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ABSTRACT
The pressure at which the first bubble of gas exits the reservoir oil is known as the bubblepoint
pressure. This parameter affects multiphase flow in pipes and the overall recovery factor of oil from
a reservoir. Therefore, it's crucial to accurately estimate the crude oil bubblepoint pressure. There
have been a lot of studies on calculating the bubblepoint pressure from laboratory data, which can
be summarized into twomain approaches: empirical correlations andmachine learning (ML) algo-
rithms. In this study, the authors implement both empirical correlations and ML algorithms with
Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and GroupMethod
of Data Handling (GMDH). The data was collected from the open literature for world crude oils.
The estimation results of the two approaches mentioned above are compared by regression met-
rics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination
(R2). It was found that the GMDH algorithm has the accurate prediction results with the low MSE
and RMSE (336605.4 and 580.177) and the highest R2 (0.9228). Trend analysis was carried out to
strengthenmodel selection. The influence of input features on the prediction results indicates that
the GMDH algorithm has the most stability. Therefore, the GMDH model is selected for estimating
the bubblepoint pressure.
Key words: bubblepoint pressure correlation, decision tree, k-nearest neighbors, artificial neural
network, group method of data handling

INTRODUCTION
In the reservoir’s initial condition, oil is a solution that
involves gas. The bubblepoint pressure (pb) is de-
fined as the pressure at which the first gas bubbles exit
from the oil1. Bubblepoint pressure is a key param-
eter for PVT and fluid properties calculations, pro-
duction optimization, reservoir characterization, and
reservoir simulation. Therefore, it is crucial to accu-
rately calculate the bubblepoint pressure. Typically,
bubblepoint pressure is measured by sampling fluid
from the reservoir and analyzing the PVT (pressure-
volume-temperature). However, this method is ex-
pensive and takes a lot of time to implement2. For
this reason, many mathematical methods have been
developed to utilize measured data to quickly and ac-
curately estimate bubblepoint pressure. There are two
common approaches for estimating bubblepoint pres-
sure: the first is empirical correlations, and the sec-
ond is machine learning algorithms. The first ap-
proach has many methods with some famous corre-
lations, for instance, Standing3, Vazquez and Beggs 4,
Glaso 5, Al-Marhoun6, and Petrosky and Farshad7.
The second approach has undergone formidable de-
velopment in recent years. In the age of artificial intel-
ligence and machine learning, researchers have more

powerful tools to solve petroleum engineering prob-
lems. Many studies focus on the application of ma-
chine learning for estimating oil bubblepoint pres-
sure. The most common machine learning algorithm
and earliest used to estimate pb is ANN, for example,
according to studies by Osman et al.8, Rasouli et al.9,
Obanijesu and Araromi10, Alimadadi et al.11, Al-
Marhoun et al.12, Adeeyo13, Fath et al.14, Hassan et
al.15. Over time, many other vigorous ML algorithms
have been implemented for bubblepoint pressure pre-
diction. These algorithms include support vector ma-
chines16–19, genetic algorithms20,21, or groups ofma-
chine learning algorithms22–24.
In this study, the authors extend predictive methods
based onANN, DT, KNN, andGMDH. Research data
collected from the many literature. To identify the
most optimal method in this work, we use statistical
metrics for the regression problem, including MSE,
RMSE, and R2.

METHODS
As stated previously, there are two usual methods for
estimating the bubblepoint pressure: empirical corre-
lations and machine learning algorithms. Below is a
summary of the methods belonging to the two main
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groups above.

