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A machine learning approach for estimating the bubblepoint
pressure of world crude oils

Tran Nguyen Thien Tam", Hoang Trong Quang, Do Pham Minh Huong

ABSTRACT

The pressure at which the first bubble of gas exits the reservoir oil is known as the bubblepoint
pressure. This parameter affects multiphase flow in pipes and the overall recovery factor of oil from
a reservoir. Therefore, it's crucial to accurately estimate the crude oil bubblepoint pressure. There
have been a lot of studies on calculating the bubblepoint pressure from laboratory data, which can
be summarized into two main approaches: empirical correlations and machine learning (ML) algo-
rithms. In this study, the authors implement both empirical correlations and ML algorithms with
Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Group Method
of Data Handling (GMDH). The data was collected from the open literature for world crude oils.
The estimation results of the two approaches mentioned above are compared by regression met-
rics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination
(R?). It was found that the GMDH algorithm has the accurate prediction results with the low MSE
and RMSE (336605.4 and 580.177) and the highest R? (0.9228). Trend analysis was carried out to
strengthen model selection. The influence of input features on the prediction results indicates that
the GMDH algorithm has the most stability. Therefore, the GMDH model is selected for estimating
the bubblepoint pressure.
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network, group method of data handling

INTRODUCTION

In the reservoir’s initial condition, oil is a solution that
involves gas. The bubblepoint pressure (pb) is de-
fined as the pressure at which the first gas bubbles exit
from the oil . Bubblepoint pressure is a key param-
eter for PVT and fluid properties calculations, pro-
duction optimization, reservoir characterization, and
reservoir simulation. Therefore, it is crucial to accu-
rately calculate the bubblepoint pressure. Typically,
bubblepoint pressure is measured by sampling fluid
from the reservoir and analyzing the PVT (pressure-
volume-temperature). However, this method is ex-
pensive and takes a lot of time to implement”. For
this reason, many mathematical methods have been
developed to utilize measured data to quickly and ac-
curately estimate bubblepoint pressure. There are two
common approaches for estimating bubblepoint pres-
sure: the first is empirical correlations, and the sec-
ond is machine learning algorithms. The first ap-
proach has many methods with some famous corre-
lations, for instance, Standing 3 Vazquez and Beggs 4
Glaso®, Al-Marhoun®, and Petrosky and Farshad’.
The second approach has undergone formidable de-
velopment in recent years. In the age of artificial intel-
ligence and machine learning, researchers have more

powerful tools to solve petroleum engineering prob-
lems. Many studies focus on the application of ma-
chine learning for estimating oil bubblepoint pres-
sure. The most common machine learning algorithm
and earliest used to estimate p;, is ANN, for example,
according to studies by Osman et al. 8 Rasouli etal.’,
Obanijesu and Araromi'?, Alimadadi et al.!!, Al-
Marhoun et al.'2, Adeeyo 13, Fath et al.'*, Hassan et
al.1>. Over time, many other vigorous ML algorithms
have been implemented for bubblepoint pressure pre-
diction. These algorithms include support vector ma-

16-19  genetic algorithms 20!

22-24

chines , or groups of ma-
chine learning algorithms
In this study, the authors extend predictive methods
based on ANN, DT, KNN, and GMDH. Research data
collected from the many literature. To identify the
most optimal method in this work, we use statistical
metrics for the regression problem, including MSE,

RMSE, and R2.

METHODS

As stated previously, there are two usual methods for
estimating the bubblepoint pressure: empirical corre-
lations and machine learning algorithms. Below is a
summary of the methods belonging to the two main
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groups above.

Empirical correlations
Standing

In 1947, Stading developed a method for bubblepoint
pressure with inputs of solution gas-oil ratio (Ry), gas
specific gravity (), reservoir temperature (T), oil
gravity (API)°.

