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ABSTRACT
In recent years, fuzzy neural systems have become increasingly popular due to their powerful learn-
ing and interpreting capabilities. In the field of control, the fuzzy neural system is superior to other
intelligent systems. In addition, the theory of the combination of neural networks and fuzzy logic is
also used in many other fields such as prediction, simulation, decision support, etc. However, most
neural systems are Fuzzy systems used today are a combination of neural networks and univari-
ate membership functions in fuzzy theory. These functions have the advantage of being simple
and easy to set up, but with that is a lack of interpretability for complex objects. For objects that
need to be described by two or more quantities, unidirectional membership functions are not able
to represent it. Application of multivariable membership function is necessary in this case. The
application of multivariable membership functions encounters many barriers due to their com-
plexity, the algorithms for applying multivariable membership functions are sketchy and have not
fully promoted its advantages. In this article, we will introduce a method for applying multivari-
able Gaussian membership function that allows to improve simulation performance compared to
previously introduced methods.
Keywords: fuzzy set, multivariablemembership functions, Gaussian functions, fuzzy neuralmodel

INTRODUCTION1

Neutral networks consist of a large number of sim-2

ple processing elements (neurons) that are intercon-3

nected, so when processing information in parallel,4

there is a huge computing power. However, the5

knowledge accumulated by the neural network is dis-6

tributed among all its elements, which makes them7

practically inaccessible to the observer.8

Fuzzy logic control systems do not have this limita-9

tion. However, control knowledge is required at the10

design stage of the control module and must come11

from experts, and therefore the fuzzy logic control12

system is not capable of learning.13

Combining both approaches allows you to create a14

system that has both the ability to train a neural net-15

work and enhance the intellectual abilities of the sys-16

temwith fuzzy decision rules inherent in the ”human”17

way of thinking.18

Such neuro-fuzzy systems are very diverse and are19

increasingly being improved in accordance with the20

development of neural network learning algorithms.21

Among themare gradient descentmethods1. The dis-22

advantage of these algorithms is that they are slow23

if the definition of the training step is not satisfac-24

tory, and converge easily to local minima. Popula-25

tion algorithms solve these problems and are effective26

in optimizing a large space, divided into two groups, 27

including evolutionary algorithms and swarm algo- 28

rithms. The genetic algorithm (GA) belongs to the 29

group of evolutionary algorithms based on such ge- 30

netic processes as selection, mutation, and exchange2. 31

Another algorithm belonging to the group of evolu- 32

tionary algorithms is the differential evolution algo- 33

rithm3 also inspired by biology such as GA, the dif- 34

ference is that a mutant element is created by adding 35

an efficiency number between two elements with pre- 36

vious generations. The swarm algorithm group of- 37

ten draws ideas from animal behavior, such as par- 38

ticle swarm algorithm4, ant colony algorithm5, bee 39

swarm algorithm6, cuckoo search algorithm7. There 40

are also support vector algorithms8 and extreme ma- 41

chine learning algorithms9. 42

Most of the above works are built on the basis of one- 43

dimensional membership functions, such as Gaus- 44

sian, Bell, Triangular. The limitation of this approach 45

is the complexity of the model in terms of the number 46

of rules, which increases exponentially with the num- 47

ber of inputs (spatial curse). 48

As an effective solution to the above problem, the use 49

of multivariable membership functions in a fuzzy in- 50

ference system is proposed. In Abonyi et al. (2001)10, 51

a fuzzy model with triangular multivariable member- 52

ship functions is introduced; these membership func- 53
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tions are obtained by Delaunay triangulation of their54

