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ABSTRACT
Well control is an important aspect of drilling operations because improper well control can result
in kicks and blowouts with grave consequences. A successful well control requires a good under-
standing of the relationships between drilling mud pressure and formation pressure, as well as the
variation of bottom hole pressure during drilling operations. As the hydrostatic pressure of the
drilling mud column accounts for most of the pressure, a more accurate control of the changes
of mud density will contribute to a more accurate bottom hole pressure modeling. Regarding the
control of the mud density, a practical problem has existed so far in petroleum drilling: the mud
density is determined at the surface condition, and its values vary along the depth of the well be-
cause of the changes of temperature and pressure, which consequently leads to an inaccuracy in
mud density control in reality.
In order to reduce the inaccuracy in mud density control, this research aims to provide a reliable
method to correctly predict the drilling mud's density under specific conditions. Different artificial
neural networks (ANN) were proposed to predict drilling mud density based on the value of mud
density at surface conditions, circulation rate, bottomhole pressure, and temperature. This study
then used statistical methods to compare the predicted results with results obtained from exist-
ing empirical correlations and from other researchers' works to find out the most optimal artificial
neural network which should consist of only one hidden layer. The main contributions of this re-
search in comparison with existing papers are that: 1) Existing methods did not take into account
the influence of circulation rate, therefore the real working conditions of the drilling mud were not
represented entirely. Our research included the circulating rate in the ANN modeling and in the
study of relative importance. The results indicated that the value of mud density at surface condi-
tions had the greatest effect on the prediction results, and the influence of the circulating pump
flow rate is small but should not be ignored; 2) Our research used different methods (ANN, Gener-
alized Additive, Nonlinear Function) to predict the mud density in variation with temperature and
pressure, which has never been approached in existing literature; 3) The sufficiency in the number
of data was studied in this research, which has never been treated in previous studies. The Boot-
strap method was used in this regard; 4) We remarked that the overfitting has not been treated
properly in the existing literature review in this field, hence we included a thorough analysis of the
overfitting in this paper. Finally, the results of this paper can be useful in real life because it can help
drillers to accurately predict themud density under varied conditions of pressure and temperature,
and therefore to increase the safety of the drilling operations.
Key words: mud weight, machine learning, artificial neural networks, empirical correlations

INTRODUCTION1

Ensuring safety is always the top priority in the oil2

and gas industry because accidents related to the3

petroleum sector often lead to loss of time, infrastruc-4

ture, finance, and manpower. One of the accidents5

causing severe consequences is the loss of well con-6

trol during the drilling process, specifically when the7

pressure in the wellbore is lower than the formation8

pressure. This scenario can happen if the mud density9

is not controlled adequately during the drilling opera-10

tion due to the variation of pressure and temperature11

inside the wellbore, and consequently the mud den- 12

sity may be too low to maintain bottomhole pressure 13

equal to formation pressure Cormack, 20171. There- 14

fore, being able to accurately calculate the mud den- 15

sity will help to assure a successful drilling operation. 16

In order to achieve this objective, studying the influ- 17

ence of different factors affecting the density of the 18

drilling fluid is extremely necessary. 19

In literature, there have been various studies relat- 20

ing to the prediction of drilling mud density at dif- 21

ferent conditions. It is well known that when bottom- 22

Cite this article : Tùng P S, Nhân P T. Study of the variation of drillingmuddensitywith temperature,
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hole pressure increases, drilling mud density will in-23

