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Free Vibration Analysis of Curved Shell Structures with Various
Boundary Conditions by Using A Meshfree Method

Thien Tich Truong'?”*, Vay Siu Lo"?”"

ABSTRACT

In this paper, the free vibration of curved shell structures with various boundary conditions is exam-
ined by using a meshfree method. The meshfree method in this study is based on the radial point
interpolation method (RPIM). The RPIM shape function is chosen because it satisfies the Kronecker
delta property allowing for the direct imposition of essential boundary conditions. The field vari-
ables and the geometry of the curved shell are interpolated through the RPIM shape function. The
curved shell formulation is constructed based on the first-order shear deformation theory (FSDT),
which considers the transverse shear strain. In a meshfree approach to investigate curved shell
structures, a convected coordinate system is employed. This convected coordinate system is tied
to the curved surface and used to map an arbitrary curved shell in 3D space into 2D space. To ob-
tain the numerical solution, the calculation is performed first in this convected coordinate system
and then mapped back to the global coordinate system. The accuracy and ability of the meshfree
method have been shown through many numerical examples. The natural frequencies of curved
shells with different geometry and boundary conditions are in good agreement with other avail-
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INTRODUCTION

Shell structures are commonly used in a variety of
engineering applications, such as aerospace, marine,
mobility and civil engineering. An important issue
in engineering design is the free vibration behavior
of the structures. The natural frequencies and mode
shapes of a shell structure can be used to predict its
dynamic response to external loads such as resonant.
Therefore, analysis of the free vibration of thin shell
structures is essential. The free vibration analysis of
curved shell structures is discussed in'~'°. Numer-
ical methods for analyzing shell structures often use
the first-order shear deformation theory (FSDT) '!~-14
to describe the shell behavior because of its simple for-
mulation.

Meshfree method is a genre of numerical meth-
ods that a mesh is not needed to define the dis-
This makes
them well-suited for problems with irregular geome-

crete model of the domain of interest.

tries or moving boundaries. One of the most well-
known and earliest meshfree methods is the Element-
Free Galerkin (EFG) method'®. Many other mesh-
free methods can be listed as the Reproducing Ker-
nel Particle Method (RKPM) ', the Moving Kriging
method (MK) !”'%, and the Radial Point Interpola-
tion method (RPIM)'%?°. The RPIM is a meshfree

method that has the Kronecker delta property. This
property enables RPIM to impose essential bound-
ary conditions directly, which is not possible for other
meshfree methods. Radial bases and polynomial
bases are used to construct RPIM shape functions.

There are two main approaches to analyzing shell
structures using meshfree methods. The first way is
based on the exact shell model?*>. The second ap-
proach is the 3D degenerate shell element theory. The
EFG method based on the 3D degenerate shell ele-
ment theory is used by Noguchi et al. >* to analyze the
geometric nonlinearity of shells. Dai’* and Peng?’
used the same approach for fracture analysis of curved

27-29 investi-

shell structures. Chen?® and Sadamoto
gate the linear static and dynamic behavior, and even
geometrically nonlinear analysis of curved shells.

A convected coordinate system is introduced to use a
meshfree approach based on the 3D degenerate shell
theory for analyzing curved FSDT shell structures.
This coordinate system is attached to the curved sur-
face. A mapping technique is used to connect the
global Cartesian and the local convected coordinate
systems. This approach is proposed by Noguchi et
al.?3. This mapping technique can map an arbitrary
3D curved shell in the Cartesian coordinate system to
a 2D space (convected coordinate system). The RPIM
shape function is then used to interpolate the curved
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shell geometry and the field variables in the 2D space.
The solution is obtained by mapping the computation
in the convected coordinate system back to the 3D
space.

The meshfree method based on RPIM shape function
is used in this paper to analyze the free vibration be-
havior of different curved shell structures with arbi-
trary boundary conditions. The FSDT curved shell
is formulated using the 3D degenerate shell theory
with the mapping technique. The quartic function is
used as the radial basis to construct the RPIM shape
function and the polynomial basis is the second-order
polynomial.

