A machine learning approach for estimating the bubblepoint pressure of world crude oils

Tran Nguyen Thien Tam*, Hoang Trong Quang, Do Pham Minh Huong

ABSTRACT

The pressure at which the first bubble of gas exits the reservoir oil is known as the bubblepoint pressure. This parameter affects multiphase flow in pipes and the overall recovery factor of oil from a reservoir. Therefore, it's crucial to accurately estimate the crude oil bubblepoint pressure. There have been a lot of studies on calculating the bubblepoint pressure from laboratory data, which can be summarized into two main approaches: empirical correlations and machine learning (ML) algorithms. In this study, the authors implement both empirical correlations and ML algorithms with Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Group Method of Data Handling (GMDH). The data was collected from the open literature for world crude oils. The estimation results of the two approaches mentioned above are compared by regression metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R^2). It was found that the GMDH algorithm has the accurate prediction results with the low MSE and RMSE (336605.4 and 580.177) and the highest R^2 (0.9228). Trend analysis was carried out to strengthen model selection. The influence of input features on the prediction results indicates that the GMDH algorithm has the most stability. Therefore, the GMDH model is selected for estimating the bubblepoint pressure.

Key words: bubblepoint pressure correlation, decision tree, k-nearest neighbors, artificial neural network, group method of data handling

INTRODUCTION

In the reservoir's initial condition, oil is a solution that involves gas. The bubblepoint pressure (pb) is defined as the pressure at which the first gas bubbles exit from the oil 1. Bubblepoint pressure is a key parameter for PVT and fluid properties calculations, production optimization, reservoir characterization, and reservoir simulation. Therefore, it is crucial to accurately calculate the bubblepoint pressure. Typically, bubblepoint pressure is measured by sampling fluid from the reservoir and analyzing the PVT (pressurevolume-temperature). However, this method is expensive and takes a lot of time to implement². For this reason, many mathematical methods have been developed to utilize measured data to quickly and accurately estimate bubblepoint pressure. There are two common approaches for estimating bubblepoint pressure: the first is empirical correlations, and the second is machine learning algorithms. The first approach has many methods with some famous correlations, for instance, Standing³, Vazquez and Beggs⁴, Glaso⁵, Al-Marhoun⁶, and Petrosky and Farshad⁷. The second approach has undergone formidable development in recent years. In the age of artificial intelligence and machine learning, researchers have more powerful tools to solve petroleum engineering problems. Many studies focus on the application of machine learning for estimating oil bubblepoint pressure. The most common machine learning algorithm and earliest used to estimate p_b is ANN, for example, according to studies by Osman et al. 8 , Rasouli et al. 9 , Obanijesu and Araromi 10 , Alimadadi et al. 11 , Al-Marhoun et al. 12 , Adeeyo 13 , Fath et al. 14 , Hassan et al. 15 . Over time, many other vigorous ML algorithms have been implemented for bubblepoint pressure prediction. These algorithms include support vector machines $^{16-19}$, genetic algorithms 20,21 , or groups of machine learning algorithms $^{22-24}$.

In this study, the authors extend predictive methods based on ANN, DT, KNN, and GMDH. Research data collected from the many literature. To identify the most optimal method in this work, we use statistical metrics for the regression problem, including MSE, RMSE, and R^2 .

METHODS

As stated previously, there are two usual methods for estimating the bubblepoint pressure: empirical correlations and machine learning algorithms. Below is a summary of the methods belonging to the two main

Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Viotages

Correspondence

Tran Nguyen Thien Tam, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Vietnam

Email: trantam2512@hcmut.edu.vn

History

- Received: 30-9-2023
- Accepted: 25-4-2024
- Published Online: 31-12-2024

DOI:

Copyright

© VNUHCM Press. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Cite this article: Tam T N T, Quang H T, Huong D P M. A machine learning approach for estimating the bubblepoint pressure of world crude oils. Sci. Tech. Dev. J. – Engineering and Technology 2024; 6(SI7):132-144.

groups above.