crease since the drilling fluid volume is compressed,24

and conversely, when the bottom hole temperature25

increases, the drilling fluid volume expands leading26

to a decrease in its density, which is mentioned in27

Babu, 19962; Hussein and Amin, 20103; An et al.,28

20154. McMordie et al., 19825 conducted an exper-29

imental research about the changes of drilling mud30

density with temperature (70-400 oF) and pressure (0-31

14000 psi). Similarly, Demirdal & Cunha, 2009 6 con-32

ducted experiments to study the variation of drilling33

mud density with the same range of pressure (0-1400034

psi) but with a different range of temperature (25-35

175 oC). Zamora et al., 20137 also conducted experi-36

ments to study the volumetric behavior and the vari-37

ation of density of base oils, brines, and drilling flu-38

ids with the range of temperature (36oF–600oF) and39

pressure (0-30000 psi). Some studies provided em-40

pirical correlations between mud density and pres-41

sure and temperature, such as Kemp, 1989 8; Peters42

et al., 19909; Isambourg et al., 1996 10; Zamora et43

al., 200011; Hemphill and Isambourg, 2005 12; and44

Peng et al., 201613. egarding the application of ma-45

chine learning in this field, some authors used Artifi-46

cial Neural Network (Osman et al., 2003 14; Adesina47

201515, Okorie E. Agwu et al., 202016), while some48

others used different methods such as Fuzzy logic49

(Ahmadi et al., 201817), Support Vector Machine50

(Xu et al., 201418; Ahmadi, 2016 19; Kamari et al.,51

201720), Radial Basis Function Artificial Neural Net-52

work (Rahmati & Tatar, 201921), and Particle Swarm53

Optimization Artificial Neural Network (Ahmadi et54

al., 2018 17; Zhou et al., 2016 22). It is also worth men-55

tioning the hydraulic model proposed by Charlez et56

al., 199823 to calculate downhole pressure and then57

to predict fluid downhole density. In brief, the com-58

mon point of these studies is to predict drilling mud59

density at different bottomhole pressures and temper-60

atures.61

However, besides temperature and pressure, some62

other factors also affect the density of drilling fluid,63

such as the inclination angle of the well which was64

highlighted in the study of Tian et al., 201324; or65

the type of drilling fluid which was mentioned in the66

studies of Demirdal et al., 2007 25 and Demirdal &67

Cunha, 20096; and finally the circulation rate which68

was mentioned in the studies of Kårstad & Aadnøy,69

199826 and Harris & Osisanya, 2005 27. The study70

of Hemphill, 199628 investigated the effect of incli-71

nation angle and of cuttings on drilling fluid proper-72

ties. Boatman, 1967 29 studied the influence of shale73

on drilling fluid density.74

In reality, it is challenging to observe the changes 75

in drilling fluid density because of costly specialized 76

measuring equipment which must comply with well 77

design requirements. Ombe et al., 2020 30 developed 78

a specific measurement to achieve this task. Hosein- 79

pour et al., 202231 combined well logging and geome- 80

chanical parameters to determine the mud window, 81

but the authors could not predict the variation of the 82

mud density in function of pressure, temperature, and 83

some other factors. 84

In brief, the above literature review showed that de- 85

veloping a new method to accurately predict drilling 86

muddensity in thewell under influence of various fac- 87

tors is necessary, which is the objective of our study. 88

In this study, we resorted to not only machine learn- 89

ing methods but also empirical correlations as well as 90

mathematical, and statistical methods. 91

Regarding the empirical correlations, Furbish, 1997 32 92

provided the following equation of state for liquid 93

density: 94

ρ = ρ0 [1−α (T −T0)+β (P−P0)] (1)

ρ (ppg) is predicted drilling mud density, ρ0 is value 95

of mud density at surface conditions, T and P are fi- 96

nal temperature (oF) and pressure (psi), T0 and P0 97

are standard temperature (oF) and pressure (psi), α 98

(oF−1) is isobaric coefficient and β (oF−1) is isother- 99

mal compressibility. These coefficients were taken 100

from the work of Zamora et al. (2000) wherein they 101

used 0.0002546 và 2.823 × 10−6 for α and β respec- 102

tively for oil-based mud. 103

Another empirical correlation given by Hoberock 104

et al., 198233 predicted oil-based mud density and 105

water-based mud through the law of conservation of 106

mass as detailed in the following: 107

ρ (P2,T2) =
ρ1

1+ f0

(
ρ01

ρ02
−1

)
+ fw

(
ρw1

ρw2
−1

)
(2)

ρ (P2,T2) is predicted drillingmuddensity, ρ1 (ppg) is 108

value of mud density at surface conditions, ρ01 (ppg) 109

is initial oil density, ρ02 (ppg) is oil density in pre- 110

dicted drilling mud, ρw1 (ppg) is water density in ini- 111

tial drilling mud, ρw2 (ppg) is water density in pre- 112

dicted drillingmud, f0 (%) is the percentage of oil vol- 113

ume in the drilling fluid, fw (%) is the percentage of 114

water volume in the drilling fluid. 115

Kutasov, 198834 presented an empirical correlation to 116

calculate drilling mud density: 117

ρm = ρmoe[α(P−P0)−β (T−T0)−γ(T−T0)] (3)

ρm (ppg) is the predicted drilling mud density, ρmo 118

(ppg) is the drilling mud density at standard condi- 119

tions. P0(psi) and T0(oF) are standard pressure and 120
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temperature. P(psi) and T(oF) are the pressure and121

temperature at the predicted position. Kutasov eval-122

uated α , β , γ , and ρmo with 5 drilling mud examples123

from McMordie et al., 19825. Besides, Kutasov’s cor-124

relation can be applied to oil-based mud and water-125

based mud. In our paper, the values of , and , which126

were taken from the work of Micah, 201135, were127

3.0997 × 10−6, 2.2139 × 10−4, and 5.0123 × 10−7,128

respectively.129

Sorelle et al., 1982 36 focused on the changes in the130

volume of the components in drilling fluid caused by131

temperature and pressure, as being shown in the fol-132

lowing formula:133

ρ f =
ρi

1+
△Vo

V
+

△Vw

V
(4)