The paper is organized as follows. Section 2 gives a
brief on the theory of shell structures: curved shell
kinematics, the constitutive equation for isotropic ho-
mogeneous material and the discrete equation for free
vibration analysis. Section 3 investigates numerical
examples with various geometries and boundary con-
ditions to show the accuracy of the RPIM approach in
analyzing the free vibration of curved shells. Section
4 presents some discussions based on the obtained re-
sults. The last Section gives some conclusions and out-
looks.

METHODOLOGY

Kinematics of Shell

Considering two vectors X = (x1,x2,x3) and r =
(rl,r27r3), in that order, are the position vector in
the global Cartesian and the local convected coordi-
nate system. The two coordinate systems are shown
in Figure 1.
The orthogonal unit vectors in the Cartesian and in
the convected coordinate system are denoted by ¢; and
V;, respectively. The vectors V; are defined as follows:
V3 is a vector perpendicular to the mid-surface,
szi“‘zi‘:' and Vi = Vy x Vs (1)
The position of a point on the curved shell based on
the FSDT is defined by a vector X as the following
equation:

3
X:Xmid—F%IV:; (2)

where t denotes the shell thickness and the position
vector of an arbitrary point located on the mid-surface
of shell is expressed by the notation X,;,;;.
The displacement vector u of a point on the curved
shell can be written in a similar way as**:

3

M=Mmid+%f(*ﬁlV2+l32Vl) €)

where ;g = [Umian ,umidz,u,m-d3]T is the translation
of an arbitrary point on the mid-surface, B; and f3, are
the rotation angles about V; and V5, respectively.

Constitutive Equation

First, the covariant and contravariant base vectors of
the convected coordinate system are presented as fol-
lowing. The covariant base vectors are computed as
below

2.4

Gi:airi

(4)
and from the above equation, the contravariant base
vectors can be defined by the relation

GjXGk

G=—-1""%
[G1G2G3]

€))
in which [G,G_,-Gk] = G; X G;.Gy is called the scalar
triple product.

Now, the following expression defines the linear
strain-displacement relationship using the covariant

and contravariant base vectors 2>

1 du du ;
=-|Gi=— |+G;==G®G
€ 2(‘ ’ar/>+ iga<® ©)
= 81'le ® G/
The constitutive equation is given as the following
equation
o=C:¢ )
where
O'=0'ijG,'®Gj (8)

is the Cauchy stress, and the fourth-order constitutive
tensor C is defined as

C=CHMG®G;®G®G 9)
in which
Cijkl —
i j k 1 (10)
Cmnop (Vm+ G') (Va - G7) (Vo G¥) (V- G')
and the covariant coefficient matrix C; jy; is given as 24
Ciimn Cnuzz Ciiz Cizz Crisn
Coit Coxn Cniz Gz Cxsg
Cijt= |Ci211 Ci222 Ci212 Ciz Cro3i
Gt Gz Coziz Cozpz Coszag
G Gin Gz Gz Gaizn
M1 v 0 0 0
1 0 0 0
_E vy 0
T 12 1—
2 : 0
» 1—v
sym.
|5y 2

where E denotes Young’s modulus, v is Poisson ratio
and the shear correction factor often takes the value
Kk=5/6'"

88

(11)


https://crossmark.crossref.org/dialog/?doi=0.32508/stdjet.v6iSI2.1097&domain=pdf&date_stamp=2023-12-31

Science & Technology Development Journal - Engineering and Technology 2023, 5(512):87-98

Vs, / \F

Vi e e e
\ !
oo,

X2

Cartesian coordinate system

2 Support domain

@)7—>
rl

Convected coordinate system

Figure 1: lllustration of the Cartesian and convected coordinate systems.

Discrete Form of Free Vibration Equation

The shape function in this study is derived from the
radial point interpolation method (RPIM). A radial
basis and a polynomial basis are used to construct the
RPIM shape function ¢;.

The radial basis used in this study is the quartic func-
tion due to its stability to the change of shape param-
eter 0

R[ (x) =

2 3 4
1—6(? 7+8 o 13 6 r}
I I Iy

where ry is the distance between the node x; and the

(12)

point of interest x, /s is the maximum distance be-
tween any pair of nodes.