Empirical correlations

Standing

In 1947, Stading developed a method for bubblepoint pressure with inputs of solution gas-oil ratio (R_s), gas specific gravity (γ_g), reservoir temperature (T), oil gravity (API)³.

$$p_b = 18.2 \left[\left(\frac{R_s}{\gamma_g} \right)^{0.83} (10)^a - 1.4 \right] \tag{1}$$

$$a = 0.00091 (T - 460) - 0.0125 (API)$$
 (2)

Vazquez & Beggs

Vazquez and Beggs (1980) proposed a correlation for bubblepoint pressure as follows ⁴:

$$p_b = \left[\left(C_1 \frac{R_s}{\gamma_g} \right) (10)^a \right]^{c2} \tag{3}$$

$$a = C_3 \left(\frac{API}{T}\right) \tag{4}$$

Table 1: C₁, C₂, and C₃ values

Parameter	$\mathrm{API} \leq 30$	$\text{API} \geq 30$
C ₁	27.624	56.18
C_2	10.914328	0.84246
C ₃	-11.172	-10.393

Glaso

In 1980, Glaso developed a method for bubblepoint pressure as below ⁵:

$$\log(p_b) = 1.7669 + 1.7447 \log(A) -0.30218 [\log(A)]^2$$
(5)

$$A = \left(\frac{R_s}{\gamma_g}\right)^{0.816} \frac{(T - 460)^{0.172}}{(API)^{0.989}} \tag{6}$$

Al-Marhoun

Al-Marhoun (1988) presented a simple correlation as follows:

$$p_b = aR_s^b \gamma_g^c \gamma_o^d T^e \tag{7}$$

with $a = 5.38088 \times 10^{-3}$, b = 0.715082, c = -1.87784, d = 3.1437, and e = 1.32657

Petrosky & Farshad

In 1995, Petrosky and Farshad recommended a correlation as below:

$$p_b = \left[\frac{112/727R_s^{0.577421}}{\gamma_g^{0.8439} (10)^x} \right] - 1391.051 \tag{8}$$

$$x = 7.916 (10^{-4}) (API)^{1.5410} -4.561 (10^{-5}) (T - 460)^{1.3911}$$
 (9)

Machine learning algorithms Artificial Neural Network (ANN)

An ANN is an algorithm that is based on biological processes and simulates the functions of the nervous system. Typically, an ANN structure has three layers: an input layer, a hidden layer, and an output layer. Each individual node has input data, weights, a bias, and an output. The output values are determined through transfer functions. Some of the most common transfer functions are: the Sigmoid function, the ReLU (Rectified Linear Unit) function, the Leaky ReLU function, the Hyperbolic Tangent function, the Softmax function, and the Heaviside function²⁵.

The essence of the ANN process is to learn from the data to renew the weights. The updating of the weights is performed continuously through two processes: forward propagation and backpropagation ²⁶.

K-Nearest Neighbors (KNN)

The KNN is a supervised ML algorithm that makes predictions based on the neighbor data points in a feature space. In this algorithm, we choose the K value to represent the number of neighboring points to calculate the distance between the new point and the K neighboring points. Then, identify the K-nearest neighbors with the smallest distances and compute the weighted average of the target values of these neighbors. Finally, assign this average value as the estimated value for the new data ²⁷.

Decision Tree (DT)

The DT is a structure that includes nodes and branches, and class attributes are represented on the internal nodes of the tree. Based on the class attributes, it works by splitting the dataset into subsets. This process is called attribute selection ²⁸.

The Information Gain method is the popular method for attribute selection. This approach calculates the information gain for each attribute and selects the one with the highest gain as the splitting attribute at each node ²⁸.

Group Method of Data Handling (GMDH)

The GMDH was developed by A.G. Ivakhnenko in the 1966 and has found applications in various fields. The basic procedure of GMDH is to construct the high-order polynomial form, which relates input variables to a single output variable. For each feature, build candidate models with different polynomial degrees and evaluate the models' performance using MSE. In the end, perform an iterative solution to find the best overall model with the input features ²⁹.

The Group Method of Data Handling neural network, also known as the GMDH-type neural network, is a GMDH's spectrum that combines the automated model selection of ANN and feature extraction of GMDH ³⁰.

RESULTS AND DISCUSSION

Data

The research data was collected from the open literature on world crude oils $^{31-37}$. It includes 567 data points with descriptive statistics, as shown in Table 2.

Results of estimating the bubblepoint pressure (BPP) of world crude oils

Empirical correlations

a. Standing correlation

Using equations (1) and (2), we have the predicted results versus measured results of BPP, shown in Figure 1.

b. Vazquez & Beggs correlation

Using equations (3) and (4), we have the comparison results shown in Figure 2.

c. Glaso correlation

Using equations (5) and (6), we have the predicted results versus measured results of BPP, shown in Figure 3.

d. Al-Marhoun correlation

Using equation (7), we have the comparison results shown in Figure 4.

e. Petrosky & Farshad correlation

Using equations (8) and (9), we have the predicted results versus measured results of BPP, shown in Figure 5.