ρ f (ppg) is the predicted drilling mud density, ρi134

(ppg) is the value ofmuddensity at surface conditions,135

△Vo (gal) is the change in oil volume,△Vw (gal) is the136

change in water volume, V(gal) is the total volume.137

The literature review allowed us to see some possi-138

ble contributions that we can bring to the research in139

this domain. Firstly, the study developed an artificial140

neural networkmodeling to predict drilling fluid den-141

sity, combined with various mathematical, statistical142

(generalized additive model) and experimental mod-143

els on the same dataset to provide a comprehensive144

and multidimensional understanding of the changes145

in drilling fluid density inside the wellbore. The simu-146

lation results were compared with actual data to verify147

the accuracy of the model.148

Secondly, the number of features that our research149

used for the artificial neural network was greater than150

in previous studies. As mentioned above, previous151

papers considered mostly temperature and pressure152

as input features, while this study presented an arti-153

ficial neural network modeling with inputs consist-154

ing of not only bottomhole temperature and pressure155

but initial drilling fluid density and circulation rate156

as well. Consequently, this paper conducted a study157

about the effect of various influencing factors men-158

tioned above, besides pressure and temperature, on159

the drilling mud density.160

Thirdy, this paper took into account the possible influ-161

ence of the low number of input data used for ANN162

modeling. It is difficult to answer the question if a163

data set is enough for neural networks modeling be-164

cause the conclusion depends on each particular case.165

Hence, in this study, we tried to answer this question166

by using the Bootstrap method to resample the data.167

Finally, we remarked that the overfitting analysis was168

neglected inmany previous researches as shown in the169

above literature review, we therefore included in this 170

paper a thorough solution for the overfitting problem. 171

The findings of this study have the potential to be ap- 172

plied in real life because they help to improve the ac- 173

curacy of the mud density’s determination, which in 174

turn will improve the safety of the operations. 175

METHODOLOGY 176

Mathematical models 177

Regarding the mathematical models, we initially in- 178

tended to use a linear function, which is easy to im- 179

plement, to calculate the drilling mud density based 180

on bottomhole pressure, bottomhole temperature and 181

value of mud density at surface conditions. However, 182

there are some assumptions that wemust comply with 183

which can be found in Dahraj & Bhutto, 201437 and 184

Molnar, 202138. The input data was collected from 185

the works of McMordie et al., 19825 and Demirdal & 186

Cunha, 2009 6, which were summarized in Figure 1. 187

Figure 1 illustrates the variation of drilling mud den- 188

sity in function of temperature and pressure. The blue 189

graph represents the temperature, the orange graph 190

shows the pressure and the green one describes the 191

value of mud density at surface conditions. 192

Figure 2 to Figure 4 showed that all the histograms of 193

variables are not bell-shaped. Moreover, we also an- 194

alyzed the distribution of residuals in Figure 5. We 195

observed that the distribution of residuals was not in 196

shape with the red curve, which presented the normal 197

distribution. Instead, the distribution was likely the 198

fat-tailed distribution, which was not normal distri- 199

bution, so the linear function was not suitable in this 200

case. Consequently, we had to think about another 201

method, which is the nonlinear function, to deal with 202

the problem. This nonlinear functionwill also be used 203

later to verify the results given by the artificial neural 204

network modeling. 205

For the nonlinear function, the quadratic and cu- 206

bic functions were tested, and we obtained that the 207

correlation coefficient of the cubic function (0.9997) 208

was higher than the one of the quadratic functions 209

(0.9994). In reality, there may be other nonlinear 210

functions with higher correlation coefficients, how- 211

ever, the more complex the function, the higher the 212

risk of overfitting. The cubic function was therefore 213

chosen for this study. 214

The nonlinear model was constructed by solving the 215

linear least squares problems while using QR factor- 216

ization which can be referred to the work of Golub & 217

Loan, 1996 39. The cubic function has the following 218

form: 219

ρ =
(
Aρ2

i +Bρ2
i +Cρ3

i
)
+(

D×P3 +E ×P2 +F ×P
)

+
(
G×T 3 +H ×T 2 + I ×T

)
+ J

(5)
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Figure 1: The data collected from the works of McMordie et al. (1982) and Demirdal & Cunha (2009) were used in
this research for the nonlinear function

ρI (ppg) the value of mud density at surface condi-220

tions, P and T are pressure (psi) and temperature (oF)221

at the location of interest. The values from A to J were222

determined and listed in the following:223

A =−2.761 × 10−3

B = 9.753 × 10−2

C =−5.393 × 10−2

D = 1.412 × 10−13

E =−4.372 × 10−9

F = 8.317 × 10−5

G =−2.058 × 10−8

H = 1.532 × 10−5

I =−6.673 × 10−3

J = 3.785

Thenonlinear function presented a high coefficient of224

determination R2 = 0.9994. Moreover, the value of225

mean square error was also accepted, with the MSE =226

0.00971 for the nonlinear function (the caluclation of227

MSE is described in detail in the Appendix section). 228

With input taken from Table 1, the calculated values 229

of drilling mud density (ppg) from empirical corre- 230

lations and nonlinear function are presented in Table 231

2. 232

Table 2 showed that results obtained from the empir- 233

ical correlations are close to results obtained from the 234

nonlinear function. Hence, the nonlinear function 235

can be used as an alternative method to predict the 236

drilling fluid density in function of pressure and tem- 237

perature. However, these methods do not take into 238

account the influence of other factors such as the cir- 239

culation rate. Hence, in the next section, an artificial 240

neural network modeling will be presented. 241

Machine learningmodel 242

Overview of artificial neural network 243

Artificial Neural Network (ANN) is an artificial intel- 244

ligence information processing system inspired by the 245

4
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Figure 2: Histogram of bottomhole pressure values (psi)

