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ABSTRACT

Bilingual dictionaries are vital tools for automated machine translation. Leveraging advanced ma-
chine learning techniques, it is possible to construct bilingual dictionaries by automatically learn-
ing lexical mappings from bilingual corpora. However, procuring extensive bilingual corpora for
low-resource languages, such as Bahnaric, poses a significant challenge. Recent studies suggest
that non-parallel corpora, supplemented with a handful of anchor words, can aid in the learning of
these mappings, which contain parameters for automated translation between source and target
languages. The prevailing methodology involves using Generative Adversarial Networks (GANSs)
and solving the Procrustes orthogonal problem to generate this mapping. This approach, while
innovative, exhibits instability and demands substantial computational resources, posing potential
issues in rural regions where Bahnaric is spoken natively. To mitigate this, we propose a low-rank
adaptation strategy, where the limitations of GANs can be circumvented by directly calculating
the rigid transformation between the source and target languages. We evaluated our approach
using the French-English dataset, and a low-resource dataset, Vietnamese-Bahnaric. Notably, the
Vietnamese-Bahnaric lexical mapping produced by our method is valuable not only to the field of
computer science, but also contributes significantly to the preservation of Bahnaric cultural her-
itage within Vietnam's ethnic minority communities.

Key words: L ow-rank adaptation, lexical mapping, low- resource language, Kabsch algorithm

INTRODUCTION

The construction of bilingual dictionaries represents
a valuable endeavor for both the computational lin-
This

process necessitates the accumulation, classification,

guistics and computer science communities.

s and presentation of word pairs and their correspond-
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7 ing translations in two languages'. Historically, this

task has entailed the use of reliable linguistic re-
sources, bilingual documents, and consultations with
native speakers to ensure precision. However, with
recent developments in Artificial Intelligence (Al), it
is now feasible to apply machine learning algorithms
to train language models capable of comprehending
and generating translations between two languages.
Such advancements demonstrate the intersection of
Al and linguistics, revolutionizing the way we ap-
proach bilingual dictionary construction.

However, machine translation methods utilizing ma-
chinelearning techiques typically rely heavily on a sig-
nificant volume of parallel bilingual corpora for train-
ing, especially in the context of deep learning mod-
els®. This poses a substantial challenge, particularly
for low-resource languages such as Bah- naric, where

obtaining such parallel language data is notably dif-
ficult. Recent research proposes the construction of
a lexical mapping between the source and target lan-
guages without the necessity for extensive parallel cor-
pora. This is achieved by learning the mapping be-
tween language embedding spaces with the aid of se-
lected anchor words. These anchor words can be au-
tomatically extracted or manually designated by lin-
guistic specialists. Figure 1 illustrates the approach
at a theoretical level. It begins with two language
embedding spaces, one for English and the other for
French, each with arbitrary shapes. The mapping pro-
cess endeavors to convert the embedding space of the
source language into that of the target language. Sub-
sequently, adjustments are made to minimize the dis-
parity between the shapes of these two spaces.

To isolate the problem of finding the mapping, current
state-of-the-art (SOTA) approach? presupposes that
the two languages under consideration possess anal-
ogous structures. Consequently, after training two
distinct embedding models, their embedding point
cloud shapes are similar®. With this assumption,
Generative Adversarial Networks (GANs) are then
employed to compute the linear mapping matrix R
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Figure 1: Overview of mapping process.

€ R™". During the refinement phase, this method
constructs a synthetic bilingual dictionary contain-
ing only high-frequency words, serving as anchors
to compute the refined mapping matrix R G R™X",
However, this method exhibits three primary disad-
vantages, both theoretically and practically. From
a theoretical standpoint, assuming similar embed-
ding point cloud shapes and according to the geo-
metric transformation theories ®’, the transformation
a between point clouds must operate within the n-
dimensional special Euclidean group (SE(n) group) 8
a € SE(n). Additionally, based on the theory of special
Euclidean group,

SE (n)=T (n) x SO (n) (1)

Without any enforcement, R, R'€ O(n), leading to
embedding points of corresponding words in two lan-
guages failing to align after transformation (Figure 2).
This stems from the group O(n) containing reflection
and omitted translation actions within the group T(n).
From a practical perspective, constructing bilingual
dictionaries with less than 100 words in low-resource
languages is conceivable, rendering automatic iden-
tification of anchor words unnecessary in general use-
cases. In certain instances, should the automatically
detected anchors deviate from the correct mapping,
the resultant computation of the transformation may
yield incorrect or erroneous results, as illustrated in
Figure 3. Additionally, the adversarial training pro-
cess in GANs may be unstable '°, resulting in poten-
tial model collapse.