R 083
pp =182 {(X) (10)“—1.4] 1)
Y
a = 0.00091 (T — 460) — 0.0125 (API) )
Vazquez & Beggs

Vazquez and Beggs (1980) proposed a correlation for
bubblepoint pressure as follows*:

c2
Py = KQ&) (10)“] (3)
Ye
API
a=GC3 (T) (4)

Table 1: C;, C,, and C; values

Parameter API <30 API > 30

Cy 27.624 56.18

Cy 10.914328 0.84246

C3 -11.172 -10.393
Glaso

In 1980, Glaso developed a method for bubblepoint
pressure as below:

log (pp) = 1.7669 + 1.74471og (A)

—0.30218[log (A)]? ©)
Rs 0.816 (T 7460)0'172
A= (7@:) (AP1)0A989 (©)

Al-Marhoun

Al-Marhoun (1988) presented a simple correlation as
follows:

pp = aRbYSYAT® (7)

with a = 5.38088x10 3, b = 0.715082, ¢ = -1.87784, d
=3.1437,and e = 1.32657

Petrosky & Farshad

In 1995, Petrosky and Farshad recommended a corre-
lation as below:

P89 (10)7
x=17.916(10"%) (AP1)'*1°
—4.561 (1073) (T —460)'-°!!

112/72 R0.577421
= { /T2TRs —1391.051 ®)

&)

Machine learning algorithms
Artificial Neural Network (ANN)

An ANN is an algorithm that is based on biologi-
cal processes and simulates the functions of the ner-
vous system. Typically, an ANN structure has three
layers: an input layer, a hidden layer, and an output
layer. Each individual node has input data, weights,
a bias, and an output. The output values are deter-
mined through transfer functions. Some of the most
common transfer functions are: the Sigmoid func-
tion, the ReLU (Rectified Linear Unit) function, the
Leaky ReLU function, the Hyperbolic Tangent func-
tion, the Softmax function, and the Heaviside func-
tion2°.

The essence of the ANN process is to learn from
the data to renew the weights. The updating of the
weights is performed continuously through two pro-

cesses: forward propagation and backpropagation 2°.

K-Nearest Neighbors (KNN)

The KNN is a supervised ML algorithm that makes
predictions based on the neighbor data points in a fea-
ture space. In this algorithm, we choose the K value
to represent the number of neighboring points to cal-
culate the distance between the new point and the
K neighboring points. Then, identify the K-nearest
neighbors with the smallest distances and compute
the weighted average of the target values of these
neighbors. Finally, assign this average value as the es-
timated value for the new data?’.

Decision Tree (DT)

The DT is a structure that includes nodes and
branches, and class attributes are represented on the
internal nodes of the tree. Based on the class at-
tributes, it works by splitting the dataset into subsets.
This process is called attribute selection %,

The Information Gain method is the popular method
for attribute selection. This approach calculates the
information gain for each attribute and selects the one
with the highest gain as the splitting attribute at each

node?8.
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Group Method of Data Handling (GMDH)

The GMDH was developed by A.G. Ivakhnenko in the
1966 and has found applications in various fields. The
basic procedure of GMDH is to construct the high-
order polynomial form, which relates input variables
to a single output variable. For each feature, build
candidate models with different polynomial degrees
and evaluate the models’ performance using MSE. In
the end, perform an iterative solution to find the best
overall model with the input features>°.

The Group Method of Data Handling neural network,
also known as the GMDH-type neural network, is
a GMDH’s spectrum that combines the automated
model selection of ANN and feature extraction of
GMDH .

RESULTS AND DISCUSSION
Data

The research data was collected from the open liter-
ature on world crude oils*!~%’. It includes 567 data
points with descriptive statistics, as shown in Table 2.

Results of estimating the bubblepoint pres-
sure (BPP) of world crude oils

Empirical correlations

a. Standing correlation

Using equations (1) and (2), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 1.

b. Vazquez & Beggs correlation

Using equations (3) and (4), we have the comparison
results shown in Figure 2.

c. Glaso correlation

Using equations (5) and (6), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 3.

d. Al-Marhoun correlation

Using equation (7), we have the comparison results
shown in Figure 4.

e. Petrosky & Farshad correlation

Using equations (8) and (9), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 5.

Machine learning algorithms

a. Artificial Neural Network (ANN)

Using Google Colab with the Keras library, we have
the BPP comparison results shown in Figure 6.

b. K-Nearest Neighbors (KNN)

Using the KNeighborsRegressor function in Google
Colab, we have the BPP predicted results versus mea-
sured results, shown in Figure 7.

c. Decision Tree (DT)

Using the DecisionTreeRegressor function in Google
Colab, we have the BPP comparison results shown in
Figure 8.

d. Group Method of Data Handling (GMDH)

Using Google Colab with Keras library, we have the
BPP predicted results versus measured results, shown
in Figure 9.