Machine learning algorithms

a. Artificial Neural Network (ANN)

Using Google Colab with the Keras library, we have the BPP comparison results shown in Figure 6.

b. K-Nearest Neighbors (KNN)

Using the KNeighborsRegressor function in Google Colab, we have the BPP predicted results versus measured results, shown in Figure 7.

c. Decision Tree (DT)

Using the DecisionTreeRegressor function in Google Colab, we have the BPP comparison results shown in Figure 8.

d. Group Method of Data Handling (GMDH)

Using Google Colab with Keras library, we have the BPP predicted results versus measured results, shown in Figure 9.

Compare results

Table 3 summarizes the statistical results for estimating bubblepoint pressure by using the regression model's metrics, which include: mean squared error, square root of mean squared error, coefficient of determination. The results show that the GMDH has the highest R^2 (0.9228) and low MSE and RMSE (336605.4 and 580.177).

Trend Analysis

Trend analysis (TA) is a method to study the relationship between features and prediction targets. TA can also identify key relationships between input parameters and p_b predicted values and identify the most robust model. In this study, four input parameters R_s , γ_g , API and T_f were selected to perform TA.

a. Trend analysis for gas solubility

With T = 102 °F, API = 28.3, $\gamma_g = 0.996$, and R_s taken from a data set of 567 points, the trend analysis for gas solubility is shown in Figure 10.

Most models show that as R_s increases, p_b also increases; only in the model by Al-Marhoun correlation with a low R^2 value display predicted values of p_b much different from the other models, and the graph line has many zigzags. The trend displayed by the GMDH model shows a rigorous relationship between the parameter for trend analysis and the model's predicted values. At the same time, the predicted values versus R_s of the GMDH model are a straight, continuously increasing line with smooth form.

b. Trend analysis for oil API gravity

With $R_s = 226$ (SCF/STB), $T = 102^{o}$ F, $\gamma_g = 0.996$, and API taken from a data set, the result is shown in Figure 11

Most models show that as API increases, p_b decreases, except the Al-Marhoun model. The GMDH model shows this trend clearly with a straight, continuously decreasing line.

c. Trend analysis for temperature

With $R_s = 226$ (SCF/STB), API = 28.3, $\gamma_g = 0.996$, and T taken from a data set, the trend analysis for temperature is shown in Figure 12.

Typical, all models show that as temperature increases, p_b increases. However, some models exhibit a

Table 2: Descriptive statistics for experimental PVT data used in the study

Parameter	Temperature (F)	Solution gas oil ratio (SCF/STB)	API	Gas specific gravity	Bubble point pressure (psi)
Mean	193.86	636.92	35.10	1.1976	1931.97
Standard deviation	51.99	405.76	6.00	0.4554	1261.45
Variance	2698.71	164349.73	35.93	0.2070	1588447.71
Minimum	74.00	26.00	19.40	0.1590	79.00
Maximum	306.00	2496.00	56.50	3.4445	6741.00

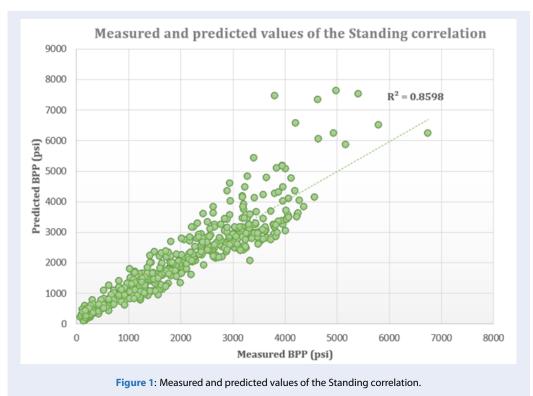
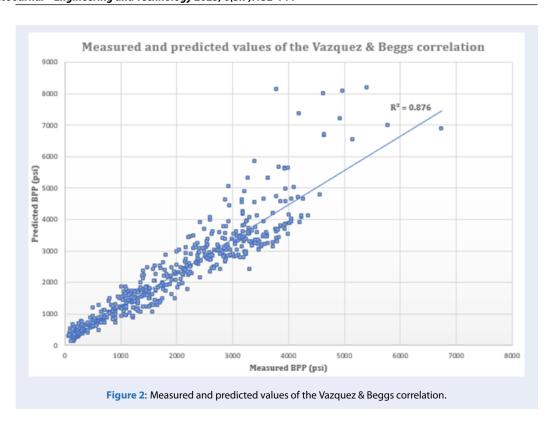
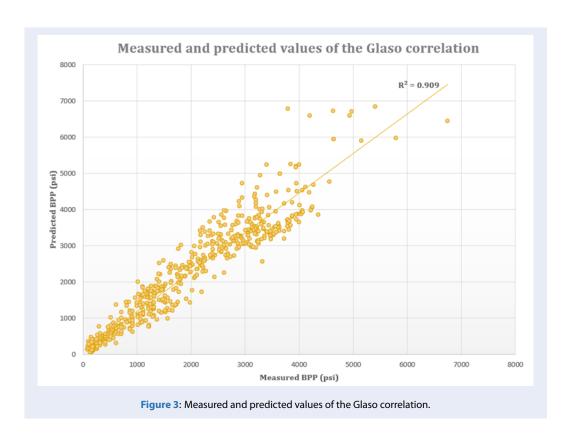
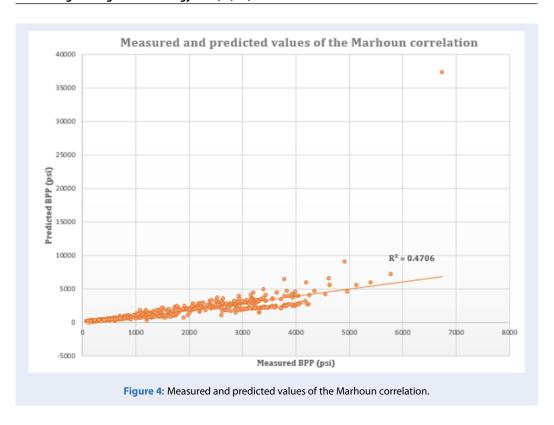