Another challenge associated with low-resource lan-
guages is the scarcity of available documents. Without
sufficient data, deep learning-based embedding mod-
els are not well learned, which may contradict our as-
sumption. To mitigate this, without the need of par-
allel corpora, data augmentation, via modern tech-
niques, can foster robust embedding models without
any further data collection costs '!.

In this study, we propose an effective method known
as Augmenting and Sampling with Kabsch (ASK) to

address the data scarcity in low-resource languages
and the aforementioned issues of the SOTA approach.
By augmenting the available low-resource language
data and utilizing the Kabsch algorithm '? to fine-tune
embedding models with randomly sampled anchor
words, we create the transformation ¢ € SE(n) to map
the source embedding space to the target one. Our
contributions are outlined as follows.

« Implementation of contemporary data augmen-
tation techniques, including sentence boundary
augmentation and multitask learning data aug-
mentation, to enhance low- resource language
data, thus improving the performance of em-
bedding model.

o Adaptation of the Kabsch algorithm with ran-
domly sampled anchors to fine-tune and com-
pute the mapping of two language embedding
spaces.

« Execution of experiments to assess the efficacy
of our proposed method across various set-
tings, including the well-known French-English
dictionary and the low- resource Vietnamese-
Bahnaric dictionary, underlines the importance
of data augmentation and demonstrates the cor-
rectness and efficiency of our approach.

RELATED WORKS

A. Similarity between embedding spaces
across languages

Recent advancements in the field of language repre-
sentation have unveiled compelling insights into the
structural similarities that exist across various lan-

guages. A study by '*~1°

reveals that languages sharing
a similar grammatical structure tend to exhibit corre-
sponding shapes within their embedding point clouds
when analyzed using identical embedding models.
This congruence between different language spaces is
not merely coincidental but is likely indicative of un-
derlying linguistic parallels that manifest in the syn-

tactic and semantic dimensions of the languages. The
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Figure 3: False anchor detection problem

discovery has profound implications for cross-lingual
modeling and machine translation, as it could lead to
more efficient algorithms for mapping between differ-
ent language spaces'>. However, the correctness of
an embedding model strongly depends on the train-
ing dataset. In case the two languages have analogous
structures, if one of them does note have richdicuous
dataset, their embedding point clouds could be signif-

icant different.

B. Lexical mapping for low-resource lan-
guages

Lexical mapping, the computational process of align-
ing words or phrases across different languages, rep-
resents an active area of research with critical impli-
cations for the creation of bilingual dictionaries, espe-
cially for low-resource languages such as those spoken
by ethnic minority groups. This research is essential
for the enhancement of machine translation systems
that rely on these dictionaries. Lexical mapping solu-
tions can be broadly divided into three categories: (i)
methods requiring parallel data; (ii) methods neces-
sitating only a few parallel anchors; and (iii) methods
operating with non-parallel data.

Approaches utilizing parallel data typically exhibit su-
perior performance, with techniques ranging from
the normalization and application of orthogonal
mapping for translation '° to the development of ex-
tensive multilingual word embeddings'”. However,

obtaining sufficient parallel data for low- resource lan-
guages remains a significant challenge, limiting the ef-
fective deployment of deep learning-based methods
in practical applications.

In response to this limitation, research has explored
solutions that do not require parallel data. A recent
example involves the utilization of adversarial train-
ing to automatically identify anchor words, which
are then used to compute transformations between
embedding spaces®, Though this approach circum-
vents the need for parallel corpora and achieves SOTA
performance among non-parallel data approaches, its
performance remains markedly below that of meth-
ods relying on parallel corpora.

It is worth noting that the construction of a small
bilingual dictionary is often feasible, making meth-
ods that use such dictionaries as anchors particularly
promising. These approaches are designed to strike a
balance between data requirements and methodolog-
ical performance, addressing a critical tradeoff in the
quest to automate the process of bilingual dictionary
creation and enhance machine translation capabili-

ties.