Empirical correlations

Standing

In 1947, Stading developed a method for bubblepoint
pressure with inputs of solution gas-oil ratio (Rs), gas
specific gravity (γg), reservoir temperature (T), oil
gravity (API)3.

pb = 18.2

[(
Rs

γg

)0.83
(10)a −1.4

]
(1)

a = 0.00091(T −460)−0.0125(API) (2)

Vazquez & Beggs

Vazquez and Beggs (1980) proposed a correlation for
bubblepoint pressure as follows4:

pb =

[(
C1

Rs

γg

)
(10)a

]c2
(3)

a =C3

(
API
T

)
(4)

Table 1: C1, C2, and C3 values

Parameter API≤ 30 API≥ 30

C1 27.624 56.18

C2 10.914328 0.84246

C3 -11.172 -10.393

Glaso

In 1980, Glaso developed a method for bubblepoint
pressure as below5:

log(pb) = 1.7669+1.7447log(A)
−0.30218 [log(A)]2

(5)

A =

(
Rs

γg

)0.816 (T −460)0.172

(API)0.989 (6)

Al-Marhoun

Al-Marhoun (1988) presented a simple correlation as
follows:

pb = aRb
s γc

gγd
o T e (7)

with a = 5.38088x10−3, b = 0.715082, c = -1.87784, d
= 3.1437, and e = 1.32657

Petrosky & Farshad
In 1995, Petrosky and Farshad recommended a corre-
lation as below:

pb =

[
112/727R0.577421

s
γ0.8439

g (10)x

]
−1391.051 (8)

x = 7.916
(
10−4)(API)1.5410

−4.561
(
10−5)(T −460)1.3911 (9)

Machine learning algorithms

Artificial Neural Network (ANN)
An ANN is an algorithm that is based on biologi-
cal processes and simulates the functions of the ner-
vous system. Typically, an ANN structure has three
layers: an input layer, a hidden layer, and an output
layer. Each individual node has input data, weights,
a bias, and an output. The output values are deter-
mined through transfer functions. Some of the most
common transfer functions are: the Sigmoid func-
tion, the ReLU (Rectified Linear Unit) function, the
Leaky ReLU function, the Hyperbolic Tangent func-
tion, the Softmax function, and the Heaviside func-
tion25.
The essence of the ANN process is to learn from
the data to renew the weights. The updating of the
weights is performed continuously through two pro-
cesses: forward propagation and backpropagation26.

K-Nearest Neighbors (KNN)
The KNN is a supervised ML algorithm that makes
predictions based on the neighbor data points in a fea-
ture space. In this algorithm, we choose the K value
to represent the number of neighboring points to cal-
culate the distance between the new point and the
K neighboring points. Then, identify the K-nearest
neighbors with the smallest distances and compute
the weighted average of the target values of these
neighbors. Finally, assign this average value as the es-
timated value for the new data 27.

Decision Tree (DT)
The DT is a structure that includes nodes and
branches, and class attributes are represented on the
internal nodes of the tree. Based on the class at-
tributes, it works by splitting the dataset into subsets.
This process is called attribute selection28.
The Information Gain method is the popular method
for attribute selection. This approach calculates the
information gain for each attribute and selects the one
with the highest gain as the splitting attribute at each
node28.
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GroupMethod of Data Handling (GMDH)
TheGMDHwas developed byA.G. Ivakhnenko in the
1966 and has found applications in various fields. The
basic procedure of GMDH is to construct the high-
order polynomial form, which relates input variables
to a single output variable. For each feature, build
candidate models with different polynomial degrees
and evaluate the models’ performance using MSE. In
the end, perform an iterative solution to find the best
overall model with the input features29.
TheGroupMethod of Data Handling neural network,
also known as the GMDH-type neural network, is
a GMDH’s spectrum that combines the automated
model selection of ANN and feature extraction of
GMDH30.

RESULTS ANDDISCUSSION
Data
The research data was collected from the open liter-
ature on world crude oils31–37. It includes 567 data
points with descriptive statistics, as shown in Table 2.

Results of estimating thebubblepoint pres-
sure (BPP) of world crude oils

Empirical correlations
a. Standing correlation
Using equations (1) and (2), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 1.
b. Vazquez & Beggs correlation
Using equations (3) and (4), we have the comparison
results shown in Figure 2.
c. Glaso correlation
Using equations (5) and (6), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 3.
d. Al-Marhoun correlation
Using equation (7), we have the comparison results
shown in Figure 4.
e. Petrosky & Farshad correlation
Using equations (8) and (9), we have the predicted re-
sults versus measured results of BPP, shown in Fig-
ure 5.