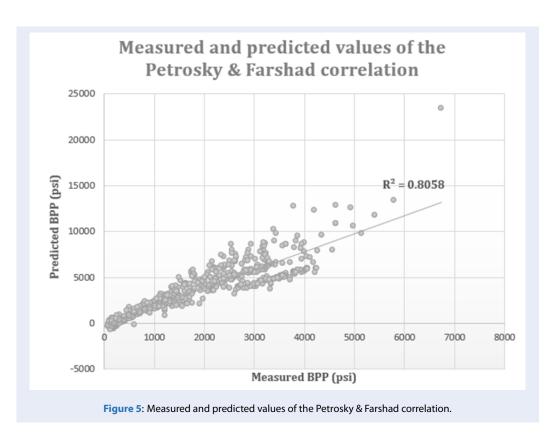
Table 3: Summary of the statistical results for estimating bubblepoint pressure

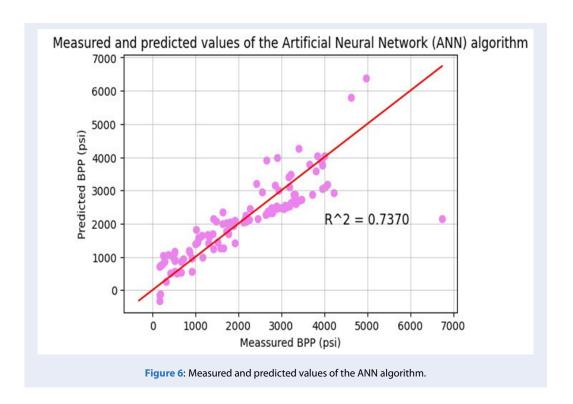
Model	MSE	RMSE	\mathbb{R}^2
Standing	251165	501	0.8498
Vazquez & Beggs	354078	595	0.8460
Glaso	280723	530	0.8526
Al-Marhoun	2044426	1430	0.4706
Petrosky & Farshad	6096167	2469	0.8058
ANN	441419	664.394	0.737
KNN	420474	648.440	0.7947
DT	355461.982	596.206	0.788
GMDH	336605.4	580.177	0.9228