C. Rigid transformation and Special Eu-
clidean Group

A rigid transformation, also known as a Euclidean
transformation or isometrylg, is a geometric trans-
formation that preserves distance between every pair
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of points. In more formal terms, a transformation o
is considered rigid if for any two points A and B, the
distance between A and B is the same as the distance
between a a(A) and o(B). The Euclidean group“’,
denoted as E(n), is the group of all Euclidean trans-
formations in n-dimensional Euclidean space. It is a
mathematical structure that encodes the geometry of
Euclidean space and captures the ways objects can be
moved around without changing their shape or size.
Transformations in E(n) group can be decomposed
into components in two subgroups which are rotation
(O(n)) and translation (T(n)) groups (Equation 2).
E(n)=T(n)x0(n) (2)

In linear algebra, transformation in E(n) can be also

defined as Equation 3.
R
E(n)={AlA= |
Orsn 1
R c Rn><n

t€R"RTR=RR" =1}

Assuming that X is a point in a n-dimensional Eu-
clidean space, the transformation a can be expressed
as

o (x) =Ry+t (4)

However, in (n > 2)-dimensional spaces, the trans-
formation can include reflections, which is unnec-
essary in some usecases such as moving aerospace
rocket in spaces. Therefore, theoretically, we do have
a subgroup known as special Euclidean group (SE(n))
which includes only the isometries that preserve ori-
entation. This means it consists of translations and
rotations, but excludes reflections. The term “special”
in the name refers to the preservation of orientation.
Formal definition of SE(n) in linear algebre is illus-
trated in (5).

R t
EM—MA—km J,

R € R™",
tER"RTR=RR" =1, |R| =1}

(5)

In SE(n) group, the movement of a rigid body B in Fig-
ure 4 can be explained by reference frame {A} by cre-
ating another reference frame {B} on B and describing
the position and direction of B in relation to A using

a homogeneous transformation matrix '°.

Ary, Ao
01><n 1

where A, is the translation vector of the origin O of

Ay (6)

B

{B} in the reference frame {A}, and Ag, is a rotation

matrix that transforms the components of vectors in
{B} into components in {A}. Figure 4 presents an ex-
ample of transformation from

B to A which can be written as A,» = ARgtP/ +A,r in
3-dimensional Euclidean space. Moreover, the com-
position of two displacements, from {A} to {B}, and
from {B} to {C}, is equal to the matrix multiplication
of AAp and P Ac. Equation 7 illustrates the decompo-
sition of the transformation {C} to {A} into two sub-
tranformations {C} to {B} and {B} to {A}.

Ay — [ARC A
¢ O1xn 1

_ | A At"’] « | Bre B ?)
O1xn 1 O1xn 1

_ |ARy XBre ARy X Bor + 4,00

B 0]><n 1

It is evident from (7) that the transformation is re-
versible, meaning we can aggregate multiple transfor-
mations into one. Due to this property, assuming that
the transformation AAB consists of a single rotation
followed by a single translation, then 3*A'B € SE(n)
=4A'B=4A.

METHODOLOGY

A. Overview of pipeline

Assume the task at hand is to identify the lexical map-
ping between two languages: a low-resource language
and another language with a grammatical structure
that exhibits similarity. In this context, the proposed
method, referred to as ASK, functions as a compre-
hensive, end-to-end pipeline designed specifically to
discover the mapping between the embedding spaces
of the two languages. The ASK method is articulated
into two primary phases, detailed as follows.

1. Embedding Model Construction: The initial
phase involves constructing a unique embed-
ding model for each language. For the low-

resource language, two specific data augmen-

tation techniques are employed to enhance the
modeling process: Sentence Boundary Aug-

mentation (SB) %’

and Multitask Learning Data
Augmentation (MD)?!. These techniques aim
to improve the representational capacity of the
embeddings, especially when dealing with lim-
ited data availability.

2. Fine-tuning and Mapping Computation: In
the subsequent phase, the focus shifts to fine-
tuning embedding models and computing the

mapping between the embedding spaces of the
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Figure 4: Example of rigid transformation in SE(3).

two languages. A set of parallel words is ran-
domly sampled from the collected bilingual dic-
tionary and designated as anchor points. Uti-
lizing the Kabsch algorithm, we fine-tune two
embedding models for anchors to be aligned.
Then, these anchors are employed to calcu-
late the n-dimensional rigid transformation be-
tween the embedding spaces. This rigorous ap-
proach leverages the intrinsic geometric proper-
ties of the data, ensuring an accurate alignment
of the linguistic structures.