Compare results

Table 3 summarizes the statistical results for esti-
mating bubblepoint pressure by using the regression
model’s metrics, which include: mean squared er-
ror, square root of mean squared error, coefficient
of determination. The results show that the GMDH
has the highest R? (0.9228) and low MSE and RMSE
(336605.4 and 580.177).

Trend Analysis

Trend analysis (TA) is a method to study the relation-
ship between features and prediction targets. TA can
also identify key relationships between input parame-
ters and py, predicted values and identify the most ro-
bust model. In this study, four input parameters R,
Ye» APT and Ty were selected to perform TA.

a. Trend analysis for gas solubility

With T = 102 °F, API = 28.3, ¥, = 0.996, and R; taken
from a data set of 567 points, the trend analysis for gas
solubility is shown in Figure 10.

Most models show that as Ry increases, pj, also in-
creases; only in the model by Al-Marhoun correla-
tion with a low R? value display predicted values of p;,
much different from the other models, and the graph
line has many zigzags. The trend displayed by the
GMDH model shows a rigorous relationship between
the parameter for trend analysis and the model’s pre-
dicted values. At the same time, the predicted values
versus Ry of the GMDH model are a straight, contin-
uously increasing line with smooth form.

b. Trend analysis for oil API gravity

With R, =226 (SCF/STB), T = 102 °F, ¥, = 0.996, and
API taken from a data set, the result is shown in Fig-
ure 11.

Most models show that as API increases, pj, decreases,
except the Al-Marhoun model. The GMDH model
shows this trend clearly with a straight, continuously
decreasing line.

c. Trend analysis for temperature

With R, = 226 (SCF/STB), API = 28.3, ¥, = 0.996, and
T taken from a data set, the trend analysis for temper-
ature is shown in Figure 12.

Typical, all models show that as temperature in-
creases, pp, increases. However, some models exhibit a
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Table 2: Descriptive statistics for experimental PVT data used in the study

Parameter Temperature Solution gas oil ~ API Gas specific ~ Bubble point pres-
(F) ratio gravity sure
(SCF/STB) (psi)
Mean 193.86 636.92 35.10 1.1976 1931.97
Standard devia-  51.99 405.76 6.00 0.4554 1261.45
tion
Variance 2698.71 164349.73 35.93 0.2070 1588447.71
Minimum 74.00 26.00 19.40 0.1590 79.00
Maximum 306.00 2496.00 56.50 3.4445 6741.00

Predicted BPP (psi)
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Figure 1: Measured and predicted values of the Standing correlation.

Table 3: Summary of the statistical results for estimating bubblepoint pressure

Model MSE RMSE R?
Standing 251165 501 0.8498
Vazquez & Beggs 354078 595 0.8460
Glaso 280723 530 0.8526
Al-Marhoun 2044426 1430 0.4706
Petrosky & Farshad 6096167 2469 0.8058
ANN 441419 664.394 0.737
KNN 420474 648.440 0.7947
DT 355461.982 596.206 0.788
GMDH 336605.4 580.177 0.9228
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Figure 2: Measured and predicted values of the Vazquez & Beggs correlation.

Measured and predicted values of the Glaso correlation

R?=0.909

Figure 3: Measured and predicted values of the Glaso correlation.
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Measured and predicted values of the Marhoun correlation
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Figure 4: Measured and predicted values of the Marhoun correlation.
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Figure 5: Measured and predicted values of the Petrosky & Farshad correlation.
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Measured and predicted values of the Artificial Neural Network (ANN) algorithm
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Figure 6: Measured and predicted values of the ANN algorithm.

Measured and predicted values of the K-Nearest Neighbors (KNN) algorithm
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Figure 7: Measured versus predicted values of the KNN algorithm.
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Measured and predicted values of the Decision Tree (DT) algorithm
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Figure 8: Measured and predicted values of the DT algorithm.

Measured and predicted values of the Group Method of Data Handling (GMDH) algorithm
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Figure 9: Measured and predicted values of the GMDH algorithm.