And the second-order polynomial is used as the poly-
nomial basis because of its high accuracy and low
computational cost. More detail on the step-by-step
formulation of the RPIM shape function can be found
in the reference .

The discrete form of the position vector X(r) is given
as following

(13)

3
-
X=x¥ 0(r", 7 <X1 + ?Vn)

where the RPIM shape function ¢ (rl,rz) is com-
puted on the convected coordinate.

The orthogonal unit vectors V; in Eq. (1) are calcu-
lated as the following expression

N
Z¢1 (r', ) Vi
=1

‘Z;vzl o ("1

(14)

P =

(i=2,3)
.2) Vil

Vi=V, xV; (15)

From the definition in Eq. (4) and the position vector
in Eq. (13), the covariant bases vectors are defined as

3
Gi=x_ 1% <X1+ %sz) (i=1,2) (16)

1
Gy =X 50 (') 1Vis (17)
The dynamic equation for free vibration is
MU +KU =0 (18)

where the vector contains all nodal degrees of free-
dom (DOFs). And it has five DOFs at each node
(tmid1 tmia2 tmia3 Pr Ba]”-

The stiffness matrix and mass matrix are derived as
the following equations?®

K = [ [.2 [+ BTCB[G1GyG3]dr'dr?dr®  (19)

M= [, [ [spNTN[GGyG3)dr'dr*dr®  (20)

where p is the density.
The shape function matrix N in Eq. (20) and strain-
computing matrix B in Eq. (19) are expressed as

N =
0 0 0 —Lrom), Llew,

7, 7, (21)
0 ¢ O *?r o(Va), ?r o (V2),
00 ¢ —=ro(Va); =r°9(Va)s
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Giay
Gran

B=[ Giay +Gaay;

G3an
Giayy
Gia
Gran
Giaxn +Gaann
Giaxn
Giap
G1b1
Gabyy
G1by1 + Gabyy
G3by1 + Gacy
G3b1 +Giy

Giais
Grans
Giax +Goars
Gsan
Gsayz
G1b12
Gaby
Gibxy +Gobyy |
G3by + Grep
G3b1p +Gren

RESULTS

Three numerical examples are conducted in this sec-
tion, particularly:

o Validation and convergence of the meshfree
method for free vibration analysis of flat shell
structures,

« Free vibration analysis of the open cylindrical

(22) shell with various boundary conditions, and

o Free vibration analysis of the open spherical
shell with various boundary conditions.

Three basic types of boundary conditions used in the
study are abbreviated as follows: C - Clamped or
Fixed supported, S — Simply supported, and F - Free.
The natural frequencies are evaluated in each problem
and compared with other reliable references.

s

in which the bracket and subscript “i” (), indicate the
ith component of the vector, and ¢ is the vector con-
taining all the shape function .

The coefficient [ail ap ai3], {bil biz] and
{cl cz} are expressed as
a—q) 0 0
ort
99
[a,] ap ai3] =10 o 0 (23)
¢
0 0 5
[bi1 t;iﬂ = X
r’ a0 aV, r 29
_Et{(vﬁl%'i_( 3 )1¢} 5t{(V2)1ﬁ+
s ¢ av, IS ¢
S gh(52) op T{omghe
3 20  [dV, I 9
*Et{(vzhﬁJﬁ( I )3¢} Et{(V2)3£+
1 1
*?(VZ)W ?(VZ)W
e o= f%t(Vz)zq) ?t(Vz)zqﬁ (25)
*7("2)3‘? Et(V2)3¢
Y 9
aV; 1;1 7VH
5 =({I-V;®V) T (26)
|Z1:1 WVH‘
(i=2,3;j=1,2)
vy, IV .