B. Embedding model construction

In this study, we applied two below techniques to deal
with data shortage of low-resource languages.

1. Sentence Boundary Augmentation is a noise-
based approach at the sentence level. By trun-
cating parts of sentences and then combining
them, it can remove context from the first sen-
tence, add context from the second sentence,
and combine them into a single training exam-
ple. The proportion of the sentences is governed
by a hyperparameter. 2

2. Multitask Learning Data Augmentation com-
bines a set of simple data augmentation methods
including Word Swap, Reverse, Semantic Em-
bedding>?, Exploratory Data Analysis (EDA)??
to produce synthetic sentences.

By adding noise to the text in this way, the embed-
ding model can learn different embeddings for words
based on the combination of sentences. These gener-
ated sentences along with the original ones are then
used as the training data for learning monolingual
embedding model >4%°.

c. Fine-tuning and mapping computation
with Kabsch algorithm

Firstly, we denote the real mapping between two lan-
guages as f*(.) and the set of anchor words of these
languages as Wy = {wf‘}fil and Wp = {w?}i\il
where w? = f (wP). Considering the original em-
bedding models for two languages are My and Mp.
We add linear transformations to the end of each
model, thus, the embedding model should become
Mg, Mg where 6 and 7y are learnable parameters.
Then the vector sets of anchor words can be expressed
as (8).

X7 = {x; = M} (w®) e R"}" |

v ={i=mf (w}) R},

()

In this study, we treat the problem of finding mapping
between two embedding spaces as Procrustes super-

26 Therefore, we utilize the Kab-

imposition problem
sch algorithm to find the mapping or the transforma-
tion between two embedding point cloud, mathemat-

ically speaking. The objective of Kabsh algorithm is
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computing an approximation f(.) of the mapping *(.)
to optimize the objective function in (9).

[ =argmingE o [|IF (%)~
Y~A

©)

However, we can not directly optimize (9), so that we
reparameterize it with 6 and y. The new objective
function is then become (10). This objective func-
tion is also the loss function for fine-tuning embed-
ding models.

_ . 012
L = argming ,E XY~ B [Hf(XY)—Y |”

(10)
Y9 ~A

Base on the theory of SE(n) group, the f(.) repre-
sents an affine linear function: R” — R", which corre-
sponds to a rigid motion in R”. Under the perspective
of linear algebra, f(x)=Rx+t with X € R”, where R €
R™", |R|=1, and t € R". Nextly, we denote the cen-
troid if point cloud X and Y in Equation 11.

1

Hx = NineXxi
. 1 Yy (11)
y = = i
NYiEY

The Kabsch algorithm is summarized in Table 1. Fig-
ure 5 illustrates the transformation with Kabsch algo-
rithm.

After the embedding models are fine-tuning, we cal-
culate the approximate mapping function using the
same procedure. Consequently, the process of iden-
tifying the mapping of a source language word in the
target language involves ranking the neighboring em-
bedding points based on cosine similarity. Cosine
similarity is a widely used metric in natural language
processing that measures the similarity between two
vectors in a high-dimensional space. By employing
this approach, we can effectively determine the closest
matching target language word or its nearest neigh-
bors in the embedding space.

Next, we present the proof of better performance of
the Kabsch algorithm in n-dimentional space in com-
parison to the original Procrustes problem and the
SOTA approach.

a) Ensuring rigid transformation: Assuming that the
objective of Procrustes problem is hold, denoted as
(12).

g=argmingE . . [llgX)~Y|P’],g€0(n)
Y ~B

= argmingEl XA

Y~B

= argmingE X~ A

Y~B

= argmingE [tr (YTRX)] (12)

X~A
Y~B

Let C = XY? = UXVT, since VIRU is orthogonal,
then

tr(RC) =tr (RULVT)

13
=1r(VIRUE) <tr(£) =Y, 0; (13)

The euqation holds if R = VUT and [VU |>0. How-
ever, in case |VU7 |<0, the (13) becomes (14).

tr(RC) =tr (RUZVT)

=1r(V'RUT) <Y, (0j—0n) "

If we keep |R| = VU, we still achieve the equality
but |R| = -1 which causes the reflections in the orig-
inal point cloud, which is not what we expect since
we assume that the two sets of point cloud have the
same shape. The Kabsch algorithm resolves this is-
sue and get g € SO(n) by choosing R = VE'UT where
Y= {Gi<n =1,0,= —1}.

b) Tackling translation in high-dimensional space: As-
suming that we already solve the original Procrustes
problem and get the mapping function g(.), we define
our mapping function f(.) as (15).