139



Science & Technology Development Journal - Engineering and Technology 2025, 6(517):132-144

Predict bubble point pressure (psi)

Predict bubble point pressure (psi)

2000

1500

1000

500

-500

1000

1500
1400
1300
1200
1100
1000
900
800
700
600

Trend analysis for gas solubility

e KN N

Vasquez & Begg
Decision Tree

— Petrosky

m— Al-Marhoun

— Glasso

5 100 150 200 250 300  s=——ANN

e (5 M DH

Standing
Gas solubility (SCF/STB)

Figure 10: Trend analysis for gas solubility.
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Figure 11: Oil API gravity’s trend analysis.
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Trend analysis for temperature
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Figure 12: Trend analysis for temperature.
stepped form, and the Al-Marhoun model is far apart CONFLICT OF INTEREST

from the group of other models.

d. Trend analysis for gas specific gravity

With R, = 226 (SCF/STB), API = 28.3, T = 102 °F,
and 7, taken from a data set, the trend analysis for
gas specific gravity is shown in Figure 13.

Basically, all models show that as gas specific grav-
ity increases, p;, decreases, but some models exhibit
a graph line in a slightly winding form.

CONCLUSIONS

In this study, a dataset with 567 data points on crude
oils at some geographical location in the world with
four input parameters (Ry, ¥g, API, and T) was used
to estimate crude oil bubblepoint pressure (pj) by two
main approaches: empirical correlations and machine
learning algorithms. The result shows that the GMDH
algorithm is the model that gives the best estimation
for bubblepoint pressure.

In addition, trend analysis of input parameters also
shows that GMDH graph lines tend to be stable. This
strongly confirms that the GMDH model is highly re-
liable in bubblepoint pressure estimation and can be
used for the calculation of other crude oil PVT data
sets. The authors suggest that further research on the
overfitting phenomenon is needed to increase the re-
liability of model selection.
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1

TOM TAT

Ap sudt tai d6 bong béng khi dau tién thoat ra khoi dau via chiia duoc goi la dp suat diém bot.
Thong s6 nay anh hudng dén dong chay da pha trong duong 6ng va hé sé thu hoi dau tir via chia.
Do d6, diéu quan trong la phai udc tinh chinh xéac ap sudt diém bot dau thé. Ba co rat nhiéu nghién
clu vé tinh todn &p sudt diém bot tir d liéu trong phong thi nghiém, c6 thé tom luge thanh hai
cach tiép can chinh: tuong quan thuc nghiém va thuat toan hoc may. Trong nghién ctiu nay, cac
tac gid thuc hién tinh todn theo ca hai cach tuong quan thuc nghiém va thuat todn hoc may vdi
Cay quyét dinh (DT), K lang giéng gan nhat (KNN), Mang noron nhan tao (ANN) va Phuong phap
xU ly dit liéu nhom (GMDH). DU liéu dugc thu thap tir cac tai liéu da cong bé vé dau tho thé gidi.
Két qua udc luong clia hai cach tiép can trén dugc so sanh bang cac tham sé danh gia moé hinh
hoi quy bao gém: sai s6 toan phuong trung binh (MSE), can bac hai clia sai s6 binh phuong trung
binh (RMSE) va hé s6 xac dinh (R?). K&t qua cho thdy thuat todn GMDH cho du dodn chinh xac vai
MSE va RMSE thap (336605,4 va 580,177) va R? cao nhét (0,9228). Phan tich xu hudng dugc thuc
hién dé tang tinh tin cay cho viéc Iua chon moé hinh. Anh hudng clia cac théng s6 dau vao dén két
qua dy dodn chi ra réng mé hinh GMDH cé d6 6n dinh cao nhat. Vi vay, mé hinh GMDH duac lua
chon @€ udc lugng ap suat diém bot clia dau tho.

Tu khoa: tuong quan ap sudt diém bot, cay quyét dinh, k lang giéng gan nhat, mang ncron nhan
tao, phuong phap xt ly d liéu nhém

Trich dan bai bao nay: Tam TN T, Quang H T, Huong D P M. Ung dung phuong phap hoc may dé uéc
lugng ap suat diém bot cho dau thé thé gi6i . Sci. Tech. Dev. J. - Eng. Tech. 2024; 6(S17):132-144.
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