The natural frequency/eigenvalue () and the mode
shape/eigenvector (i) can be obtained by solving the
eigenvalue equation form of Eq. (18)

(K—a*M)a=0 (28)

Convergence and Validation

In this first example, a fully clamped square flat shell of
side a = 1 m is examined, see Figure 2. The flat shell in
this test has the thickness t = 0.1 m. The material prop-
ertiesare: Young’s modulus E =210 GPa, Poisson ratio
v = 0.3 and the density p = 7800 kg/m>. The non-
P

G
where G is the shear modulus. The obtained results

dimensional frequency @ = wa is considered,

from the present study is compared with Rayleigh-
Ritz method?! and the RKPM *2.

Xz A

Figure 2: Geometry of the square flat shell.

Five different discrete models are used in the con-
vergence study: 7 x 7, 9x9, 11 x 11, 13 x 13 and
15 x 15 nodes. The convergence rate of the non-
dimensional frequency is shown in Figure 3. It is ob-
served from the figure that the convergence rate of the
RPIM method is rapid, the RPIM results are high ac-
curacy despite a coarse discretization. Therefore, the
discrete model of 15 x 15 nodes is then used for the
next examination.
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Table 1: Non-dimensional frequencies of the CCCC square flat shell (the first five modes)

RPIM Rayleigh-Ritz ! RKPM *
Mode 1 1.5990 1.5940 1.5582
Mode 2 3.0547 3.0390 3.0182
Mode 3 3.0547 3.0390 3.0182
Mode 4 4.3253 4.2650 4.1711
Mode 5 5.0397 5.0350 5.1218
1.75
—Ref. [31] X3
——This study
g 1.7 R
£ 1
b 3
5 165p |
z I
E |
Z | 2
‘ e, |
3
D|a
135 7‘7 9x9 lllll 13x13 |5I|5
Number of nodes e2 Xz
e B o
Figure 3: Convergence of mode 1 non-dimensional
frequency. Y €
X 3
1 L=Ra
Table 1 shows the first five non-dimensional frequen- Figure 4: Geometry of the open cylindrical shell.
cies obtained by RPIM compared to other methods.
It is seen that the results obtained in this study show
good agreement with other approaches. This means
that using the RPIM meshfree method for free vibra- .
tions analysis of the curved shell (as described in sec- N
tion 2) is utterly appropriate. P
An open cylindrical shell e . T et ..
An open cylindrical shell is considered in this exam- I : e T
ple, see Figure 4. The dimensions of the shell are de- T P B
scribed as follows: R=2m, D =1m, & = 0.5 rad and R S
t = 0.05 m. Material properties are given as follows: E T e et ...
=210 GPa,v=0.3 andthedensityp:7800kg/m3. A L. ' <Lt
The discrete model of the cylindrical shell is a set P P R
of 15 x 15 scattered nodes, see Figure 5. The non- T ST S A
dimensional frequency @ = @D? Dp—r is considered, e el AP
fs - . . .
. . _ _EP e T . Lt
Dy is the flexural stiffness Dy = = Many AR
combinations of boundary conditions are examined, cL. .
the order of edges when applying boundary condi- .

tions is numbered 1-2-3-4 in Figure 4.

Table 2 shows the dimensionless frequencies of the
open cylindrical shell obtained in this study and from
the Spectro-Geometric-Ritz Method **. The obtained
results show a high similarity between the two meth-
ods. It is also observed that the CFFF case has the

Figure 5: Discrete model (15 x 15 nodes) of the
open cylindrical shell
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Table 2: Non-dimensional frequencies of the open cylindrical shell with various boundary conditions (the first

four modes)

BC RPIM
1 2
CCCC 46.35 74.26
25.51 49.84
CCCS 37.78 63.90
CSCS 33.46 55.51
CCSS 33.98 61.15
CSSS 28.95 52.34
CCCF 27.80 43.69
SSSF 16.21 30.24
CFFF 5.37 9.63
BC Spectro-Geometric-Ritz Method **
1 2
CCCC 46.14 74.11
25.32 49.34
CCCS 38.05 64.30
CSCS 33.66 55.13
CCSS 34.07 61.55
CSSS 28.90 51.86
CCCF 26.65 43.41
SSSF 14.82 29.35
CFFF 5.18 8.59