FX)=8(X)—g(ux)+uy (15)
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Table 1: Kabsch algorithm

Algorithm 1 Kabsch Algorithm

Input: Point cloud set X, Y €
Output: R € R*, t € R"

c=XYy"

Perform SVD: C = ULV’

¥ = {o;}\_,, where 0;<, and 0, = sign (\VUT|)

R=VYU"
t =y —Rpy
return R, t

Table 2: Number of sentences in Vietnamese and Bahnaric corpora

Dataset Original Augmented
Vietnamese 16105 78307
Bahnaric 16105 78307
Table 3: Examples of French-to-English on 10000 anchors
Source Word Topi Top2 Top3 Top4
soins care deal fear attention
fin end close goal stop
chaque each apiece vice canso
position position place emplacement location
acces access accession approach admission
ouest west westward eastern easterly
période period stop point flow
emplois jobs job subcontract line
impot tax taxes taxation assess
role role persona character function
Table 4: Examples of Bahnaric-to-Vietnamese on 500 anchors
Source Topl Top2 Top3 Top4
mau pham tham chin tang_kdjung
slia Pak_toh du_du bek_bo hla_piét_yér
yén an kra kopung areh
troi dong podran prah konér
gl kio kéjong totuanh bok_y
AYe] pochah bréom apil_asol kokéch
bay apal srang bup_bup long_wik
toa toprah cha_hming hla_piét_yér bluh_léch
thiéu bi_mah mong_kotang ping_ngil hmingji
cong kowong du_du yér_tomong nguk_ich
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Considering the difference between original solution
and Kab- sch algorithm as in (16), we observe that
when g(ux) # Uy, the Kabsch algorithm, that takes
translation into account will be convergence to the
maxima while the original one can not.

A=llgX)=Y[F=|lf(x)=Y|?

=Y (Rx—yi) =X (Rx — Ry + py —yi)
=Y (Rux — ty)

=nlg(ux) —py|>>0 (16)

EXPERIMENTS

In this section, we conduct a comprehensive com-
parison of our proposed approach with other base-
line methods across various benchmarks. Our ex-
perimental analysis consists of two distinct phases.
Firstly, we concentrate on well-resourced language
pairs, particularly French-English, to showcase the ef-
fectiveness and efficiency of our method. Secondly,
we extend our evaluation to the Vietnamese-Bahnaric
language pair, strategically chosen to assess and verify
our method performance in a setting with limited lin-
guistic resources. This two-phase evaluation enables a
robust examination of the generalizability and adapt-
ability of our approach across different language sce-
narios, contributing to a deeper understanding of its
capabilities and limitations.

A. Experimental setups

Toward experiments on rich-resource datasets,
French- English, we uses a French-English corpus
containing 53,241 words. We will tra embeddings
with three options:

1. 1,000 anchor words along with 52,241 test

words.

2. 10,000 anchor words along with 43,241 test
words.

3. 50,000 anchor words along with 3,241 test
words.

For a fair model comparison, we use the rich-resource
dataset without augmentation. Synonyms of English
words are found using WordNet from Princeton Uni-
versity>” and implemented by NLTK® for evaluation.
Furthermore, we will assess the impact of data aug-
mentation on our low-resource datasets through two
different tests:

1. Evaluation using the original datasets.

2https://www.nltk.org/

2. Evaluation using augmented data from the orig-
inal dataset, which includes sentences with sen-
tence boundaries, EDA, and semantic embed-
ding augmentation combined with the original
datasets.

The dataset information, comprising both the original
data and its augmented counterpart, is provided in Ta-
ble 2. The original dataset is represented in the ‘Orig-
inal’ column, while the augmented dataset is found in
the ‘DA’ column.

The embeddings will be trained with three options:

1. 100 anchor words along with the rest being test
words.

2. 500 anchor words along with the rest being test
words.