Machine learning algorithms
a. Artificial Neural Network (ANN)
Using Google Colab with the Keras library, we have
the BPP comparison results shown in Figure 6.
b. K-Nearest Neighbors (KNN)
Using the KNeighborsRegressor function in Google
Colab, we have the BPP predicted results versus mea-
sured results, shown in Figure 7.

c. Decision Tree (DT)
Using the DecisionTreeRegressor function in Google
Colab, we have the BPP comparison results shown in
Figure 8.
d. Group Method of Data Handling (GMDH)
Using Google Colab with Keras library, we have the
BPP predicted results versus measured results, shown
in Figure 9.

Compare results
Table 3 summarizes the statistical results for esti-
mating bubblepoint pressure by using the regression
model’s metrics, which include: mean squared er-
ror, square root of mean squared error, coefficient
of determination. The results show that the GMDH
has the highest R2 (0.9228) and low MSE and RMSE
(336605.4 and 580.177).

Trend Analysis
Trend analysis (TA) is a method to study the relation-
ship between features and prediction targets. TA can
also identify key relationships between input parame-
ters and pb predicted values and identify the most ro-
bust model. In this study, four input parameters Rs,
γg, API and T f were selected to perform TA.
a. Trend analysis for gas solubility
With T = 102 oF, API = 28.3, γg = 0.996, and Rs taken
from a data set of 567 points, the trend analysis for gas
solubility is shown in Figure 10.
Most models show that as Rs increases, pb also in-
creases; only in the model by Al-Marhoun correla-
tion with a low R2 value display predicted values of pb

much different from the other models, and the graph
line has many zigzags. The trend displayed by the
GMDHmodel shows a rigorous relationship between
the parameter for trend analysis and the model’s pre-
dicted values. At the same time, the predicted values
versus Rs of the GMDH model are a straight, contin-
uously increasing line with smooth form.
b. Trend analysis for oil API gravity
With Rs = 226 (SCF/STB), T = 102 oF, γg = 0.996, and
API taken from a data set, the result is shown in Fig-
ure 11.
Mostmodels show that asAPI increases, pb decreases,
except the Al-Marhoun model. The GMDH model
shows this trend clearly with a straight, continuously
decreasing line.
c. Trend analysis for temperature
With Rs = 226 (SCF/STB),API = 28.3, γg = 0.996, and
T taken from a data set, the trend analysis for temper-
ature is shown in Figure 12.
Typical, all models show that as temperature in-
creases, pb increases. However, somemodels exhibit a
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Table 2: Descriptive statistics for experimental PVT data used in the study

Parameter Temperature
(F)

Solution gas oil
ratio
(SCF/STB)

API Gas specific
gravity

Bubble point pres-
sure
(psi)

Mean 193.86 636.92 35.10 1.1976 1931.97

Standard devia-
tion

51.99 405.76 6.00 0.4554 1261.45

Variance 2698.71 164349.73 35.93 0.2070 1588447.71

Minimum 74.00 26.00 19.40 0.1590 79.00

Maximum 306.00 2496.00 56.50 3.4445 6741.00

Figure 1: Measured and predicted values of the Standing correlation.

Table 3: Summary of the statistical results for estimating bubblepoint pressure

Model MSE RMSE R2

Standing 251165 501 0.8498

Vazquez & Beggs 354078 595 0.8460

Glaso 280723 530 0.8526

Al-Marhoun 2044426 1430 0.4706

Petrosky & Farshad 6096167 2469 0.8058

ANN 441419 664.394 0.737

KNN 420474 648.440 0.7947

DT 355461.982 596.206 0.788

GMDH 336605.4 580.177 0.9228
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Figure 2: Measured and predicted values of the Vazquez & Beggs correlation.

Figure 3: Measured and predicted values of the Glaso correlation.
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Figure 4: Measured and predicted values of the Marhoun correlation.

Figure 5: Measured and predicted values of the Petrosky & Farshad correlation.
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Figure 6: Measured and predicted values of the ANN algorithm.