characteristic points. The problem with this method55

is that each fuzzy set is created by linking ”nodes”56

in space. For a multidimensional space, the number57

of ”nodes” required to represent a fuzzy set increases58

rapidly, resulting in a large number of variables to de-59

scribe the membership function. Compared to trian-60

gularmultivariable Delaunay functions, multivariable61

Gaussian functions require fewer variables to describe62

a fuzzy set11–13. In Kang et al. (2007)11, member-63

ship functions are identified using the clustering al-64

gorithm. Distance calculation is performed on input65

and output variables, so data in the same group may66

not have the same output properties. Data with simi-67

lar outputs may be located in different clusters due to68

the greater distance in the input space. This lack of69

association reduces the explanatory power of the gen-70

erated fuzzy system.71

In Lemos et al. (2010)12, Pratama et al. (2013)13,72

multivariable Gaussian membership functions are73

used in developing fuzzy models. The algorithms in74

the above works are used to develop a fuzzy inference75

system based on a sequential set of input data. This76

leads to the fact that in the presence of training data77

sets, their high accuracy is not guaranteed.78

In Basil et al. (2019)14, multivariable Gaussian mem-79

bership functions are used with incomplete covari-80

ance matrices, which is essentially another expres-81

sion for using one-dimensional Gaussian member-82

ship functions. Theuse of suchmembership functions83

provides neither the advantage of the number of fuzzy84

rules nor the decomposition error reduction.85

Most of the algorithms for determining the param-86

eters of fuzzy membership functions in the above87

works are developed on the basis of algorithms for the88

synthesis of fuzzy rules for one-dimensionalmember-89

ship functions.90

The fuzzy rules generated by these algorithms often91

overlap and cannot act as independent rules. The92

overlap of fuzzy rules in fuzzy systems does not allow93

assessing the reliability of individual fuzzy rules and at94

the same time creates limitations in extracting knowl-95

edge from fuzzy systems. When applying a fuzzy neu-96

ral systembased on amultivariablemembership func-97

tion to decision support systems, the ability to operate98

independently of fuzzy rules is very important, since99

it allows you to evaluate the accuracy of a solution100

given on the basis of individual fuzzy rules. Therefore,101

the task of constructing a multivariable membership102

function with fuzzy rules capable of independent op-103

eration is relevant.104

MULTIVARIATEMEMBERSHIP 105

FUNCTION 106

To represent multidimensional fuzzy sets, we use 107

multivariable membership functions. Multivariable 108

membership functions are also divided into linear 109

and non-linear. A commonly used linear multivari- 110

ate membership function is a triangular multivariate 111

membership function. 112

A linear multivariable membership function is ob- 113

tained byDelaunay triangulation15 of their character- 114

istic points. 115

Like one-dimensional linear membership functions, 116

multivariable linear membership functions have lim- 117

ited flexibility in setting parameters, which compli- 118

cates the formation of complex dependencies. 119

Compared to linear multivariate membership func- 120

tions, non-linear multivariate membership functions, 121

especially multivariate Gaussian functions, are more 122

widely used. 123

In general, the one-dimensional Gaussian member- 124

ship function uses an exponential function to project 125

the distance D from a point x in space to the cen- 126

ter of the fuzzy set d1 on the interval [0,1] such that 127

the distance between x and the greater d1, the smaller 128

the value of the membership function at the point x 129

and vice versa. The multivariate Gaussian member- 130

ship function also uses the same principle: 131

X (x) = e−D2(x) (1)

where: D is the distance from x to the center C of the 132

fuzzy set, x = (x1,x2, ...,xn) are the variables of the 133

multivariable membership function, where n is the 134

number of space dimensions. 135

ThedistanceD can simply be defined as the Euclidean 136

distance in the space x and C: 137

D =
√

∑n
i=1 (xi −Ci)

2 (2)

where xi is the i-th variable of themultivariable mem- 138

bership function corresponding to the i-th dimension 139

in space; 140

Ci - i-th coordinate of the fuzzy set center. 141

The limitation of using Euclidean distance is that the 142

extent is the same in all directions (Figure 1). This 143

reduces the spatial separation of fuzzy sets. 144

A generalization of Euclidean distance, called nor- 145

malized Euclidean, allows you to narrow or expand 146

the membership function in a direction parallel to the 147

coordinate axes (Figure 2): 148

D =

√
∑n

i=1

(
xi −Ci

σi

)2
(3)
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Figure 1: Spatial distribution of multivariate Gaus-
sian membership function based on Euclidean dis-
tance

where σ1,σ2, ...,σn - are the expansion coefficients in149

dimensions parallel to the coordinate axes.150

For expansion or contraction in an arbitrary direc-151

tion, it is proposed to use the distance based on the152

idea of Mahalanobis16, according to which:153

D(x) =
√
(x−C)T S−1 (x−C) (4)

where: x = [x1,x2, ...,xn]- the matrix of variables of154

the membership function has the size (1×n), n - the155

number of spatial dimensions; C = [C1,C2, ...,Cn]-156

matrix of coordinates of the center of the fuzzy set X157

of size (1×n).158

S is a matrix of expansion coefficients (variation) of159

size (n×n);S−1 is the inverse of S.160

Figure 2: Spatial distribution of Gaussian member-
ship function with two variables based on normal-
ized Euclidean distance

