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ABSTRACT
In recent years, fuzzy neural systems have become increasingly popular due to their powerful learn-
ing and interpreting capabilities. In the field of control, the fuzzy neural system is superior to other
intelligent systems. In addition, the theory of the combination of neural networks and fuzzy logic is
also used in many other fields such as prediction, simulation, decision support, etc. However, most
neural systems are Fuzzy systems used today are a combination of neural networks and univari-
ate membership functions in fuzzy theory. These functions have the advantage of being simple
and easy to set up, but with that is a lack of interpretability for complex objects. For objects that
need to be described by two or more quantities, unidirectional membership functions are not able
to represent it. Application of multivariable membership function is necessary in this case. The
application of multivariable membership functions encounters many barriers due to their com-
plexity, the algorithms for applying multivariable membership functions are sketchy and have not
fully promoted its advantages. In this article, we will introduce a method for applying multivari-
able Gaussian membership function that allows to improve simulation performance compared to
previously introduced methods.
Keywords: fuzzy set, multivariablemembership functions, Gaussian functions, fuzzy neuralmodel

INTRODUCTION
Neutral networks consist of a large number of sim-
ple processing elements (neurons) that are intercon-
nected, so when processing information in parallel,
there is a huge computing power. However, the
knowledge accumulated by the neural network is dis-
tributed among all its elements, which makes them
practically inaccessible to the observer.
Fuzzy logic control systems do not have this limita-
tion. However, control knowledge is required at the
design stage of the control module and must come
from experts, and therefore the fuzzy logic control
system is not capable of learning.
Combining both approaches allows you to create a
system that has both the ability to train a neural net-
work and enhance the intellectual abilities of the sys-
temwith fuzzy decision rules inherent in the ”human”
way of thinking.
Such neuro-fuzzy systems are very diverse and are
increasingly being improved in accordance with the
development of neural network learning algorithms.
Among themare gradient descentmethods1. The dis-
advantage of these algorithms is that they are slow
if the definition of the training step is not satisfac-
tory, and converge easily to local minima. Popula-
tion algorithms solve these problems and are effective

in optimizing a large space, divided into two groups,
including evolutionary algorithms and swarm algo-
rithms. The genetic algorithm (GA) belongs to the
group of evolutionary algorithms based on such ge-
netic processes as selection, mutation, and exchange2.
Another algorithm belonging to the group of evolu-
tionary algorithms is the differential evolution algo-
rithm3 also inspired by biology such as GA, the dif-
ference is that a mutant element is created by adding
an efficiency number between two elements with pre-
vious generations. The swarm algorithm group of-
ten draws ideas from animal behavior, such as par-
ticle swarm algorithm4, ant colony algorithm5, bee
swarm algorithm6, cuckoo search algorithm7. There
are also support vector algorithms8 and extreme ma-
chine learning algorithms9.
Most of the above works are built on the basis of one-
dimensional membership functions, such as Gaus-
sian, Bell, Triangular. The limitation of this approach
is the complexity of the model in terms of the number
of rules, which increases exponentially with the num-
ber of inputs (spatial curse).
As an effective solution to the above problem, the use
of multivariable membership functions in a fuzzy in-
ference system is proposed. In Abonyi et al. (2001)10,
a fuzzy model with triangular multivariable member-
ship functions is introduced; these membership func-
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tions are obtained by Delaunay triangulation of their
characteristic points. The problem with this method
is that each fuzzy set is created by linking ”nodes”
in space. For a multidimensional space, the number
of ”nodes” required to represent a fuzzy set increases
rapidly, resulting in a large number of variables to de-
scribe the membership function. Compared to trian-
gularmultivariable Delaunay functions, multivariable
Gaussian functions require fewer variables to describe
a fuzzy set11–13. In Kang et al. (2007)11, member-
ship functions are identified using the clustering al-
gorithm. Distance calculation is performed on input
and output variables, so data in the same group may
not have the same output properties. Data with simi-
lar outputs may be located in different clusters due to
the greater distance in the input space. This lack of
association reduces the explanatory power of the gen-
erated fuzzy system.
In Lemos et al. (2010)12, Pratama et al. (2013)13,
multivariable Gaussian membership functions are
used in developing fuzzy models. The algorithms in
the above works are used to develop a fuzzy inference
system based on a sequential set of input data. This
leads to the fact that in the presence of training data
sets, their high accuracy is not guaranteed.
In Basil et al. (2019)14, multivariable Gaussian mem-
bership functions are used with incomplete covari-
ance matrices, which is essentially another expres-
sion for using one-dimensional Gaussian member-
ship functions. Theuse of suchmembership functions
provides neither the advantage of the number of fuzzy
rules nor the decomposition error reduction.
Most of the algorithms for determining the param-
eters of fuzzy membership functions in the above
works are developed on the basis of algorithms for the
synthesis of fuzzy rules for one-dimensionalmember-
ship functions.
The fuzzy rules generated by these algorithms often
overlap and cannot act as independent rules. The
overlap of fuzzy rules in fuzzy systems does not allow
assessing the reliability of individual fuzzy rules and at
the same time creates limitations in extracting knowl-
edge from fuzzy systems. When applying a fuzzy neu-
ral systembased on amultivariablemembership func-
tion to decision support systems, the ability to operate
independently of fuzzy rules is very important, since
it allows you to evaluate the accuracy of a solution
given on the basis of individual fuzzy rules. Therefore,
the task of constructing a multivariable membership
function with fuzzy rules capable of independent op-
eration is relevant.

