả của
điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di truyển chứng tỏ rằng điện áp
trên tụ điện được giữ ổn định tại điện áp mong muốn khi điện áp ngõ vào và điện trở tải thay đổi.
Hơn nữa, kết quả mô phỏng của điều khiển mạng nơron dựa vào tính thụ động dùng giải thuật di
truyển có chất lượng tốt hơn như là thời gian quá độ ngắn hơn và giá trị IAE (integral absolute error
of the desired voltage and the capacitor voltage) nhỏ hơn kết quả của điều khiển mạng nơron khi
điện áp ngõ vào thay đổi. Cuối cùng, kết quả mô phỏng chứng tỏ rằng điều khiển mạng nơron
dựa vào tính thụ động dùng giải thuật di truyển có thời gian quá độ ngắn hơn điều khiển mạng
nơron khi điện trở tải thay đổi.
Từ khoá: bộ biến đổi công suất boost DC-DC, điều khiển mạng nơron, điều khiển dựa vào tính
thụ động, giải thuật di truyền
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