On Figure 3 shows the spatial distribution of the161

Gaussian membership function based on the Maha-162

lanobis distance with the parameters:163

C = [5 5] , S =

[
10 6
6 5

]
with cut-offs 164

α =
{

0.8 0.6 0.4
}

165

The matrix S is chosen and transformed to be a posi- 166

tive definite matrix such that the value under the rad- 167

ical is always positive for x – C values. 168

Figure 3: Spatial distribution of a two-variable
Gaussianmembership function based on theMaha-
lanobis distance

TheMahalanobis distance is a generalized form of the 169

normalized Euclidean distance. If S is the identityma- 170

trix, then the Mahalanobis distance becomes equal to 171

the Euclidean distance. If S is a diagonal matrix and 172

has the value 173

S =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . . . . . . . . . . .

0 0 . . . σ2
n

 ,
then the Mahalanobis distance becomes the normal- 174

ized Euclidean distance. 175

Figure 4: Membership function with two variables

Fuzzy sets with multivariable Gaussian membership 176

functions (Figure 4) have more flexible spatial di- 177

vision than one-dimensional membership functions, 178

and at the same time have a small number of param- 179

eters and are easier to implement than a triangular 180
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multivariable membership function. Therefore, in re-181

cent years it has often been used for the synthesis of182

fuzzy inference systems in various fields17.183

METHOD184

Methods tocombinetwomembership func-185

tions186

Shrinath. G. A., Plamen. P. A., Lughofer E., Bouchot187

J. L. and Shaker A. proposed a method for combining188

two fuzzy sets as follows13:189

C+ = (max(U)+min(U))/2 (5)

S+ = (max(U)−min(U))/2 (6)

where C+, S+ are the coordinates of the center shift190

point and the matrix of coefficients of the latitudes191

of the total fuzzy set, U= {C1±σ1, C2±σ2}, where192

C1, C2 are the coordinates of the points of the cen-193

ter shift of the componentmembership functions, σ1,194

σ2 are the width parameters of the fuzzy sets on the195

α-section. The coverage of the total fuzzy set by this196

method covers the coverage of component fuzzy sets197

in all dimensions in space.198

Another method for combining two fuzzy member-199

ship functions was proposed by Mahardika P. as fol-200

lows18:201

C+ =
N1C1 +N2C2

N1 +N2
(7)

S =

(
N1S−1

1 +N2S−1
2

N1 +N2

)−1

(8)

where C1, C2, S1, S2 are the coordinates of the points202

of displacement of the centers and the matrices of the203

coefficients of the latitudes of the component mem-204

bership functions. C+, S+ - coordinates of the cen-205

ter offset point and matrix of latitude coefficients. N1,206

N2 are the corresponding proportional weights of the207

component fuzzy sets.208

ProposedMethod tocombine twomember-209

ship functions210

The goal of combining two fuzzy sets is to replace two211

multivariable Gaussian fuzzy sets with a new multi-212

variable Gaussian fuzzy set. The composite fuzzy set213

must cover two composite fuzzy sets on theα-section.214

Since themultivariate Gaussianmembership function215

is built on the basis of the multivariate Gaussian dis-216

tribution, we construct a method for combining two217

multivariate membership functions based on the syn-218

thesis of two multivariate Gaussian normal distribu-219

tions.220

The center and covariance matrix representing the 221

distribution of a set of N data points X1, X2, ..., XN 222

in n-dimensional space is determined by the follow- 223

ing formula: 224

CN =
1
N

N

∑
i=1

Xi (9)

∑N=
1
N

N

∑
i=1

(Xi−CN)
T (Xi −CN) (10)

where Xi is of size (1×n), is the i-th data point in 225

dataset N. CN is of size (1×n), which is the center 226

of the multivariate Gaussian distribution. ∑N of size 227

(n × n) is the covariance matrix of the multivariate 228

Gaussian distribution. 229

Suppose we have two multivariate distributions G1 = 230

{CN1 ,ΣN1} andG2 = {CN2 ,ΣN2} representing the dis- 231

tributions of two sets of N1 and N2 distinct data, re- 232

spectively. 233

CN1 =
1

N1

N1

∑
i=1

Xi (11)

ΣN1 =
1

N1

N1

∑
i=1

(Xi −CN1)
T (Xi −CN1) (12)

CN2 =
1

N2

N2

∑
i=1

Yi (13)

ΣN2 =
1

N2

N2

∑
i=1

(Yi −CN2)
T (Yi −CN2) (14)