MULTIVARIATEMEMBERSHIP
FUNCTION
To represent multidimensional fuzzy sets, we use
multivariable membership functions. Multivariable
membership functions are also divided into linear
and non-linear. A commonly used linear multivari-
ate membership function is a triangular multivariate
membership function.
A linear multivariable membership function is ob-
tained byDelaunay triangulation15 of their character-
istic points.
Like one-dimensional linear membership functions,
multivariable linear membership functions have lim-
ited flexibility in setting parameters, which compli-
cates the formation of complex dependencies.
Compared to linear multivariate membership func-
tions, non-linear multivariate membership functions,
especially multivariate Gaussian functions, are more
widely used.
In general, the one-dimensional Gaussian member-
ship function uses an exponential function to project
the distance D from a point x in space to the cen-
ter of the fuzzy set d1 on the interval [0,1] such that
the distance between x and the greater d1, the smaller
the value of the membership function at the point x
and vice versa. The multivariate Gaussian member-
ship function also uses the same principle:

X (x) = e−D2(x) (1)

where: D is the distance from x to the center C of the
fuzzy set, x = (x1,x2, ...,xn) are the variables of the
multivariable membership function, where n is the
number of space dimensions.
The distanceD can simply be defined as the Euclidean
distance in the space x and C:

D =
√

∑n
i=1 (xi −Ci)

2 (2)

where xi is the i-th variable of themultivariable mem-
bership function corresponding to the i-th dimension
in space;
Ci - i-th coordinate of the fuzzy set center.
The limitation of using Euclidean distance is that the
extent is the same in all directions (Figure 1). This
reduces the spatial separation of fuzzy sets.
A generalization of Euclidean distance, called nor-
malized Euclidean, allows you to narrow or expand
themembership function in a direction parallel to the
coordinate axes (Figure 2):

D =

√
∑n

i=1

(
xi −Ci

σi

)2
(3)
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Figure 1: Spatial distribution of multivariate Gaus-
sian membership function based on Euclidean dis-
tance

where σ1,σ2, ...,σn - are the expansion coefficients in
dimensions parallel to the coordinate axes.
For expansion or contraction in an arbitrary direc-
tion, it is proposed to use the distance based on the
idea of Mahalanobis16, according to which:

D(x) =
√
(x−C)T S−1 (x−C) (4)

where: x = [x1,x2, ...,xn]- the matrix of variables of
the membership function has the size (1×n), n - the
number of spatial dimensions; C = [C1,C2, ...,Cn]-
matrix of coordinates of the center of the fuzzy set X
of size (1×n).
S is a matrix of expansion coefficients (variation) of
size (n×n);S−1 is the inverse of S.

Figure 2: Spatial distribution of Gaussian member-
ship function with two variables based on normal-
ized Euclidean distance

On Figure 3 shows the spatial distribution of the
Gaussian membership function based on the Maha-
lanobis distance with the parameters:

C = [5 5] , S =

[
10 6
6 5

]
with cut-offs

α =
{

0.8 0.6 0.4
}

The matrix S is chosen and transformed to be a posi-
tive definite matrix such that the value under the rad-
ical is always positive for x – C values.