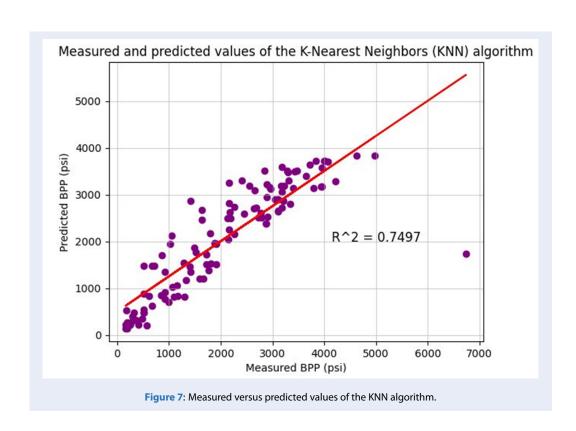


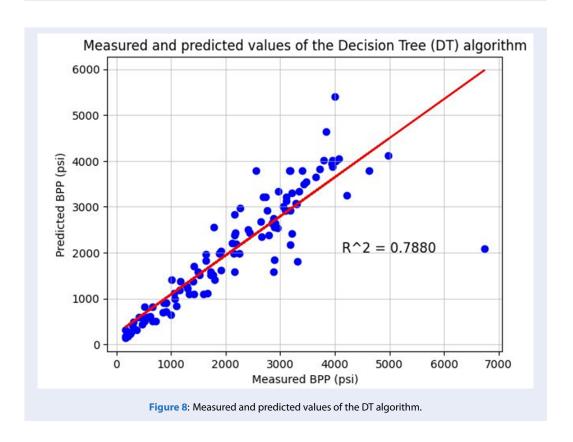


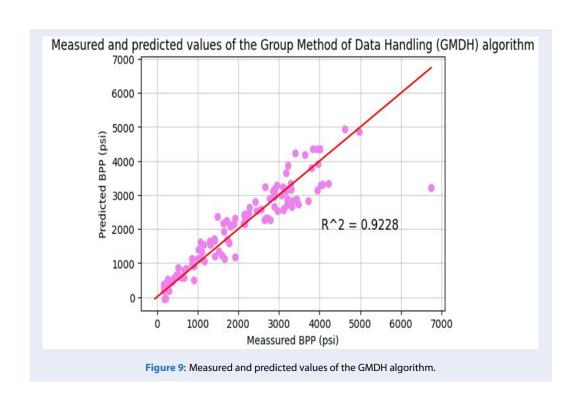


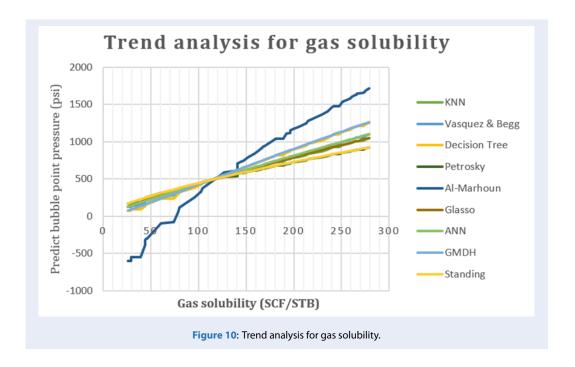


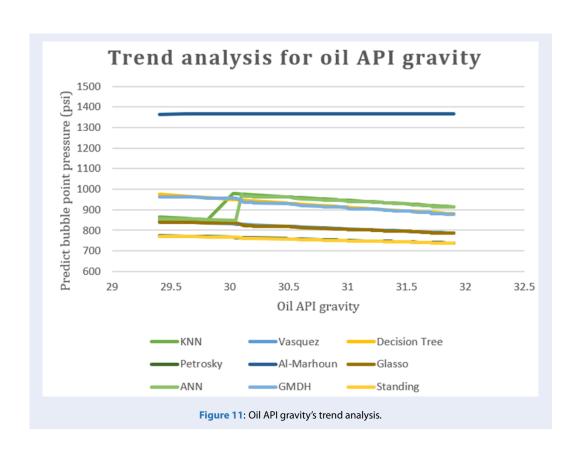


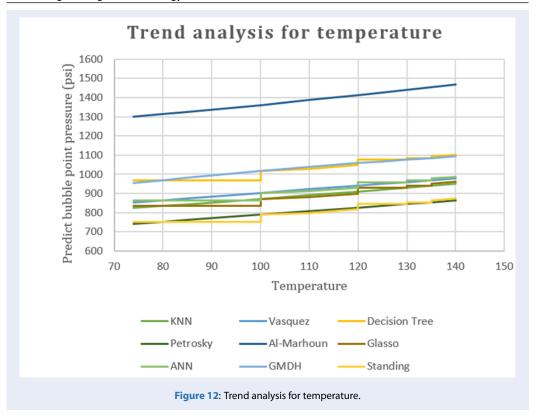












stepped form, and the Al-Marhoun model is far apart from the group of other models.

d. Trend analysis for gas specific gravity With $R_s = 226$ (SCF/STB), API = 28.3, T = 102 °F,

and γ_g taken from a data set, the trend analysis for gas specific gravity is shown in Figure 13.

Basically, all models show that as gas specific gravity increases, p_b decreases, but some models exhibit a graph line in a slightly winding form.

CONCLUSIONS

In this study, a dataset with 567 data points on crude oils at some geographical location in the world with four input parameters (R_s , γ_g , API, and T) was used to estimate crude oil bubblepoint pressure (p_b) by two main approaches: empirical correlations and machine learning algorithms. The result shows that the GMDH algorithm is the model that gives the best estimation for bubblepoint pressure.