3. 1000 anchor words along with the rest being
test words. During training, ASK utilizes Singu-
lar Value Decomposition (SVD) for learning the
mapping, and no hyperparameters are required.
However, the word embeddings also play a criti-
cal role. After conducting multiple experiments,
we selected the Skip-gram model to learn the
word embeddings with the following settings:
the hidden dimension is 100, the window size
is 5, and words whose frequency less than 2 are
ignored.

We have employed two commonly used metrics
which are listed in the followings to evaluate the rank-
ing performance of our model.

1. Mean Reciprocal Rank (MRR): This metric in-
corporates synonyms in addition to exact word
matching. By considering synonyms, we obtain
a more comprehensive evaluation of the map-
ping quality. To evaluate the model, we compute
the mean MRR across all testing words.

2. Top-K accuracy (Top-KAcc): This metric eval-
uates the model performance by examining the
Top-A ranked results and assessing the position
of the correct word.

3. Runtime: This metric quantifies the elapsed
time taken by the model to identify the mapping
function responsible for translating source lan-
guage words to their corresponding target lan-
guage words.

To improve performance on low-resource datasets,
we employ a fine-tuning strategy. Our model con-
sists of three linear layers that project the original em-
beddings into a shared space, ensuring that both the
source and target mapped embeddings have the same
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shape. We use hidden state dimensions are set to
1024 and 2048 and activate these layers using Relu
and Tanh functions, as they yielded the best results
during experimentation. The training process main-
tains a constant learning rate of 1073 across dataset
sizes (100, 500, 1000) but extends the number of
epochs (20000, 40000, 80000) for enhanced optimiza-
tion. Our chosen optimization method is Stochastic
Gradient Descent (SGD).

B. Baselines

The study of Mikolov '* utilizes skip-gram word em-
bedding to learn high-quality word embeddings, opt-
ing for a rotation matrix that minimizes the loss func-
tion sum’™_ ||Wx; — z;||>. By employing gradient de-
scent, they find optimal values for the matrix w, en-
abling seamless mapping between the word spaces of
source and target languages without constraints. The
authors then identify the target language word with
the highest cosine similarity to z, establishing mean-
ingful associations between words in different lan-
guages for crosslingual tasks like translation and word
alignment.

The Mikolov model ' lacks constraints, which may
lead to overfitting and underutilization of word em-
bedding features. To address this, the Dinu model*®
introduces regularization to prevent specific words
from being consistently mapped to particular targets.
Additionally, they modify the method for selecting
the correct word after mapping the source language
word using the matrix w. This change is necessary be-
cause cosine similarity, commonly used for this task,
encounters the Hubness problem—an inherent chal-
lenge in high-dimensional spaces?’ and a recognized
issue for word-based vectors2?. Asa result, theft focus
lies on proposing a straightforward and efficient solu-
tion to handle this problem by adjusting the similarity
matrix post-mapping process.

And the last model which we use for comparing
130, Theft method is re-
markable for its effectiveness even with just 25 word

our result is Artetxe mode

pairs, a departure from previous methods that often
require thousands of words for satisfactory perfor-
mance. They emphasize the adaptability of theft ap-
proach with low-dimensional pre-trained word em-
beddings. For inducing bilingual lexicons, a common
evaluation task, they use a small train set (seed dictio-
nary) to learn an initial mapping, leading to a larger
and potentially enhanced dictionary. In the second
step, they train the model to refine the source-to-
target language mapping, aiming for improvements
over the input dictionary. This iterative process al-
lows for continuous refinement until a convergence
criterion is met.

10

RESULT

A. Evaluations using rich-resource datasets

This experiment assesses the effectiveness of Kab-
sch algorithm, in finding language mappings between
French and English datasets (rich-resource datasets)
with similar point cloud shapes. The analysis (Ta-
ble 5) demonstrates that Kabsch outperforms most
other methods when utilizing 1000 and 10,000 anchor
points. However, Our ASK model outperforms other
methods due to its fine-tuned embedding, which
aligns the shapes of the source and target language
embeddings.

B.Evaluations using low-resource datasets

In this scenario, we executed full pipeline of ASK in-
cluding data augmentation, fine-tuning embedding
models and com- puting mapping with Kabsch. We
compared our method with its ablated versions and
other supervised learning models in terms of Top-
K Accuracy and mapping computation runtime for
Vietnamese-Bahnaric in the Table 6.