Figure 3: Spatial distribution of a two-variable
Gaussianmembership function based on theMaha-
lanobis distance

TheMahalanobis distance is a generalized form of the
normalized Euclidean distance. If S is the identityma-
trix, then the Mahalanobis distance becomes equal to
the Euclidean distance. If S is a diagonal matrix and
has the value

S =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . . . . . . . . . . .

0 0 . . . σ2
n

 ,
then the Mahalanobis distance becomes the normal-
ized Euclidean distance.

Figure 4: Membership function with two variables

Fuzzy sets with multivariable Gaussian membership
functions (Figure 4) have more flexible spatial di-
vision than one-dimensional membership functions,
and at the same time have a small number of param-
eters and are easier to implement than a triangular
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multivariable membership function. Therefore, in re-
cent years it has often been used for the synthesis of
fuzzy inference systems in various fields17.

METHOD
Methods tocombinetwomembership func-
tions
Shrinath. G. A., Plamen. P. A., Lughofer E., Bouchot
J. L. and Shaker A. proposed a method for combining
two fuzzy sets as follows13:

C+ = (max(U)+min(U))/2 (5)

S+ = (max(U)−min(U))/2 (6)

where C+, S+ are the coordinates of the center shift
point and the matrix of coefficients of the latitudes
of the total fuzzy set, U= {C1±σ1, C2±σ2}, where
C1, C2 are the coordinates of the points of the cen-
ter shift of the componentmembership functions, σ1,
σ2 are the width parameters of the fuzzy sets on the
α-section. The coverage of the total fuzzy set by this
method covers the coverage of component fuzzy sets
in all dimensions in space.
Another method for combining two fuzzy member-
ship functions was proposed by Mahardika P. as fol-
lows18:

C+ =
N1C1 +N2C2

N1 +N2
(7)

S =

(
N1S−1

1 +N2S−1
2

N1 +N2

)−1

(8)

where C1, C2, S1, S2 are the coordinates of the points
of displacement of the centers and the matrices of the
coefficients of the latitudes of the component mem-
bership functions. C+, S+ - coordinates of the cen-
ter offset point and matrix of latitude coefficients. N1,
N2 are the corresponding proportional weights of the
component fuzzy sets.

ProposedMethod tocombine twomember-
ship functions
The goal of combining two fuzzy sets is to replace two
multivariable Gaussian fuzzy sets with a new multi-
variable Gaussian fuzzy set. The composite fuzzy set
must cover two composite fuzzy sets on theα-section.
Since themultivariate Gaussianmembership function
is built on the basis of the multivariate Gaussian dis-
tribution, we construct a method for combining two
multivariate membership functions based on the syn-
thesis of two multivariate Gaussian normal distribu-
tions.

The center and covariance matrix representing the
distribution of a set of N data points X1, X2, ..., XN
in n-dimensional space is determined by the follow-
ing formula:

CN =
1
N

N

∑
i=1

Xi (9)

∑N=
1
N

N

∑
i=1

(Xi−CN)
T (Xi −CN) (10)

where Xi is of size (1×n), is the i-th data point in
dataset N. CN is of size (1×n), which is the center
of the multivariate Gaussian distribution. ∑N of size
(n × n) is the covariance matrix of the multivariate
Gaussian distribution.
Suppose we have two multivariate distributions G1 =

{CN1 ,ΣN1} andG2 = {CN2 ,ΣN2} representing the dis-
tributions of two sets of N1 and N2 distinct data, re-
spectively.

CN1 =
1

N1

N1

∑
i=1

Xi (11)

ΣN1 =
1

N1

N1

∑
i=1

(Xi −CN1)
T (Xi −CN1) (12)

CN2 =
1

N2

N2

∑
i=1

Yi (13)

ΣN2 =
1

N2

N2

∑
i=1

(Yi −CN2)
T (Yi −CN2) (14)

The union of G1 and G2 is understood as finding the
multivariate distribution of G+, which represents the
N1 + N2 distribution of their data points. The center
and covariance matrix G+ are defined as follows:

C+ =

N1

∑
i=1

Xi +
N2

∑
i=1

Yi

N1 +N2

=
N1CN1 +N2CN2

N1 +N2

(15)