Figure 3: Histogram of bottomhole temperature values (oF)

operation of biological neural networks in the human246

brain. One of the notable features of artificial neural247

networks is their limited learning ability.248

An artificial neural network usually consists of 3 lay-249

ers and each layer will have a different number of neu-250

rons:251

• Input layer: the main function is providing nec-252

essary information. A number of neurons in in-253

put layer are corresponding to a number of fac-254

tors and these factors are assumed in the form of 255

vectors 256

• Hidden layers contain hidden neurons helping 257

the inputs connect and outputs. A neural net- 258

work may have one or multiple hidden layers, 259

and in some cases, there is no hidden layer. 260

• Output layer includes the neurons which hold 261

output information. A neural network can have 262

many output factors. 263

5
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Figure 4: Histogram of mud density at surface conditions (ppg)

Figure 5: Histogram of residuals

6
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Table 1: The input data which was used in this study for empirical correlations and nonlinear function

Bottomhole
pressure (psi)

Bottomhole
temper-
ature
(oF)

Circulation
rate
(gal/min)

Oil volume
fraction

Water vol-
ume fraction

Oil density
(ppg)

Water density
(ppg)

8562.279 128.55 0 0.67711 0.17524 6.6619 8.3641

8671.2 128.63 0 0.67715 0.17523 6.6603 8.3632

8942.688 127.15 0 0.67684 0.17532 6.6735 8.3717

8945.111 90.74 126.8 0.67572 0.17559 6.7226 8.4065

8945.056 90.28 126.8 0.67574 0.17558 6.7217 8.4059

8946.967 90.07 126.8 0.67574 0.17558 6.7217 8.4059

8944.121 90.02 126.8 0.67574 0.17558 6.7216 8.4059

8945.887 89.91 126.9 0.67574 0.17558 6.7217 8.4059

Table 2: Drillingmud density (ppg) obtained from empirical correlations and the nonlinear functions using
input data in Table 1

Furbish Hoberock Kutasov Sorelle Nonlinear function

10.8347 11.0440 10.8599 12.63049 10.8949

10.8378 11.0416 10.8633 12.63005 10.8989

10.8501 11.0613 10.8771 12.63331 10.9150

10.9500 11.1354 10.9852 12.64592 11.0635

10.9513 11.1341 10.9865 12.64577 11.0655

10.9519 11.1341 10.9871 12.64577 11.0665

10.9520 11.1340 10.9872 12.64577 11.0666

10.9523 11.1341 10.9876 12.64577 11.0671

Determining the number of hidden layers and the264

number of neurons is a relatively complex task, there265

is no rule that finds out the optimal number of hid-266

den layers and hidden neurons. Themethod of select-267

ing the number of neurons and layers is a trial-and-268

error approach. The connections between neurons in269

different layers contain their own individual weights.270

The number of weights depends on network configu-271

ration.272

The general relationship between the input data and273

output data is described below:274

yk = fo
[
∑ j wk j × fh

(
∑ j w jixi +b j

)
+bk

]
(6)

xi is an input vector, w ji denotes the connection275

weight from the ith neuron in the input layer to the jth276

neuron in the hidden layer, b j represents the thresh-277

old value or bias of jth hidden neuron, wk j stands278

for the connection weight from the jth neuron in the279

hidden layer to the kth neuron in the output layer, bk280

refers to the bias of the kth output neuron, fh and fo281

are the activation functions for the hidden and output 282

neuron, respectively. 283

The Transfer Function is responsible for transform- 284

ing the input variable into a different range of values. 285

Some commonly used transfer functions include the 286

logistic sigmoid function, the tangent sigmoid func- 287

tion, and the linear function. Each type of function 288

used has a different purpose for each layer and dif- 289

ferent types of problems. Nonlinear functions are of- 290

ten used for pattern recognition and discrimination 291

problems and are typically used in the hidden layer. 292

The linear function is used in matching and predic- 293

tion problems and is usually used in the output layer. 294

This study only covers basic knowledge of machine 295

learning, and readers can refer to additional sources 296

for more information, such as Ghaffari et al., 2006 40, 297

F. Parrella, 200741, and Mohaghegh, 2000 42. 298
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Figure 6: Input data used in this study to build the artificial neural network was provided by Schlumberger in
Drillbench software’s tutorial