The union of G1 and G2 is understood as finding the 234

multivariate distribution of G+, which represents the 235

N1 + N2 distribution of their data points. The center 236

and covariance matrix G+ are defined as follows: 237

C+ =

N1

∑
i=1

Xi +
N2

∑
i=1

Yi

N1 +N2

=
N1CN1 +N2CN2

N1 +N2

(15)

Σ+ =

N2

∑
i=1

(Xi +C+)
T (Xi −C+)

N1 +N2

+

N2

∑
i=1

(Yi +C+)
T (Yi −C+)

N1 +N2

(16)

We replace: Xi −C+ = (Xi −CN1)+ (CN1 −C+), we 238

get: 239

∑N1
i=1 (Xi −C+)

T (Xi −C+)

= ∑N1
i=1 [(Xi −CN1)+(CN1 −C+)]

T ×
[(Xi −CN1)+(CN1 −C+)]

= ∑N1
i=1 [(Xi −CN1)+(Xi −CN1)]

T +

∑N1
i=1 (Xi −CN1)

T (CN1 −C+)+

∑N1
i=1 (CN1 −C+)

T (Xi −CN1)+

∑N1
i=1 (CN1 −C+)

T (CN1 −C+)

= ∑N1
i=1 (Xi −CN1)

T (XN1 −CN1)+(
∑N1

i=1 (Xi −CN1)
T
)
(CN1 −C+)+

(CN1 −C+)
T ∑N1

i=1 (Xi −CN1)+

N1 ∗ (CN1 −C+)
T (CN1 −C+)

(17)

4
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SinceCN1 is the center of G1, then240

∑N1
i (Xi −CN1)

T = 0 (18)

And241

∑N1
i (Xi −CN1) = 0 (19)

Substituting (12), (18) and (19) into (17), we get:242

∑N1
i=1 (Xi −C+)

T (Xi −C+)

= N1 ∗ΣN1 ∗ (CN1 −C+)
T (CN1 −C+)

(20)

Similar analysis243

∑N2
i=1 (Yi −C+)

T (Yi −C+)

= N2 ∗ΣN2 ∗ (CN2 −C+)
T (CN2 −C+)

(21)

Substituting (20) and (21) into (16), we get:244

Σ+ =
N1 ∗ΣN1 +N2 ∗ΣN2

N1 +N2
+

N1 ∗ (CN1 −C+)
T (CN1 −C+)

N1 +N2
+

N2 ∗ (CN2 −C+)
T (CN2 −C+)

N1 +N2

(22)

It is easy to see that the center G+ is a point on the245

line connecting the centers G1 and G2, and divides246

this segment into two segments corresponding to:247

CN1 −C+ =
N2

N1 +N2
(CN1 −CN2) (23)

CN2 −C+ =
N1

N1 +N2
(CN1 −CN2) (24)

Substituting (23) and (24) into (22), we get:248

Σ+ =
N1 ∗ΣN1 +N2 ∗ΣN2

N1 +N2
+

N1N2

(N1 +N2)
2 (CN1 −CN2)

T (CN1 −CN2)
(25)

Formula (25) gives us the covariance matrix of the249

multivariate distribution G+ through the center and250

the covariance matrix of the original distributions.251

Unlike combining two distributions with multiple252

variables, when combining two fuzzy sets, the cov-253

erage aspect of the combined fuzzy set must also be254

taken into account.255

Apply a formula similar to (25) to combine two fuzzy256

sets with centers C1, C2 and the corresponding ma-257

trix of expansion coefficients S1, S2. Values N1, N2258

are replaced by det(S1), det(S2):259

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)

+
det (S1)∗det (S2)

(det (S1)+det (S2))
2 (C1 −C2)

T (C1 −C2)
(26)

The center of the fuzzy set of the sum is transformed 260

from formula (15) as follows13: 261

C+ =
det (S1)∗C1 +det (S2)∗C2

det (S1)+det (S2)
(27)

As suggested above, we use a sufficiently small α- 262

slice to define a cover of a multidimensional Gaussian 263

fuzzy set. The criterion for the combined fuzzy set is 264

that the cut area α must be a covering of two com- 265

posite fuzzy sets. The results of combining two fuzzy 266

membership functions according to the formula (26) 267

are shown in Figure 5. 268

Figure 5: Multivariate Gaussian aggregation by for-
mulas (26)

It is easy to see that the coverage of the combined fuzzy 269

set does not correspond to the coverage of the two 270

original fuzzy sets. To analyze the influence of the 271

components of formula (22) on the coverage of the 272

combined fuzzy set, we proceed to the union of two 273

fuzzy sets with its first term (equivalent to Mahardik 274

P.’s algorithm): 275

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)