3 4
77.31 108.68
55.11 79.59
73.67 100.06
71.54 93.80
65.17 92.84
62.84 86.22
65.54 76.41
46.21 61.36
24.96 28.67
3 4
79.14 109.95
55.71 80.23
76.14 102.33
74.00 95.75
66.48 94.48
64.08 87.38
65.87 77.14
44.94 61.66
24.60 28.01

lowest frequency and the fully clamped case (CCCC)
has the highest natural frequency. This is as expected
since the CCCC case has more constraints than the
CFFF case so it is harder for the cylindrical shell to
vibrate. The same observation for the frequency of
CCCF and SSSF since CCCF has more constraints.
For the case of CSCS and CCSS the frequencies of
modes 1 and 4 are approximately the same. Whereas
modes 2 and 3 are different, maybe because the loca-
tions of the “C” and “S” constraints are different.
Figure 6 shows the mode shapes of four lowest modes
of the CCCF cylindrical shell. The colormap used in
the figure is the value of eigenvectors in the x; direc-
tion.

An open spherical shell

In this example, an open spherical shell is considered.
The dimensions of the shell are described as follows:
R=2m, a; =0.5rad, op = 0.5 rad and t = 0.05 m,

see Figure 7. This example also using isotropic ma-
terial with the properties are: Youngs modulus E =
70 GPa, Poisson ratio v = 0.3 and the density p =
2700 kg/m3. The spherical shell is discretized into a
set of 15 x 15 scattered nodes, see Figure 8. The non-
dimensional frequency @ = ®D? [% is considered.
Various boundary conditions are exarhined, the order
of edges when applying boundary conditions is num-
bered 1-2-3-4 in Figure 7.

Table 3 shows the non-dimensional frequencies of
the open spherical shell obtained in this study and
from the Ritz Method®*. The obtained results show
a good agreement between the two methods. Similar
to the open cylindrical shell, it is also observed that
the CFFF case has the lowest frequency and the CCCC
case has the highest natural frequency. And the same
observation for the frequency of CCCF and SSSF since
CCCEF has more constraints. For the case of CSCS and
CCSS, this is a little bit different from the cylindrical
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Table 3: Non-dimensional frequencies of the open spherical shell with various boundary conditions (the first

four modes)

BC RPIM

1 2
CCCC 58.66 79.60

38.41 59.17
CCCS 50.31 73.42
CSCS 46.85 65.63
CCSS 44.22 68.43
CSSS 41.01 62.25
CCCF 37.47 55.03
SSSF 13.33 42.98
CFFF 4.34 7.94
BC Ritz Method **

1 2
CCCC 58.04 80.84

38.01 59.10
CCCS 50.51 72.22
CSCS 46.87 64.10
CCSS 44.57 69.21
CSSS 41.28 61.27
CCCF 37.96 55.15
SSSF 13.14 42.40
CFFF 4.72 8.39

3 4
81.80 114.09
60.72 86.85
76.76 106.46
74.79 100.13
70.12 98.99
66.32 92.40
62.67 84.95
43.16 65.03
21.29 27.37
3 4
80.92 112.54
59.10 85.32
78.62 106.22
76.80 100.07
69.78 98.39
67.58 92.35
65.22 83.90
44.25 64.32
22.09 28.80

shell. The discrepancy in the two cases is larger, but
the frequencies of all four modes are relatively simi-
lar.

Figure 9 shows the mode shapes of four lowest modes
of the CFFF spherical shell. The colormap used in the
figure is the value of eigenvectors in the x; direction.

DISCUSSIONS

The approach in Section 2 is shown to be suitable for
the free vibration analysis of curved shells by the ob-
tained results, which agree well with those from other
numerical methods, as presented in Section 3.

For the convergence and validation test, the obtained
results show good agreement with the RKPM and the
Rayleigh-Ritz method. The convergence rate of the
RPIM method is rapid and the RPIM results are high

accuracy despite a coarse discretization.