Input data for ANNmodeling299

Input data, which was used to build and calibrate300

ANN in this study, covered 162 positions of a well at301

different conditions. The value of drilling mud den-302

sity at standard conditions is 10.7656 ppg. The data303

can be viewed in Figure 6.304

Artificial neural networks optimization be-305

fore analysis of overfitting306

According to Kårstad & Aadnøy, 1998 26 and Harris307

& Osisanya, 2005 27, the circulation rate also had an308

effect on drilling mud density. With the desire to con-309

tribute a small part to research on predicting drilling310

mud density, our paper would like to introduce an311

artificial neural network for predicting drilling fluid312

density in the function of 4 input factors: surface313

drilling fluid density, bottom hole pressure, bottom314

hole temperature, and circulation rate. In the first315

hidden layer, the transfer function used is the logis-316

tic sigmoid function. In the second hidden layer, the317

transfer function used is the tangent sigmoid func-318

tion, and in the output layer, the transfer function319

used is the linear function. This paper used the trial-320

and-error method to build the networks. Each net-321

work structure was run 10 times to avoid random dis-322

tribution andwas selected based on the smallestmean323

square error in the 10 training runs. In Table 3, with324

the lowestmean square errorMSE , the optimized net-325

work consisted of 4 neurons in the input layer, 6 neu-326

rons in the first hidden layer, 10 neurons in the second 327

hidden layer, and 1 neuron in the output layer (Fig- 328

ure 7). 329

However, the solution is not as simple as it seems. 330

We remarked here that the MSE values were anomaly 331

small, which manifested the overfitting problem. 332

Hence, the model can not be used in real life. There- 333

fore, in the following section, we will solve the over- 334

fitting problem. 335

Solving the overfitting problemand optimiz- 336

ing the artificial neural network. 337

a. Data pre-processing 338

Theauthors knew that the data sets are very important 339

in ANN, that’s why we tried to collect as much data as 340

possible. In this research, we had 327 observations 341

for the non-linear analysis and 162 data for the neu- 342

ral network modeling. Understanding the number of 343

data might be low, hence we referred Horowitzto’s pa- 344

per in 2008 43 and conducted the Bootstrap method 345

to resample the data set and obtained a new one with 346

the same statistical characteristics for 400 data points. 347

After that, we divided the data into training set, vali- 348

dation set and test set with proportions of 70%, 15%, 349

15%, respectively, and used the sameANNmodels for 350

both original and Bootstrap datasets. 351

For the targets in neural network training, we used the 352

difference between the density of initial drilling mud 353

and density at bottomhole condition. The input and 354

8
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Figure 7: The architecture of the optimized artificial neural network resulted from this study before analysis of
overfitting

target data were normalized as shown in the following355

formulas:356

x j =
xi − xmin

i
xmax

i − xmin
i

(7)

y j = log(1+ yi) (8)

x j is a dimensionless value of input data, xi is a true357

value of input data, y j is a dimensionless value of tar-358

get data and yi is a true value of target data.359

b. Artificial neural networks modeling using Bootstrap360

data added to original data361

Using both original and Bootstrap datasets for the362

same neural network (3-6-10-1), we observed that the363

overfitting was decreased (Figure 8) because the MSE364

values of the test set and validation set were similar.365

However, in Figure 9, we observed that although the366

R values obtained from using Bootstrap data was rea-367

sonably high (the overfitting problem did not occur),368

but we also observed that the regression graphs were369

anormal: many output values fluctuated only around370

the value of 0.36, which is unusual because in reality371

the values of target data were more varied. In conclu-372

sion, the utilization of Bootstrapmethod could reduce373

the overfitting problem, but did not provide satisfac-374

tory results. Consequently, in the next section, wewill375

use only original data.376

c. Artificial neural networks modeling using only orig-377

inal data with analysis of overfitting378

After realizing that the Bootstrap method did not im-379

prove the results, the author went back to the normal-380

ized original datasets. We then used the same neural381

network (3-6-10-1), and overfitting was observed in 382

the results: firstly, because the R values were abnor- 383

mally high (Figure 10); secondly, the MSE of testing 384

set is larger than the one of the training set (Figure 11). 385

Therefore, we trained different models which con- 386

sisted of two hidden layers, and the number of neu- 387

rons varied from 1 to 10 for each hidden layer. How- 388

ever, the overfitting still existed, so we had to go back 389

to the model with one hidden layer. The results in 390

Figure 12 showed the validation and test curves were 391

very similar, and the MSE of the test set and of the 392

validation set were lower than the one of the train 393

set, which indicated that the overfitting had been ex- 394

cluded. Figure 13 showed that R values and the regres- 395

sion graphs were reasonable without abnormal distri- 396

bution. In literature, the research of Okorie E. Agwu 397

et al., 202016 possibly had an overfitting problemwith 398

very high R value and the predicted values were ex- 399

actly the same as experimental values. The thorough 400

analysis of overfitting in our research helped to avoid 401

this same problem. 402

In brief, the results indicated that the optimized net- 403

work with the best performance without encounter- 404

ing overfitting consisted of one hidden layer with 5 405

neurons, and the transfer function was tangent sig- 406

moid. 407

The results in previous sections showed that the num- 408

ber of input data is not a problem for ANN model- 409

ing as we were afraid at first. There is no simple an- 410

swer to the question if a data set is enough for neu- 411

ral networks modeling. It really depends on each par- 412

ticular case. The 327 observations for the non-linear 413

10
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Figure 8: Graph shows the MSE values when using Bootstrap datasets to train the same ANN (3-6-10-1)