The results of combining two fuzzy sets using the first 276

term of formula (26) are shown in Figure 6. 277

Figure 6: Multivariate Gaussian aggregation by the
first term of formula (26)

Accordingly, we see that the first term allows us to av- 278

erage the coverage of component distributions, and 279

5
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the second element allows us to expand the coverage280

along the line connecting their centers.281

To generate the most appropriate aggregate function,282

we will use the following union formula:283

D =

−−→
C1C2

2

C+ =C1 +D+

(−→
r1

α −
−→
r2

α

)
/2 (28)

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)
− DT D

2∗ ln(α)
(29)

where C+, C1, C2 are the centers of the new fuzzy set284

and two component fuzzy sets, respectively,−→r 1
α is the285

radius vector of the first partial fuzzy set on the sec-286

tion α in the direction −−→
C1C2, −→r 2

α is the radius vec-287

tor of the second component fuzzy set on the section288

α in the direction −−→
C2C1. All of the above quantities289

have size (1×n), where n is the number of dimensions290

of the input space. S+, S1, S2 of size (n × n) is the291

covariance matrix of the new multidimensional fuzzy292

set and two-component fuzzy set, respectively, D is293

the radius vector in the direction−−→
C1C2 on the section294

α of the total fuzzy set. The DT D multiplication is the295

(n×1)*(1×n) matrix multiplication.296

The idea of the union method is to determine the ex-297

treme point of two fuzzy rules in the direction −−→
C2C1,298

the center of the entire fuzzy set is the midpoint of the299

above two points, and the radius is a vector from the300

center to one of the two points.301

Using the projection of the multivariable Gaussian302

function onto a plane perpendicular to the input plane303

and passing through the centers of the two combined304

fuzzy sets, we obtain the following one-dimensional305

Gaussian function:306

H1 (x) = e−0.5 (x−C)2

σ2

Theresults of combining two fuzzymembership func-307

tions according to the formula (29) are shown in Fig-308

ure 7.309

We need to determine the value of σ so that the new310

membership function has α at the point x0 (stretch311

the membership function to position x0):312

H (x0) = α ⇔ e
−0.5

x2
0

σ2 = α

⇔ σ2 =
x2

0
−2ln(α)

with (0 < α < 1)
(30)

Based on this, we expand and experiment to construct313

formula (29).314

Figure 7: The union of two multivariable Gaussian
functions by formula (29)

RESULTS 315

To evaluate the performance of the proposed method 316

for combining fuzzy membership functions, a com- 317

parison is made with other methods. The initial con- 318

ditions for modeling algorithms are the same: 319

n_term = 10; loss_thresold = 0.01; loss_max = 1 320

The fuzzy rule has the form 321

Ri : I f x ∈ X i (Ci,Si) then yi = c0
i

The training data is a set of 25 values taken at regular 322

intervals in the interval [0;4]× [0;4]. The algorithm 323

stops when 10 fuzzy rules are reached. 324

Table 1 displays the comparison results of combin- 325

ing two membership functions using the proposed 326

method and existing methods. 327

ORule =
m

∑
i=1

|ŷ(Ci)− y(Ci) |

where ORule is an error according to fuzzy rules, Ci 328

is the coordinates of the center of fuzzy rule i, is the 329

model output atCi,y(Ci), is the true value of the linear 330

function atCi, input,m - is the number of fuzzy rules. 331

OModel =
1
n

n

∑
i=1

(
Yi − Ŷi

)2

where OModel is the model error during testing, Ŷi is 332

the model output at the i-th observation,Yi is the true 333

value of the linear function of the i-th observation, n 334

is the number of observations. 335

DISCUSSION 336

Shrinath G.A. method has a much larger error than 337

the other two methods. It is explained that this 338

method was created for building fuzzy neural mod- 339

els without taking into account the overlap between 340

fuzzy rules and is applied to models in which the in- 341

put data are independent. This union method creates 342

6
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Table 1: Results of the application of methods to combine two fuzzymembership functions

Mode type Criteria Method Shrinath G.
A.