Figure 7: Measured versus predicted values of the KNN algorithm.
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Figure 8: Measured and predicted values of the DT algorithm.

Figure 9: Measured and predicted values of the GMDH algorithm.
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Figure 10: Trend analysis for gas solubility.

Figure 11: Oil API gravity’s trend analysis.
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Figure 12: Trend analysis for temperature.

stepped form, and the Al-Marhoun model is far apart
from the group of other models.
d. Trend analysis for gas specific gravity
With Rs = 226 (SCF/STB), API = 28.3, T = 102 oF,
and γg taken from a data set, the trend analysis for
gas specific gravity is shown in Figure 13.
Basically, all models show that as gas specific grav-
ity increases, pb decreases, but some models exhibit
a graph line in a slightly winding form.

CONCLUSIONS
In this study, a dataset with 567 data points on crude
oils at some geographical location in the world with
four input parameters (Rs, γg, API, and T) was used
to estimate crude oil bubblepoint pressure (pb) by two
main approaches: empirical correlations andmachine
learning algorithms. The result shows that theGMDH
algorithm is the model that gives the best estimation
for bubblepoint pressure.
In addition, trend analysis of input parameters also
shows that GMDH graph lines tend to be stable. This
strongly confirms that the GMDHmodel is highly re-
liable in bubblepoint pressure estimation and can be
used for the calculation of other crude oil PVT data
sets. The authors suggest that further research on the
overfitting phenomenon is needed to increase the re-
liability of model selection.
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Ứng dụng phương pháp họcmáy để ước lượng áp suất điểm bọt
cho dầu thô thế giới

Trần Nguyễn Thiện Tâm*, Hoàng Trọng Quang, Đỗ PhạmMinh Hương

TÓM TẮT
Áp suất tại đó bong bóng khí đầu tiên thoát ra khỏi dầu vỉa chứa được gọi là áp suất điểm bọt.
Thông số này ảnh hưởng đến dòng chảy đa pha trong đường ống và hệ số thu hồi dầu từ vỉa chứa.
Do đó, điều quan trọng là phải ước tính chính xác áp suất điểm bọt dầu thô. Đã có rất nhiều nghiên
cứu về tính toán áp suất điểm bọt từ dữ liệu trong phòng thí nghiệm, có thể tóm lược thành hai
cách tiếp cận chính: tương quan thực nghiệm và thuật toán học máy. Trong nghiên cứu này, các
tác giả thực hiện tính toán theo cả hai cách tương quan thực nghiệm và thuật toán học máy với
Cây quyết định (DT), K láng giếng gần nhất (KNN), Mạng nơron nhân tạo (ANN) và Phương pháp
xử lý dữ liệu nhóm (GMDH). Dữ liệu được thu thập từ các tài liệu đã công bố về dầu thô thế giới.
Kết quả ước lượng của hai cách tiếp cận trên được so sánh bằng các tham số đánh giá mô hình
hồi quy bao gồm: sai số toàn phương trung bình (MSE), căn bậc hai của sai số bình phương trung
bình (RMSE) và hệ số xác định (R2). Kết quả cho thấy thuật toán GMDH cho dự đoán chính xác với
MSE và RMSE thấp (336605,4 và 580,177) và R2 cao nhất (0,9228). Phân tích xu hướng được thực
hiện để tăng tính tin cậy cho việc lựa chọnmô hình. Ảnh hưởng của các thông số đầu vào đến kết
quả dự đoán chỉ ra rằng mô hình GMDH có độ ổn định cao nhất. Vì vậy, mô hình GMDH được lựa
chọn để ước lượng áp suất điểm bọt của dầu thô.
Từ khoá: tương quan áp suất điểm bọt, cây quyết định, k láng giếng gần nhất, mạng nơron nhân
tạo, phương pháp xử lý dữ liệu nhóm

Trích dẫn bài báo này: Tâm T N T, Quang H T, Hương D P M. Ứng dụng phương pháp học máy để ước 
lượng áp suất điểm bọt cho dầu thô thế giới . Sci. Tech. Dev. J. - Eng. Tech. 2024; 6(SI7):132-144.
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