analysis and 162 data for the neural networkmodeling414

used in this research are therefore enough for a proper415

analysis. The results showed that we must choose the416

right neural networkmodel with optimized layers and417

nodes to have a high accuracy without encountering418

an overfitting problem. For this case, using one hid-419

den layer is optimized for the ANN modeling. This420

can be explained by the fact that themore complicated421

a neural network is, the more data it requires in order422

to not be overfitted (Muhammad Uzair and Noreen423

Jamil 2020 44). Hence, in this study, with our avail-424

able data, the number of hidden layers must be one,425

so that no overfitting can occur.426

RESULTS ANDDISCUSSION427

Since the authors wanted to present various models428

to predict drilling mud density, a generalized additive429

model (GAM) was built based on the input data in430

Figure 6 and evaluated using the same data from Ta-431

ble 1. A generalized additive model is a generalized432

linear model with a linear predictor involving a sum433

of smooth functions of covariates (Hastie and Tibshi-434

rani 199045). The GAMs can model non-Gaussian435

outcome variables, in terms of several predictor vari-436

ables. The requirement of the generalized linearmod-437

els that the relationships between the outcome and438

the predictors be linear was relinquished by Vanhove, 439

201446. Instead, non-linear relationships can also be 440

modeled with the form estimated from the data. This 441

can be accomplished by fitting higher-order polyno- 442

mial regressions on subsets of the data and adding the 443

pieces together. The more subset regressions are fit- 444

ted and connected together, themore wiggly the over- 445

all curve will be. Fitting too many subset regressions 446

results in overwiggly curves that fit disproportionally 447

much noise in the data (‘oversmoothing’). In order 448

to prevent this, the algorithm can be furnished with 449

a cross-validation procedure or a generalized (alge- 450

braic) approximation (Wood, 200647). 451

Whereas the additive model was estimated by penal- 452

ized least squares, the GAM will be fitted by penal- 453

ized likelihoodmaximization, and in practice this will 454

be achieved by penalized iterative least squares. More 455

specific details can be viewed in the paper of Wood, 456

200647; Zuur et al., 200948; Vanhove, 2014 46. Table 457

4 will show the specific results of drilling mud density 458

obtained from the generalized additive model. 459

To confirm the effect of circulation rate on the mud 460

density and prove that the network obtained from this 461

study can be applied, the results of drilling mud den- 462

sity obtained fromANNmodel and generalized addi- 463

tive model were compared with the results from the 464

11
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Figure 9: Graph shows the R values when using Bootstrap datasets to train the same artificial neural network

ANNmodel of Okorie E. Agwu et al., 2020 16 in Table465

4.466

The determination coefficient between the results ob-467

tained from our ANNmodel and input data is 0.9972,468

which is rather similar to the determination coeffi-469

cient (0.9970) obtained from the ANNmodel of Oko-470

rie E. Agwu et al., 2020 16. However, the mean square471

error of our network (0.01321) is lower thanOkorie E.472

Agwu’s (0.04754). In addition, as mentioned above,473

the overfitting problem was included in our analysis,474

which was not done in Agwu et al., 202016. We con-475

cluded that our ANN model provided a high value476

of coefficient of determination without encountering477

the overfitting problem. Moreover, the determination478

coefficient given by the generalized additive model is479

high (R2 = 0.99865) while the mean square error is480

low (3.65 × 10−6). Hence, our ANN model and gen-481

eralized additive model can be used in real life appli-482

cations.483

Eventually, Table 6 showed that almost all of the 484

methods were reliable. Only the calculated results 485

given by Sorelle et al., 198236 gave a significant de- 486

viation compared to the input data, hence using the 487

model of Sorelle is not highly recommended. Al- 488

though the determination coefficient of our ANN 489

model is lower than the one given by the generalized 490

additivemodel, the ANNmethod can still be accepted 491

because of its small mean square error (Table 5), and 492

because it can include more influence factors in the 493

input data than the other methods. 494

Figure 14 shows the predicted results obtained from 495

different methods that were used in this study. The 496

measured data in Figure 6 were the same data as the 497

input data used in ANNmodeling. Figure 14 allowed 498

us to draw the same conclusions as mentioned in the 499

previous paragraph. 500
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Figure 10: Graph shows the R values when applying the original normalized datasets to the same artificial neural
network

Table 4: Drillingmud density (ppg) obtained from different artificial neural networks and the generalized
additivemodel using the same input data in Table 1

TheoptimizedANNobtained from this study Generalized additive model ANN model of Okorie E. Agwu et al.
(2020)

11.2358 11.1515 10.9003

11.2439 11.1603 10.9044

11.2536 11.1732 10.9199

11.3584 11.2300 11.0323

11.3587 11.2302 11.0337

11.3594 11.2305 11.0345

11.3585 11.2303 11.0345

11.3592 11.2305 11.0349
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Figure 11: Graph shows the MSE values when applying the original normalized datasets to the same artificial
neural network

Table 5: The results of drillingmud density (ppg) obtained from the optimized ANN, generalized additive
model, and empirical correlations for the same input data from Table 1