Method Mahardik Suggested method

Linear model OModel 4.343 1.466 0.651

ORule 642.330 0.820 0.328

Square model OModel 33.68 0.715 0.255

ORule 146.34 0.974 0.958

a union fuzzy set that spans the component fuzzy sets343

but does not take into account the relative positions of344

the component fuzzy sets. This results in a combined345

fuzzy set containing too many ”redundancies”, which346

increases the intersection between fuzzy rules.347

Mahardik P.’s pooling method takes the average of348

fuzzy sets of components. The advantages of this349

method are the simplicity of calculation and the re-350

striction of superposition between fuzzy sets, but this351

method has the following disadvantages:352

1. Many points in the input space are in two-353

component fuzzy sets, but not in the combined fuzzy354

set, which leads to an incomplete description of the355

information.356

2. In the case when the extended matrices of mem-357

bership functions belonging to a partial fuzzy set are358

diagonal matrices, the extended matrix of the com-359

bined fuzzy set is also a diagonal matrix. Therefore,360

the combined fuzzy set cannot represent the relative361

positions of the fuzzy sets of components.362

The proposed union method is an improved version363

of Mahardika’s method. This method extends the re-364

sult of the Mahardika method along a line connect-365

ing two centers of a partial fuzzy set until they coin-366

cide with their extreme points. Thus, the proposed367

method can show the relative position between two368

component fuzzy sets without increasing the overlap369

between fuzzy rules.370

The simulation results show that the proposed371

method of combining fuzzy sets improves the accu-372

racy of the neuro-fuzzy model and the independent373

operation of the generated fuzzy rules compared to374

the Mahardika method by increasing the computa-375

tional complexity.376

CONCLUSION377

In the content of the article, we have analyzed the ad-378

vantages and disadvantages of the multi-dimensional379

association functions used up to now, in addition,380

we have analyzed the advantages and disadvantages381

of the methods of combining the membership multi-382

variable functions. On the theoretical basis, we have383

developed a new method of aggregating multivari- 384

able membership functions. The use of this method 385

of combining multivariable membership functions in 386

the neuro-fuzzy model synthesis algorithm allows re- 387

ducing the average error of fuzzy rules during inde- 388

pendent work from 0.82 to 0.328 and reducing the 389

total error of fuzzy rules of the model from 1.466 to 390

0.651 when solving modeling problems compared to 391

theMahardikamethod. The content of the article cre- 392

ates a basis for applying multidimensional member- 393

ship functions to the problem of building a fuzzy neu- 394

ral system in practice. In the future, we will aim to 395

develop a theoretical system to be able to apply multi- 396

dimensional membership functions to describe com- 397

plex objects, to create more intelligent systems. 398
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TÓM TẮT
Trong những năm gần đây, các hệ thần kinhmờ ngày càng trở nên phổ biến nhờ khả năng học tập
và diễn giải mạnhmẽ của chúng. Trong lĩnh vực điều khiển, hệ thần kinhmờ tỏ ra vượt trội hơn các
hệ thống thông minh khác. Ngoài ra, lý thuyết về sự kết hợp giữa mạng nơ-ron và logic mờ còn
được sử dụng trong nhiều lĩnh vực khác như dự đoán, mô phỏng, hỗ trợ quyết định, v.v. Tuy nhiên,
hầu hết các hệ thống nơ-ron mờ được sử dụng ngày nay đều là sự kết hợp giữa mạng nơ-ron và
các hàm liên thuộc mờ đơn biến. Các hàm này có ưu điểm là đơn giản, dễ thiết lập nhưng đi kèm
với đó là thiếu khả năng diễn giải đối với các đối tượng phức tạp. Đối với các đối tượng cần được
mô tả bằng hai đại lượng trở lên, các hàm liên thuộc đơn chiều không thể biểu diễn nó. Việc áp
dụng hàm thành viên đa biến là cần thiết trong trường hợp này. Việc ứng dụng hàm thành viên
nhiều biến gặp nhiều rào cản do tính phức tạp, các thuật toán áp dụng hàm thành viên nhiều biến
còn sơ sài và chưa phát huy hết ưu điểm của chúng. Trong bài viết này, chúng tôi sẽ giới thiệu một
phương pháp áp dụng hàm thành viên Gaussian đa biến cho phép cải thiện hiệu suất mô phỏng
so với các phương pháp đã giới thiệu trước đó.
Từ khoá: Tập mờ, hàm liên thuộc đa biến, hàm Gaussian, mô hình thần kinh mờ

Trích dẫnbài báonày: An B T, Anh P T, Nguyên P T.Ứngdụng của hàm liên thuộc đa biến vàomôhình
nơ-ronmờ . Sci. Tech. Dev. J. - Eng. Tech. 2024; ():1-1.
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