DISCUSSION

In rich-resource dataset, Kabsch consistently achieves
fa- vorable results across all cases, maintaining a rel-
atively lower runtime compared to other methods.
Kabsch exhibits the lowest runtime among the tested
models, making it a promising approach for efficient
and accurate language mapping tasks. To showcase
the mapping process, we have randomly chosen 10

Each “Top
i” column representing the ith target word with the

words, which are presented in Table 3.

highest similarity score.

In low-resource dataset, Kabsch algorithm’s result
tends to be slightly less impressive compared to alter-
native models. This can be traced back to the data’s
limited scale. Since the dataset is small, it might fail to
meet the criteria for the embedding shapes to match
exactly, resulting in a decline in accuracy. However,
by implementing Finetuning on Kabsch. It's impor-
tant to highlight that Kabsch’s runtime has been no-
tably performer in terms of execution speed.
Following the application of various augmentation
tech- niques, such as sentence boundary augmenta-
tion, EDA, and word2vec, on the initial dataset, we
significantly expanded its size. Consequently, we ob-
served a substantial improve- ment in performance
compared to evaluating the model on the original
low-resource dataset. This enhancement stems from
the model’s enhanced capability to learn the underly-
ing distribution of the data. Notably, our proposed
method achieves higher Top-1 Accuracy and MRR

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551



Science & Technology Development Journal - Engineering and Technology 2024, ():1-13

55.

o

55.

<

55

by

55

a

556

557

55

©

55

©

56

S

561

563

56

by

Table 6: The comparison between our method, its ablated versions (with fine-tuning (FT) and data
augmentation (DA)) and the other supervised models on Vietnamese-Bahnaric

Method Top- Top-5 Acc(%) T
1Acc(%) 1
100 anchor words
Artetxem 0.8 £1.5 1.2 £1.7
Dino 0.1 £+0.1 0.6 +0.2
Mikolov 4.9+0.1 5.3 +0.1
Kabsch 1.3 £0.1 2.2+£0.2
Kabsch + FT 5.0 £0.1 53 £0.1
Kabsch + DA 2.9+0.2 3.8 £0.3
ASK 6.0 +0.04 6.1 +0.05
500 anchor words
Artetxem 9.9 £0.5 13.3 £0.5
Dino 0.2 £0.1 1.0 +£0.3
Mikolov 6.0 0.3 7.5 +0.3
Kabsch 3.2+0.5 4.8 £0.6
Kabsch + FT 30.4 +0.1 30.6 £0.2
Kabsch + DA 83404 10.4 £0.6
ASK 33.3 £0.1 33.5 £0.1
1000 anchor words
Artetxem 11.9 £0.8 16.7 £0.7
Dino 0.2 £0.1 0.99 £0.3
Mikolov 8.240.8 9.5 £0.6
Kabsch 4.6 £0.5 6.7 £0.6
Kabsch + FT 59.1 £0.8 60.0 £0.3
Kabsch + DA 11.1 £0.6 14.1 £0.8
ASK 64.9 £0.2 65.0 £0.1

Top- MRRT Time(ms) |
10Acc(%) 1

1.5£1.7 0.012 +0.016 0.641 +0.122
1.34+0.3 0.008 £ 0.001 0.015 =+ 0.003
5.5 40.2 0.054 =+ 0.001 2.450 £0.122
3.1+0.3 0.022 £ 0.001 0.001 + 0.0003
5.6 £0.3 0.054 =+ 0.001 0.0033 + 0.0001
4.4 40.5 0.037 £ 0.003 0.001 = 0.0003
6.4 +0.1 0.063 + 0.0004 0.0035 + 0.016
15.2 £0.5 0.119 £+0.004 0.679 £0.127
2.0 +0.4 0.012 £0.001 0.015 =+ 0.004
84403 0.071 = 0.002 2.567 £0.054
6.0 £0.9 0.044 £ 0.005 0.001 £ 0.0001
30.8 £0.2 0.306 =+ 0.001 0.0037 + 0.0001
11.8 +0.8 0.097 £ 0.004 0.001 = 0.0001
33.7 £0.1 0.336 +0.001 0.0038 + 0.0001
19.0 0.6 0.145 £0.007 0.685 £0.164
1.9 £0.4 0.012 £ 0.002 0.017 £0.003
10.5 0.7 0.093 £ 0.007 2.540 £ 0.028
8.1 £0.5 0.061 £ 0.005 0.001 £ 0.0001
60.4 £0.3 0.597 £+ 0.005 0.004 £ 0.0001
16.2 £1.0 0.131 £0.007 0.001 = 0.0002
65.0 £0.1 0.650 +0.001 0.004 £ 0.00035