Nonlinear
function

Generalized ad-
ditive model

Furbish Hoberock Kutasov Sorelle The optimized
ANN obtained
from this study

10.8949 11.1515 10.8347 11.0440 10.8599 12.63049 11.2358

10.8989 11.1603 10.8378 11.0416 10.8633 12.63005 11.2439

10.9150 11.1732 10.8501 11.0613 10.8771 12.63331 11.2536

11.0635 11.2300 10.9500 11.1354 10.9852 12.64592 11.3584

11.0655 11.2302 10.9513 11.1341 10.9865 12.64577 11.3587

11.0665 11.2305 10.9519 11.1341 10.9871 12.64577 11.3594

11.0666 11.2303 10.9520 11.1340 10.9872 12.64577 11.3585

11.0671 11.2305 10.9523 11.1341 10.9876 12.64577 11.3592
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Figure 12: Graph shows the MSE values when applying the original normalized datasets to the artificial neural
network with one hidden layer

Table 6: Comparison of correlation coefficients and errors given by different methods

Statistical parameters MSE RMSE

Methods

The optimized ANN obtained from this study 0.01321 0.1149

ANNmodel of Okorie E. Agwu et al. (2020) 0.04754 0.2180

Furbish 0.08631 0.2938

Hoberock 0.01023 0.1011

Nonlinear function 0.04083 0.2021

Kutasov 0.06892 0.2625

Sorell 2.06639 1.4375

Generalized additive model 3.65E-06 0.0019
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Figure 13: Graph shows the R values when applying the original normalized datasets to the artificial neural net-
work with one hidden layer

Studyof relative importance of different in-501

put parameters502

Analyzing the impact of the three factors503

(pressure, temperature, and surface density)504

using the nonlinearmathematical model505

To analyze the impact of the three factors, which are506

pressure, temperature, and surface density, input data507

in Figure 1was used for the evaluationwith help of the508

Equation (5). The effect of these three factors are il-509

lustrated in Figure 15. We observed that if the value of510

mud density at surface conditions is reduced to 60%,511

the drilling mud density at the wellbore conditions512

will decrease to approximately 55%. Another remark513

is that if the bottomhole temperature is reduced to514

60%, the drillingmud density will increase by approx-515

imately 1.05 times. Besides, if the bottomhole pres-516

sure is reduced to 60%, the drilling fluid density will 517

be 0.95 compared to the initial value. 518

These above observations are similar to the ones dis- 519

cussed in the works of Agwu et al. 2020 16 andOsman 520

et al., 200314. Both of these two papers concluded that 521

surface density had the biggest impact, followed by 522

bottomhole temperature and bottomhole pressure. 523

Analyzing the impact of the four factors 524

(pressure, temperature, surface density, and 525

circulation rate) using generalized additive 526

model 527

Since the value of mud density at surface conditions 528

is constant during the operation, it may not be wise 529

to include it in the study. Therefore, instead of con- 530

sidering the impact of surface drilling fluid density 531

on the bottomhole drilling mud density, we evaluated 532

16
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Figure14: Graph shows results of drillingmuddensity (ppg) obtained fromempirical correlations, nonlinear func-
tion, generalized additive model, and machine learning models

Figure 15: Relative importance of bottomhole pressure, bottomhole temperature, and the value of mud density
at surface conditions to the drilling mud density

17
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another factor which was the circulation rate. Har-533