Σ+ =

N2

∑
i=1

(Xi +C+)
T (Xi −C+)

N1 +N2

+

N2

∑
i=1

(Yi +C+)
T (Yi −C+)

N1 +N2

(16)

We replace: Xi −C+ = (Xi −CN1)+ (CN1 −C+), we
get:

∑N1
i=1 (Xi −C+)

T (Xi −C+)

= ∑N1
i=1 [(Xi −CN1)+(CN1 −C+)]

T ×
[(Xi −CN1)+(CN1 −C+)]

= ∑N1
i=1 [(Xi −CN1)+(Xi −CN1)]

T +

∑N1
i=1 (Xi −CN1)

T (CN1 −C+)+

∑N1
i=1 (CN1 −C+)

T (Xi −CN1)+

∑N1
i=1 (CN1 −C+)

T (CN1 −C+)

= ∑N1
i=1 (Xi −CN1)

T (XN1 −CN1)+(
∑N1

i=1 (Xi −CN1)
T
)
(CN1 −C+)+

(CN1 −C+)
T ∑N1

i=1 (Xi −CN1)+

N1 ∗ (CN1 −C+)
T (CN1 −C+)

(17)
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SinceCN1 is the center of G1, then

∑N1
i (Xi −CN1)

T = 0 (18)

And

∑N1
i (Xi −CN1) = 0 (19)

Substituting (12), (18) and (19) into (17), we get:

∑N1
i=1 (Xi −C+)

T (Xi −C+)

= N1 ∗ΣN1 ∗ (CN1 −C+)
T (CN1 −C+)

(20)

Similar analysis

∑N2
i=1 (Yi −C+)

T (Yi −C+)

= N2 ∗ΣN2 ∗ (CN2 −C+)
T (CN2 −C+)

(21)

Substituting (20) and (21) into (16), we get:

Σ+ =
N1 ∗ΣN1 +N2 ∗ΣN2

N1 +N2
+

N1 ∗ (CN1 −C+)
T (CN1 −C+)

N1 +N2
+

N2 ∗ (CN2 −C+)
T (CN2 −C+)

N1 +N2

(22)

It is easy to see that the center G+ is a point on the
line connecting the centers G1 and G2, and divides
this segment into two segments corresponding to:

CN1 −C+ =
N2

N1 +N2
(CN1 −CN2) (23)

CN2 −C+ =
N1

N1 +N2
(CN1 −CN2) (24)

Substituting (23) and (24) into (22), we get:

Σ+ =
N1 ∗ΣN1 +N2 ∗ΣN2

N1 +N2
+

N1N2

(N1 +N2)
2 (CN1 −CN2)

T (CN1 −CN2)
(25)

Formula (25) gives us the covariance matrix of the
multivariate distribution G+ through the center and
the covariance matrix of the original distributions.
Unlike combining two distributions with multiple
variables, when combining two fuzzy sets, the cov-
erage aspect of the combined fuzzy set must also be
taken into account.
Apply a formula similar to (25) to combine two fuzzy
sets with centers C1, C2 and the corresponding ma-
trix of expansion coefficients S1, S2. Values N1, N2

are replaced by det(S1), det(S2):

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)

+
det (S1)∗det (S2)

(det (S1)+det (S2))
2 (C1 −C2)

T (C1 −C2)
(26)

The center of the fuzzy set of the sum is transformed
from formula (15) as follows13:

C+ =
det (S1)∗C1 +det (S2)∗C2

det (S1)+det (S2)
(27)

As suggested above, we use a sufficiently small α-
slice to define a cover of a multidimensional Gaussian
fuzzy set. The criterion for the combined fuzzy set is
that the cut area α must be a covering of two com-
posite fuzzy sets. The results of combining two fuzzy
membership functions according to the formula (26)
are shown in Figure 5.

Figure 5: Multivariate Gaussian aggregation by for-
mulas (26)

It is easy to see that the coverage of the combined fuzzy
set does not correspond to the coverage of the two
original fuzzy sets. To analyze the influence of the
components of formula (22) on the coverage of the
combined fuzzy set, we proceed to the union of two
fuzzy sets with its first term (equivalent to Mahardik
P.’s algorithm):

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)

The results of combining two fuzzy sets using the first
term of formula (26) are shown in Figure 6.