In addition, trend analysis of input parameters also shows that GMDH graph lines tend to be stable. This strongly confirms that the GMDH model is highly reliable in bubblepoint pressure estimation and can be used for the calculation of other crude oil PVT data sets. The authors suggest that further research on the overfitting phenomenon is needed to increase the reliability of model selection.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest associated with this study.

AUTHOR CONTRIBUTION

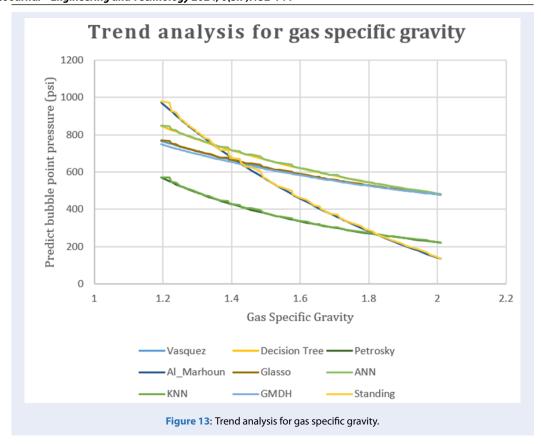
Tran Nguyen Thien Tam designed the research, collected data, and wrote the manuscript. Do Pham Minh Huong performed the calculations. Hoang Trong Quang drawn the figures. All authors discussed the results and contributed to the final manuscript.

ACKNOWLEDGMENT

We would like to thank Ho Chi Minh City University of Technology (HCMUT) and VNU-HCM for their support of this study.

REFERENCES

- PetroWiki. Oil bubblepoint pressure; Available from: https://petrowiki.spe.org/Oil_bubblepoint_pressure.
- Alakbari FS, Mohyaldinn ME, Ayoub MA, Muhsan AS, Hussein IA. An Accurate Reservoir's Bubblepoint Pressure Correlation. ACS Omega. 2022;7(15):13196-13209;Available from: https://doi.org/10.1021/acsomega.2c00651.
- Standing MB. A pressure-volume-temperature correlation for mixtures of California oils and gases. Drill. Prod. Pract. 1947;
- Vasquez M, Beggs HD. Correlations for Fluid Physical Property Prediction. J. Pet. Technol. 1980;32(06):968-970;Available from: https://doi.org/10.2118/6719-PA.



- Glaso O. Generalized Pressure-Volume-Temperature Correlations. J. Pet. Technol. 1980;32(05):785-795;Available from: https://doi.org/10.2118/8016-PA.
- Al-Marhoun MA. PVT Correlations for Middle East Crude Oils. JPT, J. Pet. Technol. 1988;40(5):650-666;Available from: https://doi.org/10.2118/13718-PA.
- Petrosky GE, Farshad FF. Pressure-Volume-Temperature Correlations for Gulf of Mexico Crude Oils. SPE Reserv. Eval. Eng. 1998; Available from: https://doi.org/10.2118/29468-MS.
- Osman EA, Abdel-Wahhab OA, Al-Marhoun MA. Prediction of Oil PVT Properties Using Neural Networks. Proc. Middle East Oil Show. 2001;Available from: https://doi.org/10.2118/68233-MS
- Rasouli H, Rashidi F, Ebrahimian A. Estimating the bubblepoint pressure and formation volume factor of oil using artificial neural networks. Chem. Eng. Technol. 2008;31(4):493-500;Available from: https://doi.org/10.1002/ceat.200700434.
- Obanijesu EO, Araromi DO. Predicting bubble-point pressure and formation-volume factor of Nigerian crude oil system for environmental sustainability. Pet. Sci. Technol. 2008;26(17):1993-2008;Available from: https://doi.org/10.1080/10916460701399493.
- Alimadadi A, Fakhri A, Alimadadi F, Dezfoulian MH. Predicting the PVT properties of Iran crude oil by neural network. 2011 1st Int. eConference Comput. Knowl. Eng. ICCKE 2011. 2011;Available from: https://doi.org/10.1109/ICCKE. 2011.6413339
- Al-Marhoun MA, Ali SS, Abdulraheem A, Nizamuddin S, Muhammadain A. Prediction of bubblepoint pressure from composition of black oils using artificial neural network. Pet. Sci. Technol. 2014;32(14):1720-1728;Available from: https:// doi.org/10.1080/10916466.2012.707267.
- Adeeyo YA. Artificial neural network modelling of bubblepoint pressure and formation volume factor at bubblepoint