ris and Osisanys, 2005 27 mentioned that the circula-534

tion rate was proportional to the drilling fluid den-535

sity at the bottomhole condition because higher flow536

rates would cause the bottomhole pressure to increase537

and the bottomhole temperature to decrease. Besides538

that, no study about the influence of circulation rate539

has ever been realized so far.540

Our generalized additive model was used to study the541

level of variables’ importance with help of the data542

presented in Figure 6. Figure 16 showed that the effect543

of the circulation rate on the drilling mud density was544

quite low. Combined with the results shown in the545

previous section, it can be concluded that the level of546

influence of different factors on the drilling fluid den-547

sity is in the following order: value of mud density at548

surface conditions, bottomhole pressure, bottomhole549

temperature, and circulation rate.550

CONCLUSIONS551

This paper presented various methods (artificial neu-552

ral network, generalized additive model, nonlinear553

function, empirical correlations) to predict drilling554

mud density in function of temperature, pressure,555

surface value of the drilling fluid, and circulation rate.556

The results lead to the following conclusions:557

• The Generalized Additive model and Artificial558

Neural Network have higher coefficient of de-559

termination R2 and lower MSE than the other560

methods. However, it is recommended to561

use our optimized ANN method because we562

demonstrated that it did not have a problem563

of overfitting, while the Generalized Additive564

model presented a very low MSE, which should565

be used with caution.566

• The optimized ANN model consisted of only567

one hidden layer. In addition, the answer to568

the question if a data set is enough for neural569

networks modeling is not simple because it de-570

pends on each particular case. In this study, the571

Bootstrapmethodwas used to resample the data572

and the conclusion was that the number of input573

data was enough to avoid the overfitting prob-574

lem. Moreover, it is worthy to note that since575

there was often a lack of overfitting analysis in576

previous studies in literature review regarding577

this specific case, we solved this problemby con-578

ducting a thorough analysis of overfitting in this579

paper.580

• The nonlinear model is more appropriate than581

the linear model in this case based on the anal-582

ysis of the histograms of different variables.583

• The empirical correlations presented higher de- 584

viation between predicted results and measured 585

data, especially the correlation given by Sorelle 586

et al. (1982). 587

• The level of impact on drilling mud density is 588

in the following order: value of mud density 589

at surface conditions, bottomhole pressure, bot- 590

tom hole temperature, and circulation rate. 591

ABBREVIATIONS 592

ANN: Artificial neural network 593

f0: Percentage of oil volume in the drilling fluid 594

fw: Percentage of water volume in the drilling fluid 595

GAM: Generalized additive model 596

MSE: Mean Squared Error 597

P0 (psi): Standard pressure 598

P, P2 (psi): Pressure at the predicted position 599

RMSE: Root Mean Squared Error 600

T0 (oF): Standard temperature 601

T,T2 (oF): Temperature at the predicted position 602

V (gal): Total volume 603

△V0 (gal): Difference in oil volume 604

△Vw (gal): Difference in water volume 605

xi: A true value of input data 606

xmax
i : A maximum value of input data 607

xmin
i : A minimum value of input data 608

x j : A dimensionless value of input data 609

yi: A true value of target data 610

y j : A dimensionless value of target data 611

ρi,ρmo,ρ1 (ppg): Value ofmud density at surface con- 612

ditions 613

ρ ,ρ f ,ρm (ppg): Predicted drilling mud density 614

ρo1 (ppg): Initial oil density 615

ρo2 (ppg): Oil density in predicted drilling mud 616

ρw1 (ppg): Initial water density 617

ρw2 (ppg): Water density in predicted drilling mud 618
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Figure 16: Relative importance of bottomhole pressure, bottomhole temperature, and circulation rate to the
drilling mud density

APPENDIX628

Mean SquaredError (MSE) is a formula for estimating629

the squared value of an error. The smaller the value of630

MSE, the more accurate the prediction is.631

MSE =
1
N
∗

N

∑
i=1

(X∗
i −Xi)

2

Root Mean Square Error (RMSE) is used to evaluate632

how well a model fits the data. When the value of633

RMSE is near 0, the model will be more accurate.634

RMSE =

[
∑N

i=1
(
X∗

i −Xi
)2

N

] 1
2

T-value is a measure that indicates the degree of in-635

fluence of input factors on the results. The absolute636

value of the t-value indicates the greater the degree of637

influence. A negative t-value indicates an inverse re-638

lationship between the input factor and the result, and639

vice versa.640

The correlation coefficient is a statistical parameter641

that measures the degree of fit between predicted and642

actual data of drilling fluid density.643

R2 = 1− ∑N
i=1

(
X∗

i −Xi
)2

∑N
i=1

(
X∗

i − 1
N

∑N
i=1 Xi

)2

N is the total number of observations, I is the index 644

of I observation; Xi* is the value of drilling mud den- 645

sity which is predicted from empirical correlations or 646

machine learning models. 647

Pr (>|t|) is the p-value corresponding to the t-value. If 648

the p-value is less than the statistical significance level 649

α (usually 0.05), the factors associated with it will be 650

statistically significant in the results, otherwise, it will 651

be a random factor. 652
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TÓM TẮT
Bài báo sử dụng một số phương pháp thống kê và học máy nhằm xác định tỷ trọng dung dịch
khoan trong các điều kiện áp suất và nhiệt độ khác nhau. Bên cạnh đó, sự ảnh hưởng của các
thông số vận hành như là tỷ trọng dung dịch khoan ở điều kiện tiêu chuẩn và lưu lượng bơm tuần
hoàn cũng được đề cập tới trong nghiên cứu này. Các loại mô hình khác nhau (mô hình thực
nghiệm, mạng nơrơn nhân tạo, mô hình Generalized Additive, mô hình tuyến tính) đã được xây
dựng và so sánh kết quả trên cùng các bộ số liệu đầu vào. Kết quả nghiên cứu cho thấy việc xác
định chính xác tỷ trọng dung dịch khoan ở điều kiện bềmặt có ảnh hưởng lớn nhất tới độ chính xác
của giá trị dung dịch khoan tại các độ sâu khác nhau. Ngoài ra, mức độ ảnh hưởng của lưu lượng
bơm tuần hoàn dù không lớn nhưng cũng không nên bỏ qua nếumuốn tăng tính chính xác trong
dự đoán. Phương pháp Bootstrap cũng được dùng trong nghiên cứu này nhằm giải quyết vấn đề
số lượng số liệu đầu vào bị hạn chế. Hiện tượng overfitting (quá khớp) cũng đã được nghiên cứu
kỹ lưỡng trong bài báo này, nhằm giải quyết một vấn đề thường rất hay gặp trong các nghiên cứu
sử dụng học máy ngày nay, khi mà các mô hình cho kết quả dự báo rất chính xác trên bộ số liệu
đầu vào, nhưng khi áp dụng cho số liệu thực tế thì lại không thể sử dụng được.
Từ khoá: tỷ trọng dung dịch khoan, học máy, mạng nơron nhân tạo, tương quan thực nghiệm
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