Figure 6: Multivariate Gaussian aggregation by the
first term of formula (26)

Accordingly, we see that the first term allows us to av-
erage the coverage of component distributions, and
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the second element allows us to expand the coverage
along the line connecting their centers.
To generate the most appropriate aggregate function,
we will use the following union formula:

D =

−−→
C1C2

2

C+ =C1 +D+

(−→
r1

α −
−→
r2

α

)
/2 (28)

S+ =
det (S1)∗S1 +det (S2)∗S2

det (S1)+det (S2)
− DT D

2∗ ln(α)
(29)

where C+, C1, C2 are the centers of the new fuzzy set
and two component fuzzy sets, respectively,−→r 1

α is the
radius vector of the first partial fuzzy set on the sec-
tion α in the direction −−→

C1C2, −→r 2
α is the radius vec-

tor of the second component fuzzy set on the section
α in the direction −−→

C2C1. All of the above quantities
have size (1×n), where n is the number of dimensions
of the input space. S+, S1, S2 of size (n × n) is the
covariance matrix of the new multidimensional fuzzy
set and two-component fuzzy set, respectively, D is
the radius vector in the direction−−→

C1C2 on the section
α of the total fuzzy set. The DT D multiplication is the
(n×1)*(1×n) matrix multiplication.
The idea of the union method is to determine the ex-
treme point of two fuzzy rules in the direction −−→

C2C1,
the center of the entire fuzzy set is the midpoint of the
above two points, and the radius is a vector from the
center to one of the two points.
Using the projection of the multivariable Gaussian
function onto a plane perpendicular to the input plane
and passing through the centers of the two combined
fuzzy sets, we obtain the following one-dimensional
Gaussian function:

H1 (x) = e−0.5 (x−C)2

σ2

Theresults of combining two fuzzymembership func-
tions according to the formula (29) are shown in Fig-
ure 7.
We need to determine the value of σ so that the new
membership function has α at the point x0 (stretch
the membership function to position x0):

H (x0) = α ⇔ e
−0.5

x2
0

σ2 = α

⇔ σ2 =
x2

0
−2ln(α)

with (0 < α < 1)
(30)

Based on this, we expand and experiment to construct
formula (29).

Figure 7: The union of two multivariable Gaussian
functions by formula (29)

RESULTS
To evaluate the performance of the proposed method
for combining fuzzy membership functions, a com-
parison is made with other methods. The initial con-
ditions for modeling algorithms are the same:
n_term = 10; loss_thresold = 0.01; loss_max = 1
The fuzzy rule has the form

Ri : I f x ∈ X i (Ci,Si) then yi = c0
i

The training data is a set of 25 values taken at regular
intervals in the interval [0;4]× [0;4]. The algorithm
stops when 10 fuzzy rules are reached.
Table 1 displays the comparison results of combin-
ing two membership functions using the proposed
method and existing methods.

ORule =
m

∑
i=1

|ŷ(Ci)− y(Ci) |

where ORule is an error according to fuzzy rules, Ci

is the coordinates of the center of fuzzy rule i, is the
model output atCi,y(Ci), is the true value of the linear
function atCi, input,m - is the number of fuzzy rules.

OModel =
1
n

n

∑
i=1

(
Yi − Ŷi

)2

where OModel is the model error during testing, Ŷi is
the model output at the i-th observation,Yi is the true
value of the linear function of the i-th observation, n
is the number of observations.

DISCUSSION
Shrinath G.A. method has a much larger error than
the other two methods. It is explained that this
method was created for building fuzzy neural mod-
els without taking into account the overlap between
fuzzy rules and is applied to models in which the in-
put data are independent. This union method creates

6
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Table 1: Results of the application of methods to combine two fuzzymembership functions

Mode type Criteria Method Shrinath G.
A.