- pressure of Nigerian crude oil. Soc. Pet. Eng. SPE Niger. Annu. Int. Conf. Exhib. 2016;Available from: https://doi.org/10.2118/184378-MS.
- Hashemi Fath A, Pouranfard A, Foroughizadeh P. Development of an artificial neural network model for prediction of bubblepoint pressure of crude oils. Petroleum. 2018;4(3):281-291;Available from: https://doi.org/10.1016/j.petlm.2018.03.009
- Hassan A, Abdulraheem A, Mohamed A. Reliable models for determining the pressure-volume-temperature PVT properties using artificial intelligence technique. Int. Pet. Technol. Conf. 2020, IPTC 2020. 2020; Available from: https://doi.org/10. 2523/IPTC-19884-Abstract.
- El-Sebakhy E, Sheltami T, Al-Bokhitan S, Shaaban Y, Raharja P, Khaeruzzaman Y. Support Vector Machines Framework for Predicting the PVT Properties of Crude-Oil Systems. 2007; PMID: 17526349. Available from: https://doi.org/10.2523/105698-MS.
- Nagi J, Kiong TS, Ahmed SK, Nagi F. Prediction of PVT properties in crude oil systems using support vector machines. ICEE 2009 Proceeding 2009 3rd Int. Conf. Energy Environ. Adv. Towar. Glob. Sustain. 2009;Available from: https://doi.org/10.1109/ICEENVIRON.2009.5398681.
- Anifowose F, Ewenla AA, Eludiora S. Prediction of oil and gas reservoir properties using support vector machines. Int. Pet. Technol. Conf. 2011, IPTC 2011. 2011;Available from: https://doi.org/10.2523/IPTC-14514-MS.
- Oloso MA, Hassan MG, Buick J, Bader-El-Den M. Oil PVT characterisation using ensemble systems. Proc. Int. Conf. Mach. Learn. Cybern. 2016;Available from: https://doi.org/10.1109/ICMLC.2016.7860878.
- 20. Asoodeh M, Kazemi K. Estimation of bubblepoint pressure: Using a genetic integration of empirical formulas. Energy

- Sources, Part A Recover. Util. Environ. Eff. 2013;35(12):1102-1109;Available from: https://doi.org/10.1080/15567036.2011. 574195
- Heidarian M, Karimnezhad M, Schaffie M, Ranjbar M. A new empirical correlation for estimating bubblepoint pressure using the genetic algorithm. Geol. Geophys. Environ. 2017;43(1):33;Available from: https://doi.org/10.7494/geol.2017.43.1.33.
- Kiadehi AD, Mehdizadeh B, Movagharnejad K. Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine. J. Chem. Pet. Eng. 2019;53(2):177-189;
- Rashidi S, et al. Determination of bubblepoint pressure & oil formation volume factor of crude oils applying multiple hidden layers extreme learning machine algorithms. J. Pet. Sci. Eng. 2021;202;Available from: https://doi.org/10.1016/j.petrol. 2021.108425.
- Naveshki M, et al. Prediction of Bubblepoint Pressure Using New Hybrid Computational Intelligence Models. J. Chem. Pet. Eng. 2021;55(2):203-222;
- Singh G. Introduction to Artificial Neural Networks. Analytics Vidhya; Available from: https://www.analyticsvidhya.com/blog/ 2021/09/introduction-to-artificial-neural-networks/.
- 26. Seth N. How does Backward Propagation Work in Neural Networks? Analytics Vidhya; Available from: https://www.analyticsvidhya.com/blog/2021/06/how-does-backward-propagation-work-in-neural-networks/.
- GeeksforGeeks. K-Nearest Neighbor(KNN) Algorithm; Available from: https://www.geeksforgeeks.org/knearest-neighbours/.
- GeeksforGeeks. Decision Tree; Available from: https://www.geeksforgeeks.org/decision-tree/.
- Farlow SJ. The gmdh algorithm of ivakhnenko. Am. Stat. 1981;35(4):210-215;Available from: https://doi.org/10.1080/