For the cylindrical shell example, the obtained re-
sults show a high similarity between RPIM and the
Spectro-Geometric-Ritz methods. It is also observed
that the CFFF case has the lowest frequency and the
CCCC case has the highest natural frequency. This is
as expected since the CCCC case has more constraints
than the CFFF case so it is harder for the cylindri-
cal shell to vibrate. The same observation for the fre-
quency of CCCF and SSSF since CCCF has more con-
straints. For the case of CSCS and CCSS the frequen-
cies of modes 1 and 4 are approximately the same.
Whereas modes 2 and 3 are different, maybe because
the locations of the “C” and “S” constraints are differ-
ent.

Good agreement is observed between RPIM and the
Ritz methods in the spherical shell example. Similar
to the open cylindrical shell, it is also observed that
the CFFF case has the lowest frequency and the CCCC
case has the highest natural frequency. And the same

93



Science & Technology Development Journal - Engineering and Technology 2023, 5(512):87-98

Mode 1

M ode 2 Figure 7: Geometry of the open spherical shell.

Mode 3

Figure 8: Discrete model (15 x 15 nodes) of the
open spherical shell.

Mode 4

observation for the frequency of CCCF and SSSE For

the case of CSCS and CCSS, this is a little bit different
from the cylindrical shell. The discrepancy in the two
cases is larger, but the frequencies of all four modes
are relatively similar.
CONCLUSIONS
The free vibration analysis of curved shell structures

has been done in this paper by using the meshfree
method based on RPIM. The shell structures are mod-

eled using the 3D degenerate shell theory, and the
Figure 6: Four first modes of the CCCF cylindrical shell formulation is based on the first-order shear
shell. deformation theory. The FSDT is a straightforward
shell formulation requiring only C° continuity. The
RPIM is a meshfree method that has the Kronecker
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Mode 1

Mode 2

o

Mode 4

_
=

Figure 9: Four first modes of the CFFF spherical
shell.

,'

delta property. This property enables RPIM to im-
pose essential boundary conditions directly, which is
not possible for other meshfree methods. A mapping
technique is employed to connect the global Carte-
sian and the local convected coordinate systems. The
geometry of the curved shell and the field variables
in the convected coordinate are interpolated by the
meshfree RPIM shape function. The solution of the
problem is obtained by mapping the computation in
the convected coordinate system back to the 3D space.
The present approach is shown to be accurate through
many numerical examples. Good agreement with the
solution from other numerical methods is observed.
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TOM TAT

Trong bai bdo nay, dao déng tu do clia cac két cau vé cong véi cac diéu kién bién khac nhau dugc
khao sat bang phuong phap khong lusi. Phuong phép khong Iudi trong nghién cu nay dua trén
phuang phép néi suy diém hudng kinh (RPIM). Ham dang RPIM dugc chon vi né thoa man thudce
tinh Kronecker delta cho phép ap dat truc tiép cac diéu kién bién can thiét. Cac bién trudng va
dang hinh hoc clia vé cong dugc ndi suy théng qua ham dang RPIM. Cong thic vé cong dugc
xay dung dua trén ly thuyét bién dang trugt bac nhat (FSDT), c6 xét dén bién dang truct. Trong
phuang phap khong ludi dé khdo sat cac két cdu vd cong, mét hé toa dd doi luu dugce strdung. Hé
toa dé nay dugc gan vao bé mat cong va dugc st dung dé anh xa mot vd cong tly y trong khong
gian 3 chiéu (hé toa do téng thé) vao khoéng gian 2 chiéu (hé toa do déi luu). Viec tinh toan trudc
hét dugc tién hanh trong hé toa dé déi luu nay va sau d6 dugc anh xa trd lai hé toa do téng thé
dé thu dugc két qua. Bé chinh xac va khd nang clia phuong phéap khéng ludi dugc thé hién qua
nhiéu vi du s6. Tan s6 dao dong tu nhién clia cac vd cong c6 dang hinh hoc khac nhau véi cac diéu
kién bién khac nhau dugc so sanh vai cac tai liéu tham khéo tin cay va cho thdy su pht hop tét.
Tur khoa: phan tich dao dong tu do, vé cong, FSDT, phuong phap khong ludi
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