Method Mahardik Suggested method

Linear model OModel 4.343 1.466 0.651

ORule 642.330 0.820 0.328

Square model OModel 33.68 0.715 0.255

ORule 146.34 0.974 0.958

a union fuzzy set that spans the component fuzzy sets
but does not take into account the relative positions of
the component fuzzy sets. This results in a combined
fuzzy set containing too many ”redundancies”, which
increases the intersection between fuzzy rules.
Mahardik P.’s pooling method takes the average of
fuzzy sets of components. The advantages of this
method are the simplicity of calculation and the re-
striction of superposition between fuzzy sets, but this
method has the following disadvantages:
1. Many points in the input space are in two-
component fuzzy sets, but not in the combined fuzzy
set, which leads to an incomplete description of the
information.
2. In the case when the extended matrices of mem-
bership functions belonging to a partial fuzzy set are
diagonal matrices, the extended matrix of the com-
bined fuzzy set is also a diagonal matrix. Therefore,
the combined fuzzy set cannot represent the relative
positions of the fuzzy sets of components.
The proposed union method is an improved version
of Mahardika’s method. This method extends the re-
sult of the Mahardika method along a line connect-
ing two centers of a partial fuzzy set until they coin-
cide with their extreme points. Thus, the proposed
method can show the relative position between two
component fuzzy sets without increasing the overlap
between fuzzy rules.
The simulation results show that the proposed
method of combining fuzzy sets improves the accu-
racy of the neuro-fuzzy model and the independent
operation of the generated fuzzy rules compared to
the Mahardika method by increasing the computa-
tional complexity.

CONCLUSION
In the content of the article, we have analyzed the ad-
vantages and disadvantages of the multi-dimensional
association functions used up to now, in addition,
we have analyzed the advantages and disadvantages
of the methods of combining the membership multi-
variable functions. On the theoretical basis, we have

developed a new method of aggregating multivari-
able membership functions. The use of this method
of combining multivariable membership functions in
the neuro-fuzzy model synthesis algorithm allows re-
ducing the average error of fuzzy rules during inde-
pendent work from 0.82 to 0.328 and reducing the
total error of fuzzy rules of the model from 1.466 to
0.651 when solving modeling problems compared to
theMahardikamethod. The content of the article cre-
ates a basis for applying multidimensional member-
ship functions to the problem of building a fuzzy neu-
ral system in practice. In the future, we will aim to
develop a theoretical system to be able to apply multi-
dimensional membership functions to describe com-
plex objects, to create more intelligent systems.
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Ứng dụng của hàm liên thuộc đa biến vàomô hình nơ-ronmờ

Bùi Trường An1,*, Phạm Tuấn Anh1, Phạm Thị Nguyên2

TÓM TẮT
Trong những năm gần đây, các hệ thần kinhmờ ngày càng trở nên phổ biến nhờ khả năng học tập
và diễn giải mạnhmẽ của chúng. Trong lĩnh vực điều khiển, hệ thần kinhmờ tỏ ra vượt trội hơn các
hệ thống thông minh khác. Ngoài ra, lý thuyết về sự kết hợp giữa mạng nơ-ron và logic mờ còn
được sử dụng trong nhiều lĩnh vực khác như dự đoán, mô phỏng, hỗ trợ quyết định, v.v. Tuy nhiên,
hầu hết các hệ thống nơ-ron mờ được sử dụng ngày nay đều là sự kết hợp giữa mạng nơ-ron và
các hàm liên thuộc mờ đơn biến. Các hàm này có ưu điểm là đơn giản, dễ thiết lập nhưng đi kèm
với đó là thiếu khả năng diễn giải đối với các đối tượng phức tạp. Đối với các đối tượng cần được
mô tả bằng hai đại lượng trở lên, các hàm liên thuộc đơn chiều không thể biểu diễn nó. Việc áp
dụng hàm thành viên đa biến là cần thiết trong trường hợp này. Việc ứng dụng hàm thành viên
nhiều biến gặp nhiều rào cản do tính phức tạp, các thuật toán áp dụng hàm thành viên nhiều biến
còn sơ sài và chưa phát huy hết ưu điểm của chúng. Trong bài viết này, chúng tôi sẽ giới thiệu một
phương pháp áp dụng hàm thành viên Gaussian đa biến cho phép cải thiện hiệu suất mô phỏng
so với các phương pháp đã giới thiệu trước đó.
Từ khoá: Tập mờ, hàm liên thuộc đa biến, hàm Gaussian, mô hình thần kinh mờ

Trích dẫn bài báo này: An B T, Anh P T, Nguyên P T. Ứng dụng của hàm liên thuộc đa biến vào mô 
hình nơ-ron mờ.  Sci. Tech. Dev. J. - Eng. Tech. 2024; 6(SI8):1-9.
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