- 00031305.1981.10479358.
- Kondo T, Ueno J, Takao S. Feedback GMDH-Type Neural Network Algorithm Using Prediction Error Criterion Defined as AIC. Smart Innov. Syst. Technol. 2012;16(1):313-322;Available from: https://doi.org/10.1007/978-3-642-29920-9_32.
- Moghadam JN, Salahshoor K, Kharrat R. Introducing a new method for predicting PVT properties of Iranian crude oils by applying artificial neural networks. Pet. Sci. Technol. 2011;29(10):1066-1079;Available from: https://doi.org/10. 1080/10916460903551040.
- Omar MI, Todd AC. Development of new modified black oil correlations for Malaysian crudes. Proc. Asia Pacific Oil Gas Conf. 1993;Available from: https://doi.org/10.2523/25338-MS.
- Dokla ME, Osman ME. Correlation of PVT properties for UAE crudes. SPE Form. Eval. 1992;7(1):41-46;Available from: https://doi.org/10.2118/20989-PA.
- Ghorbani H, et al. Performance comparison of bubblepoint pressure from oil PVT data: Several neurocomputing techniques compared. Exp. Comput. Multiph. Flow. 2020;2(4):225-246;Available from: https://doi.org/10.1007/s42757-019-0047-5.
- Gharbi AME, R.B. Neural network model for estimating the PVT properties of Middle East crude oils. SPE Reserv. Eval. Eng. 1999;2;Available from: https://doi.org/10.1021/ef980143v.
- 36. Al-Marhoun MA. Evaluation of empirically derived PVT properties for Middle East crude oils. J. Pet. Sci. Eng. 2004;42(2-4):209-221;Available from: https://doi.org/10.1016/j.petrol.2003.12.012.
- Ganji-Azad E, Rafiee-Taghanaki S, Rezaei H, Arabloo M, Zamani HA. Reservoir fluid PVT properties modeling using Adaptive Neuro-Fuzzy Inference Systems. J. Nat. Gas Sci. Eng. 2014;21:951-961;Available from: https://doi.org/10.1016/i.ingse.2014.10.009.

Ứng dụng phương pháp học máy để ước lượng áp suất điểm bọt cho dầu thô thế giới

Trần Nguyễn Thiện Tâm*, Hoàng Trọng Quang, Đỗ Phạm Minh Hương

TÓM TẮT

Áp suất tại đó bong bóng khí đầu tiên thoát ra khỏi dầu via chứa được gọi là áp suất điểm bọt. Thông số này ảnh hưởng đến dòng chảy đa pha trong đường ống và hệ số thu hồi dầu từ via chứa. Do đó, điều quan trọng là phải ước tính chính xác áp suất điểm bọt dầu thô. Đã có rất nhiều nghiên cứu về tính toán áp suất điểm bọt từ dữ liệu trong phòng thí nghiệm, có thể tóm lược thành hai cách tiếp cận chính: tương quan thực nghiệm và thuật toán học máy. Trong nghiên cứu này, các tác giả thực hiện tính toán theo cả hai cách tương quan thực nghiệm và thuật toán học máy với Cây quyết định (DT), K láng giếng gần nhất (KNN), Mạng nơron nhân tạo (ANN) và Phương pháp xử lý dữ liệu nhóm (GMDH). Dữ liệu được thu thập từ các tài liệu đã công bố về dầu thô thế giới. Kết quả ước lượng của hai cách tiếp cận trên được so sánh bằng các tham số đánh giá mô hình hồi quy bao gồm: sai số toàn phương trung bình (MSE), căn bậc hai của sai số bình phương trung bình (RMSE) và hệ số xác định (R²). Kết quả cho thấy thuật toán GMDH cho dự đoán chính xác với MSE và RMSE thấp (336605,4 và 580,177) và R² cao nhất (0,9228). Phân tích xu hướng được thực hiện để tăng tính tin cậy cho việc lựa chọn mô hình. Ảnh hưởng của các thông số đầu vào đến kết quả dự đoán chỉ ra rằng mô hình GMDH có độ ổn định cao nhất. Vì vậy, mô hình GMDH được lựa chọn để ước lượng áp suất điểm bọt của dầu thô.

Từ khoá: tương quan áp suất điểm bọt, cây quyết định, k láng giếng gần nhất, mạng nơron nhân tạo, phương pháp xử lý dữ liệu nhóm

Trường Đại học Bách khoa, Đại học Quốc gia TP.HCM, Việt Nam

Liên hê

Trần Nguyễn Thiện Tâm, Trường Đại học Bách khoa, Đại học Quốc gia TP.HCM, Việt Nam

Email: trantam2512@hcmut.edu.vn

Lịch sử

Ngày nhận: 30-9-2023Ngày chấp nhận: 25-4-2024

• Ngày đăng: 31-12-2024

DOI: 10.32508/stdjet.v6iSI7.1251

Bản quyền

© ĐHQG Tp.HCM. Đây là bài báo công bố mở được phát hành theo các điều khoản của the Creative Commons Attribution 4.0 International license.

Trích dẫn bài báo này: Tâm T N T, Quang H T, Hương D P M. **Ứng dụng phương pháp học máy để ước lượng áp suất điểm bọt cho dầu thô thế giới** . *Sci. Tech. Dev. J. - Eng. Tech.* 2024; 6(SI7):132-144.