scores compared to alternative approaches. This ob-
servation underscores the advantage of employing a
larger dataset and highlights the fulfillment of the
underlying assumption, contributing to the superior
performance of our approach over other methods
while maintaining a lower runtime. Additionally, we
randomly selected 10 Vietnamese words to illustrate
the mapping pro- cess. These words are presented in
Table 4, with the same column meanings as in Table 3.

CONCLUSION

This paper introduces a novel approach for word
alignment based on distribution representations.

Leveraging two monolingual language corpora and
an initial dictionary, our method effectively learns
a meaningful transformation for individual words.
The experimental results reveal the efficacy of our
approach on rich-resource datasets, exhibiting supe-
rior training time compared to alternative methods.
Additionally, promising performance is observed on
low-resource datasets, highlighting the potential for
broader applicability.

In the future, we intend to conduct further investi-
gations in this direction, aiming to refine and opti-
mize our method to ensure a more coherent shape for
word embeddings from two monolingual language
corpora. This enhancement will facilitate more effi-
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cient alignment between the corpora, ultimately lead-
ing to improved alignment accuracy and precision.
Our ongoing research aims to enhance the practical-
ity and versatility of our approach, enabling cross-
lingual language processing and effective multilingual
resource alignment.
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TOM TAT

TUr dién song ngt 1a cong cu quan trong cho viéc dich méy tu déng. Bang cach tan dung céc ky
thuat hoc may tién tién, ching ta co thé xay dung tir dién song ngl bang céach tu dong hoc céc
sy dnh xa tu vung tu tap van ban song ng. Tuy nhién, viéc thu thap tap van ban song ngl phong
pht cho cadc ngdn ng it tai nguyén, chang han nhu ngdn ngl Ba Na, dat ra mot thach thic déng
ké. Nhimg nghién cliu gan day cho théy rang cac tap van ban don ngi, két hop véi trneo (anchor
words), co thé hd trg trong qud trinh hoc cac anh xa nay. Phuong phéap thudng dugc ap dung
bao gém s&rdung Mang GAN (Generative Adversarial Networks) két hap gidi quyét van dé truc giao
Procrustes d€ tao ra su anh xa nay. Phuong phap nays thuong khéng 6n inh va doi hoi tai nguyén
tinh toan dang ké, dua dén nhimg kho khan tiém an khi xir ly nhiing ngoén ng it tai nguyén nhu
tiéng Ba Na dugc thu thap & ving sau ving xa. D€ gidm thiéu diéu nay, ching toi dé xudt mot
chién lugc diéu chinh s6 chiéu thap (low-rank), trong dé cac han ché ctia GAN c6 thé dugc tranh
bang cach tinh toan tryc tiép su bién d8i gita ngdn nglr ngudn va ngdn ng dich. Ching t6i da
danh gié phuong phap clia minh bang cach st dung mét b dit liéu giau tai nguyén gitta tiéng
Phap - tiéng Anh va mot bd dir liéu it tai nguyén gilia tiéng Viét - tiéng Ba Na. Dang chiy, suanh xa
tUrvung gila tiéng Viét- tiéng Ba Na dugc tao ra bang phuong phap ctia chiing téi cé gid tri khong
chi trong linh vuc khoa hoc may tinh, ma con dong gép dang ké vao viéc bao ton di san van hoa
clia ngébn nglr Ba Na trong cong déng dan toc thiéu sé clia Viét Nam.

Tur khoa: Thu gidm s chiéu, anh xa tir vung, ngdn ng it tai nguyén, giai thuat Kabsch

Trich dan bai bao nay: Huy L C, Minh L Q, Oanh TN, Déng L D, Diic N Q, Sang N T, Quan T, Tha Q T. Huéng
tiép can thu gidm sé chiéu cho phép anh xa tir vuing tiéng Viét sang tiéng Ba Na tir cac tap ngii liéu
khéng song song. Sci. Tech. Dev. J. - Eng. Tech. 2024; ():1-1.
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